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Abstract
Unital equational theories are defined by axioms that assert the existence of the unit element for
some function symbols. We study anti-unification (AU) in unital theories and address the problems
of establishing generalization type and designing anti-unification algorithms. First, we prove that
when the term signature contains at least two unital functions, anti-unification is of the nullary
type by showing that there exists an AU problem, which does not have a minimal complete set of
generalizations. Next, we consider two special cases: the linear variant and the fragment with only
one unital symbol, and design AU algorithms for them. The algorithms are terminating, sound,
complete, and return tree grammars from which the set of generalizations can be constructed.
Anti-unification for both special cases is finitary. Further, the algorithm for the one-unital fragment
is extended to the unrestricted case. It terminates and returns a tree grammar which produces an
infinite set of generalizations. At the end, we discuss how the nullary type of unital anti-unification
might affect the anti-unification problem in some combined theories, and list some open questions.
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1 Introduction

We consider the equational theory of function symbols with unit element (also know as
identity), U, which is defined by the axioms f(x, εf ) ≈ x and f(εf , x) ≈ x, where εf is a
special constant, the unit element, associated with the function f . These axioms state that
the function symbol f is unital and that its unit is εf . We refer to such theories, containing
only these type of axioms, as unital theories. This property is ubiquitous in algebra, and
is essential to the two basic arithmetic operations + and · as well as the union (∪) and
intersection (∩) operations on sets. Furthermore, it is an example of a regular collapse
theory [16], which means that the variable sets of both sides of the defining axiom(s) are
the same (the regularity property), and it contains an axiom of the form t ≈ x, where t is a
non-variable term and x is a variable (the collapse property). Besides idempotency [8, 10], it
is the simplest well-known such theory.

Unification and matching in unital theories has been shown to be NP-complete [17].
Otherwise, investigations concerning unital unification mostly focused on its combination with
well known equational theories such as associativity (A), commutativity (C), idempotency (I),
see, e.g., [2] for a survey.
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26:2 Unital Anti-Unification

As for anti-unification in unital theories, one of the earliest examples is generalization in
free monoids [7]. More recent work [1] considers problems over arbitrary term alphabets with
some binary symbols being unital, and proposes a modular algorithm for anti-unification in
A, C, U theories and their combinations. The set of generalizations computed by the unital
anti-unification algorithm there is not complete in general (as one can see from Example 16
below), but completeness would hold if one restricts the result to linear generalizations.

The problems we address in this paper concern the unital anti-unification type and
algorithms. We prove that when the term signature contains at least two unital functions,
anti-unification is of type zero (nullary) by showing that there exists an AU problem which
does not have a minimal complete set of generalizations. Next, we consider two special cases:
the linear variant and one-unital fragment and design algorithms for them incrementally:
The one-unital fragment algorithm is obtained by extending the rule set used in the linear
variant algorithm. The latter uses a modification of rules from [1]. The algorithms are
terminating, sound, complete, and return tree grammars from which a set of generalizations
can be constructed. For the linear variant, the language of generalizations generated by the
grammar is finite. In the one-unital fragment, the language might be infinite, but it contains
a finite minimal complete set of generalizations. It follows that both linear and one-unital
anti-unification are finitary.

The algorithm for one-unital fragment is further extended for the unrestricted case. It
terminates and returns a tree grammar which produces an infinite set of generalizations. It
remains to be shown whether this set is always complete or not. At the end of the paper,
we also discuss how the nullary type of unital anti-unification might affect the problems in
theories that combine U with the properties such as A, C, or I.

Concerning applications, anti-unification has been used for recursion scheme detection
in functional programs [4], inductive synthesis of recursive functions [15], learning fixes
from software code repositories [3, 14], and for preventing bugs and misconfiguration [11],
just to name a few. Given the prominence of algebraic structures, whose equational theory
includes unit axioms, in programming language theory, understanding of anti-unification in
the presence of such axioms is essential to future progress in this area. As an example of
a possible application of this work, modern pure functional programming languages, such
as Haskell, heavily rely on monads which are higher-order AU-functions. Clone analysis of
code fragments which contain multiple monads used in conjunction would suffer from the
nullary type of unital anti-unification. However, restricted procedures, especially for the
linear variant, can provide useful substitutes to the less well behaved general procedure.
Combining unit axioms with a higher-order term signature was partially address in [9].

The unital anti-unification algorithms described in the paper are implemented and can
be accessed at https://github.com/Ermine516/UnitAU.

2 Preliminaries

We assume familiarity with the basic notions of unification theory, see, e.g., [2].

Terms and substitutions

We consider a ranked alphabet A, consisting of the set F of function symbols with fixed arity
and the set of variables V. A term t over A is defined as t ::= x | f(t1, . . . , tn), where x ∈ V
and f ∈ F with the arity n ≥ 0. The set of terms over the alphabet A is denoted by T (A).
Nullary function symbols are called constants. We denote variables by x, y, z, u, v, constants
by a, b, c, d, function symbols f, g, h, and terms by s, t, r. We denote the set of variables
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appearing in a term t by var(t). The depth of a term t is defined inductively as dep(x) =
dep(a) = 1 for variables and constants, and dep(f(t1, . . . , tn)) = max{dep(t1), . . . , dep(tn)}+1
otherwise. The number of occurrences of s in t is defined inductively as follows occ(s, s) = 1,
occ(s, a) = occ(s, x) = 0 if x 6= a and s 6= x, occ(s, f(t1, . . . , tn)) =

∑
i occ(s, ti).

The set of positions of a term t, denoted by pos(t), is the set of strings of positive integers,
defined as pos(x) = {ε} and pos(f(t1, . . . , tn)) = {ε}∪

⋃n
i=1{i.p | p ∈ pos(ti)}, where ε stands

for the empty string. If p is a position in a term s and t is a term, then s|p denotes the subterm
of s at position p and s[t]p denotes the term obtained from s by replacing the subterm s|p
with t. The head of a term t is defined as head(x) = x and head(f(t1, . . . , tn)) = f .

A substitution is a mapping from variables to terms such that all but finitely many
variables are mapped to themselves. Lower case Greek letters are used to denote them,
except the identity substitution, which is denoted by Id. They are extended to terms in the
usual way and we use the postfix notation for that, writing tσ for an instance of a term t

under a substitution σ. The composition of substitutions σ and ϑ, written as juxtaposition
σϑ, is the substitution defined as x(σϑ) = (xσ)ϑ for all variables x.

The domain of a substitution σ is the set of variables which are not mapped to themselves
by σ: dom(σ) := {x | xσ 6= x}. The restriction of σ to a set of variables X, denoted σ|X , is
the substitution defined as x(σ|X) = xσ if x ∈ X and x(σ|X) = x otherwise.

A binding is a pair of a variable and a term, written as x 7→ t. To explicitly write
substitutions, we use the standard convention representing a substitution σ as a finite set of
bindings {x 7→ xσ | x ∈ dom(σ)}. Application of σ to a set of bindings B, written Bσ, is
defined as Bσ = {x 7→ tσ | x 7→ t ∈ B}.

Equational anti-unification

Every function symbol f will have an associated set of axioms, denoted by Ax(f). If Ax(f) is
empty, then f does not have any associated properties and is called free. Otherwise, Ax(f) ⊆
{A,C,U, I} where A is associativity, i.e., f(t1, f(t2, t3)) ≡ f(f(t1, t2), t3) for all t1, t2, t3; C is
commutativity, i.e., f(t1, t2) ≡ f(t2, t1) for all t1, t2; U is unital, i.e., f(t, εf ) ≡ f(εf , t) ≡ t for
all t, where εf is the unique unit element associated with the function constant f ; and I is
idempotency, i.e., f(t, t) ≡ t for all t. Note that in these cases, only binary function symbols
have equational properties. In the case of unit element, only function constants with arity 0
can be εf . For each E ⊆ {A,C,U, I} we denote the equational theory generated by E by ≈E .
For particular equational theories such as U we can denote which function constants have
this property, writing, e.g., ≈U(f,g,...). The majority of this paper focuses on unital equational
theories. However, in later sections we consider combinations between unital theories and
the other above mentioned theories.

In the rest of the paper, every non-unital function symbol is free unless otherwise specified.
We say that a term is in unital normal form (U-normal form) if it does not contain a

subterm of the form f(t, εf ) or f(εf , t) for any unital symbol f . To get an U-normal form of
a term, all the subterms of the form f(t, εf ) and f(εf , t) are replaced by t repeatedly as long
as possible, for each unital symbol f . We write nfU (s) for the U-normal form of s, and for a
set of terms S, nfU (S) denotes the set nfU (S) := {nfU (s) | s ∈ S}.

A term r is more general than s modulo E (r is an E-generalization of s) if there exists a
substitution σ such that rσ ≈E s. It is written as r �E s. The relation �E is a quasi-ordering.
Its strict part is denoted by ≺E , and the equivalence relation it induces by 'E .

Given two terms t and s, and their generalization r, we say that it is their least general
generalization modulo E (E-lgg or just lgg in short), if there is no generalization r′ of t and s
which satisfies r ≺E r′.
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26:4 Unital Anti-Unification

A minimal and complete set of E-generalizations of two terms t and s is the set G with
the following three properties:
1. Each element of G is an E-generalization of t and s (soundness of G).
2. For each E-generalization r′ of t and s, there exists r ∈ G such that r′ �E r, i.e., r is less

general than r′ modulo E (completeness of G).
3. No two distinct elements of G are �E -comparable: If r1, r2 ∈ G such that r1 �E r2, then

r1 = r2 (minimality of G).

We write mcsgE(t, s) for the minimal complete set of E-generalizations of t and s if it
exists.

Often we just say generalization, lgg, etc. instead of E-generalization, E-lgg and so on
when the equational theory being discussed is clear from context.

The Anti-unification type of equational theories are defined similarly (but dually) to
unification type, based on the existence and cardinality of a minimal complete set of
generalizations. We assume here no restriction on the signature, i.e., the problems and
generalizations may contain arbitrary function symbols. Then the types are defined as
follows:

Unitary type: Any anti-unification problem in the theory has a singleton mcsg.
Finitary type: Any anti-unification problem in the theory has an mcsg of finite cardinality,
for at least one problem having it greater than 1.
Infinitary type: For any anti-unification problem in the theory there exists an mcsg, and
for at least one problem this set is infinite.
Nullary type (or type zero): There exists an anti-unification problem in the theory which
does not have an mcsg, i.e., every complete set of generalizations for this problem contains
two distinct elements such that one is more general than the other.

For each of these types, there exists a corresponding instance of an equational theory.
The syntactic first-order anti-unification [12,13] is unitary; commutative anti-unification [1] is
finitary; idempotent anti-unification is infinitary [8]; nominal anti-unification with infinitely
many atoms is nullary [5, 6]. In this paper we illustrate that unital anti-unification is nullary
over a term alphabet with as least two unital function symbols, and study anti-unification
type for some other theories, which are combined with the unital one.

We represent anti-unification problems in the form of E-anti-unification triples (E-AUTs).
An E-AUT is a triple of a variable and two terms, written as x : t ,E s. Here x is a fresh
variable which stands for the most general E-generalization of t and s. Any E-generalization
r of t and s is then an instance of x, witnessed by a substitution σ such that xσ ≈E r.

Sometimes, when we want to anti-unify s and t, we simply say that we have an anti-
unification problem (AUP) modulo E , s ,E t.

In all the notations, we omit E when it is clear from the context.

Regular tree grammars

A regular tree grammar is a tuple 〈α,N, T,R〉, where the symbol α is called the axiom, N
is the set of non-terminal symbols with arity 0 such that α ∈ N , T is the set of terminal
symbols with T ∩N = ∅, and R is the set of production rules of the form β 7→ t where β ∈ N
and t ∈ T (T ∪N). Given a regular tree grammar G = 〈α,N, T,R〉, the derivation relation
→G is a relation on pairs of terms of T (T ∪N) such that s→G t if and only if there exists a
position p in s and a rule ν → r ∈ R such that s|p = ν and t = s[r]p. The language generated
by G from the nonterminal β is the set of terms L(G, β) := {t | t ∈ T (T ) and β →+

G t}, where
→+

G is the transitive closure of the relation →G. The language generated by G is defined
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as the language generated bt G from α: L(G) := L(G, α). Given a grammar G, the set of
nonterminals of G that appear in a syntactic object (term, rule, AUT, etc.) O is denoted by
nter(G, O). For a grammar G, the set of nonterminals that can be reached from a nonterminal
ν, denoted by reach(G, ν), is defined as reach(G, ν) := {µ | ν →∗G t and µ ∈ nter(G, t)},
where →∗G is reflexive and transitive closure of →G . When the grammar is clear from the
context, we write → instead of →G .

Our next step is to connect sets of bindings and regular tree grammars, defining how to
construct grammars from binding sets. The reasoning behind such a correspondence is the
following: our goal is to represent complete sets of unital generalizations by finite means with
the help of regular tree grammars. Hence, we want to develop a U-generalization algorithm
which gives us such a representation. The mentioned correspondence will make this task
easier, because it will allow us to design a simpler algorithm. It computes a set of bindings,
from which one can directly construct the desired grammar, based on the correspondence we
define below in Definition 1.

We assume that each nonempty set of bindings B contains a designated binding, which
we call the root binding. Its left hand side is called the root of B. It is required that the root
occurs only once in the grammar, in the left hand side of the root binding.

I Definition 1 (Regular tree grammar corresponding to a set of bindings). Given a (nonempty)
set of bindings B, the corresponding regular tree grammar G(B) = 〈α,N, T,B〉 is defined by
the following construction:

The axiom α is the root of B.
N = {x | x 7→ r ∈ B for some r}.
T = F ∪ V , where F is the set of all function symbols that appear in terms of the right
hand sides of B, and V = {var(r) | x 7→ r ∈ B for some x} \N .

The language of a tree grammar G is denoted by L(G).

A motivating Example

Let us consider the term g(f(a, c), a) , g(c, b) where Ax(g) = ∅ and Ax(f) = {U}. Using the
methods discussed in [1] the computed generalization is g(f(x, c), y). This seems reasonable
because after decomposing g(f(a, c), a) , g(c, b) once, we get two AUPs f(a, c) , c and
a , b. The latter is solvable while the former can benefit from a single application of unit
introduction, i.e. f(a, c) , f(εf , c), resulting in the AUPs a , εf and c , c. However, if
we apply unit introduction to a , b twice, resulting in f(a, εf ) , f(εf , b), we can merge
variables and get the generalization g(f(x, c), f(x, y)) which is less general than g(f(x, c), y).
This observation motivated us to investigate the type in greater detail because it seems to
imply the possibility of an arbitrary number of variable introductions and merges.

3 General case: unital anti-unification is nullary

We formulate the first main result of this paper: generalization in theories with at least two
unital function symbols is of type zero.

In this section all terms are taken from the set T ({f, g, εf , εg},V), where both f and g
are unital with units εf and εg respectively. That means, we have no other function symbols
except f, g, εf , and εg. Furthermore, we will denote generalizations by bold face g.

I Definition 2. Let g be a generalization in U-normal form of t , s. We refer to σ1 and σ2
as generalizing substitutions of g if gσ1 ≈U t, gσ2 ≈U s, and for every {x 7→ u} ∈ σi, for
i ∈ {1, 2}, u is in U-normal form.

FSCD 2020



26:6 Unital Anti-Unification

I Definition 3. Let g be a generalization in U-normal form of t , s, and let σ1 and σ2 be
generalizing substitutions. We say that g is in reduced form if the following conditions hold:
1. For every x ∈ var(g), xσ1 6≈U xσ2.
2. For all x, y ∈ var(g) either x = y, or for some θ ∈ {σ1, σ2}, xθ 6≈U yθ.

I Theorem 4. There exists a reduced generalization g of εf , εg such that g is not equal
modulo U to a variable.

Proof. Take g = f(x, g(x, y)). Then σ1 = {x 7→ εf , y 7→ εg} and σ2 = {x 7→ εg, y 7→ εf} are
the generalizing substitutions. Obviously, g is not equal modulo U to a variable. J

I Theorem 5. Any reduced generalization of εf , εg is either a variable or contains two
distinct variables (maybe with multiple occurrences).

Proof. Let g be a reduced generalization of εf , εg, and σ1 an σ2 be generalizing substitutions.
If g is a variable, the theorem trivially holds. By Theorem 4, there exist also nonvariable
reduced generalizations of εf , εg. Notice that for all x ∈ var(g) we have either (a)
xσ1 = εf and xσ2 = εg, or (b) xσ1 = εg and xσ2 = εf , for otherwise either g would not
be a generalization of εf , εg (we would be introducing new symbols not occurring in the
initial terms), or for some {x 7→ s} ∈ σi, i ∈ {1, 2}, s would not be in U-normal form. If
the latter is the case we may just replace the offending binding by {x 7→ s′} where s′ is the
U-normalized version of s. But since g is reduced, we do not have two distinct x, y ∈ var(g)
with xσi ≈U yσi. Hence, when g is not a variable, then it must contain two distinct variables:
one that satisfies (a), and the other one that satisfies (b). J

I Theorem 6. For every generalization g in U-normal form of εf , εg there exists a
substitution ϑ such that gϑ is a reduced generalization of εf , εg.

Proof. Let σ1 and σ2 be its generalizing substitutions. If g is reduced, then the theorem
trivially holds and ϑ = Id. Assume g is not in reduced form. (Therefore, it can not be a
variable.) We will construct ϑ as a composition of two substitutions ϑ1 and ϑ2, which we
define below. Since g is not reduced, it violates one of the two conditions of Definition 3.

If g does not violate the first condition, we take ϑ1 = Id and continue with checking the
second one. If g violates the first condition, then there exists x ∈ var(g) such that xσ1 = xσ2,
i.e., x is an overgeneralization. We can assume that xσ1 = xσ2 = εw, where w is either f or
g, because if dep(xσ1) > 1, then either xσ1 is not in U-normal form or gσ1 6≈U εw.

Assume {x1, . . . , xn, y1, . . . , ym} ⊆ var(g) are all those variables in g that violate the first
condition of Definition 3 such that xiσ1 = xiσ2 = εf for all 1 ≤ i ≤ n, and yjσ1 = yjσ2 = εg
for all 1 ≤ j ≤ m. Then we take z1, z2 /∈ var(g) and consider three substitutions

ϑ1 = {x1 7→ g(z1, z2)} · · · {xn 7→ g(z1, z2)}{y1 7→ f(z1, z2)} · · · {ym 7→ g(z1, z2)},
σ′1 = {z1 7→ εf , z2 7→ εg}σ1, σ′2 = {z1 7→ εg, z2 7→ εf}σ2.

gϑ1 is a generalization of εf , εg and σ′1 and σ′2 are generalizing substitutions, because

gϑ1σ
′
1 = g{x1 7→ εf} · · · {xn 7→ εf}{y1 7→ εg} · · · {ym 7→ εg}σ1 = gσ1 = εf .

gϑ1σ
′
2 = g{x1 7→ εf} · · · {xn 7→ εf}{y1 7→ εg} · · · {ym 7→ εg}σ2 = gσ2 = εg.

However, in gϑ1 we do not have variables that violate the first condition of Definition 3:
all such variables from g are now replaced by terms containing z1 and z2 only, and these
new variables do not violate the condition as one can see from σ′1 and σ′2.
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Hence, we got gϑ1 that does not violate the first condition of Definition 3. If gϑ1 fulfills
the second one too, then we take ϑ2 = Id and obtain ϑ = ϑ1. Otherwise there exist two
distinct variables x, y ∈ var(gϑ1) such that xσi ≈U yσi, i = 1, 2. We take the renaming
substitution {x 7→ y} and obtain gϑ1{x 7→ y}, which is obviously a generalization again,
but replaces the violating variable pair by a single variable. We can repeat this process
iteratively for all variable pairs violating the second condition of Definition 3. Let ϑ2 be the
composition of all renaming substitutions used in this process. The obtained generalization
gϑ1ϑ2 is in reduced form. Taking ϑ = ϑ1ϑ2 finishes the proof. J

From this proof we see that if g is a reduced generalization of εf , εg with variables
var(g) = {x, y}, then σ1 = {x 7→ εf , y 7→ εg} and σ2 = {x 7→ εg, y 7→ εf} can be taken as the
generalizing substitutions.

I Theorem 7. Let g be a reduced generalization of εf , εg. Then there exists a reduced
generalization g′ of εf , εg such that g ≺U g′.

Proof. By Theorem 5, since g is reduced, it is either a single variable x, or contains exactly
two variables x and y.

First assume g = x. Then g′ = g{x 7→ f(x, g(x, y))} = f(x, g(x, y)) is also a reduced
generalization of εf , εg. However, for no θ we have g′θ ≈U g. Hence, g ≺U g′ in this case.

Now let g be such that {x, y} = var(g) and g′ = g{x 7→ f(x, g(x, y))}. Furthermore, let
occ(x,g) = n and occ(y,g) = m. Then we get occ(x,g′) = 2n and occ(y,g′) = n + m. By
the proof of Theorem 5, n > 0 and m > 0. Assume by contradiction that g 6≺U g′, i.e. there
exists θ = {x 7→ t, y 7→ s} such that g{x 7→ f(x, g(x, y))}θ = g.

If x ∈ var(g′θ|x) then x ∈ var(t) implies that occ(x,g′θ|x) ≥ 2n. Thus, x 6∈ var(t). This
implies that x ∈ var(g′θ) iff x ∈ var(s). Therefore, occ(x,g′θ) ≥ n+m. On the other hand,
occ(x,g′θ) = occ(x,g) = n and from n ≥ n+m we get m = 0. But it is a contradiction with
m > 0.

We can apply similar reasoning to the case when g′ = g{y 7→ f(y, g(y, x))}. Hence,
g ≺U g′ also when g contains exactly two variables. J

I Theorem 8. Let C be a complete set of generalizations of εf , εg which are in U -normal
form. Then C contains g and g′ such that g ≺U g′.

Proof. Let g ∈ C. By Theorem 6, gϑ a reduced generalization of εf , εg for some ϑ.
By Theorem 7 there exists a substitution ϕ such that gϑ ≺U gϑϕ and gϑϕ is a reduced
generalization of εf , εg. By completeness of the set C, there exists a substitution µ such
that gϑϕµ ∈ C. Taking g′ = gϑϕµ, we get g,g′ ∈ C and g ≺U g′. J

I Corollary 9. Unital anti-unification is nullary.

Proof. Follows from Theorem 8. J

In the rest of the paper we consider two special cases of unital anti-unification for which
minimal complete set of generalizations exist, i.e., which are not nullary. These special cases
and the linear variant and the fragment with one unital symbol.

4 Linear variant

In linear variant we are looking for unital generalizations in which no variable occurs more
than once. Input is not restricted. In particular, the language may contain one or more
unital function symbols.

FSCD 2020



26:8 Unital Anti-Unification

We start by formulating the rules of an algorithm which is supposed to compute linear
U-generalizations. The rules transform configurations into configurations. A configuration
is a quadruple A;S;L;B, where A is a set of anti-unification triples to be solved, S is a
set of already solved anti-unification triples (called the store), L is a set of pairs of an
anti-unification triple and a set of unit elements denoting the start of cycles in B, and B is a
set of bindings, representing the generalizations “computed so far”. The intuitive idea is to
take the obtained B at the end and construct from it a regular tree grammar, from which
one can read off each generalization. The set L is not used in the linear variant, but we will
need it in later cases when introducing cycles into the constructed grammar. We elaborate
on the details later, after the rules are formulated. Configurations are denoted by C.

It is assumed that all terms in A and S are in U-normal form and if U ∈ Ax(f) then εf
is the unit element of f . Also, when bindings of the form {x 7→ x} occur in B they will
automatically be dropped. The rules are defined as follows ( ·∪ stands for disjoint union):

Dec: Decomposition
{x : f(s1, . . . , sn) , f(t1, . . . , tn)} ·∪A; S; L; B =⇒

{y1 : s1 , t1, . . . , yn : sn , tn} ∪A; S; L; B{x 7→ f(y1, . . . , yn)}
where n ≥ 0, and y1, . . . , yn are fresh variables.

Exp-U-Both: Expansion for Unit, Both
{x : t , s} ·∪A; S; L; B =⇒

{x1 : g(t, εg) , s, x2 : g(εg, t) , s, y1 : t , f(s, εf ), y2 : t , f(εf , s)} ∪A; S; L;
B ∪ {x 7→ x1} ∪ {x 7→ x2} ∪ {x 7→ y1} ∪ {x 7→ y2},

where head(t) = f 6= g = head(s), U ∈ Ax(f) ∩Ax(g), and x1, x2, y1, y2 are fresh variables.

Exp-U-L: Expansion for Unit, Left
{x : t , f(s1, s2)} ·∪A; S; L; B =⇒

{x1 : f(t, εf ) , f(s1, s2), x2 : f(εf , t) , f(s1, s2)}∪A; S; L; B∪{x 7→ x1}∪{x 7→ x2},
where f 6= head(t), U ∈ Ax(f), U 6∈ Ax(head(t)), and x1, x2 are fresh variables.

Exp-U-R: Expansion for Unit, Right
{x : f(t1, t2) , s} ·∪A; S; L; B =⇒

{x1 : f(t1, t2) , f(s, εf ), x2 : f(t1, t2) , f(εf , s)} ∪A; S; L; B ∪ {x 7→ x1} ∪ {x 7→ x2},
where f 6= head(s), U ∈ Ax(f), U 6∈ Ax(head(s)), and x1, x2 are fresh variables.

Solve: Solve
{x : s , t} ·∪A; S; L; B =⇒ A; {x : s , t} ∪ S;L; B,
where head(s) 6= head(t) and U /∈ Ax(head(t)) ∪Ax((head(s))).

We denote this set of rules by Rlin. In order to compute linear U-generalizations of two
terms t and s, we create an initial configuration {x : t , s}; ∅; ∅; {xroot → x}, where xroot
and x are fresh variables, and apply the following strategy as long as possible:

Select an AUT a arbitrarily from the first component of the configuration.
Apply a rule in Rlin, applicable to a. (There is only one such rule for each a in Rlin.)
If the applied rule is Exp-U-Both, transform all four new AUTs by the Dec rule.
If the applied rule is Exp-U-L or Exp-U-R, transform both new AUTs by the Dec rule.

This strategy, called Step, will be used in other algorithms below as well. Therefore,
we describe it in Algorithm 1. It takes a configuration and an AUT, and returns back a
new configuration. In the algorithm, instead of writing “apply rule R to the configuration
C = A;S;L;B with the AUT a selected in A”, we simply write “apply rule R to a”.
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Algorithm 1 Procedure Step.

Require: A configuration C = A;S;L;B and an AUT a = x : t , s ∈ A.
1: if head(t) = head(s) then
2: Apply Dec to a, resulting in C′. Update C← C′
3: else if ∃f, g ∈ F : (U ∈ (Ax(f) ∩Ax(g)) ∧ head(s) = f 6= g = head(t)) then
4: Apply Exp-U-Both to a resulting in C′ = {a1,a2,a3,a4} ∪A;S;L;B′
5: Apply Dec to a1,a2,a1,a2 resulting in C′′. Update C← C′′
6: else if head(t) 6= head(s) ∧ ∃f ∈ F : (U ∈ Ax(f) ∧ head(s) = f) then
7: Apply Exp-U-L to a resulting in C = {a1,a2} ∪A;S;L;B′
8: Apply Dec to a1,a2 resulting in C′′. Update C← C′′
9: else if head(t) 6= head(s) ∧ ∃f ∈ F : (U ∈ Ax(f) ∧ head(t) = f) then
10: Apply Exp-U-R to a resulting in {a1,a2} ∪A;S;L;B′
11: Apply Dec to a1,a2 resulting in C′′. Update C← C′′
12: else
13: Apply Solve to a resulting in C′. Update C← C′
14: end if
15: return C

The linear U-generalization algorithm, GU-lin, is then an iterative application of Step, as
one can see in Algorithm 2.1 However, in that work we refrained from using a tree grammar-
based procedure. In Example 10 below, we apply GU-lin to the AUP x : g(f(a, c), a) , g(c, b)
over the alphabet {f, g, a, b, c, εf}, where a, b, and c are constants and g is a binary free
function symbol.

Algorithm 2 Procedure GU-lin.

Require: A configuration C = A;S;L;B
while A 6= ∅ do

a← x : t , s ∈ A
C← Step(C,a) (See Algorithm 1)

end while
return C

I Example 10.

{x : g(f(a, c), a) , g(c, b)}; ∅; ∅; {xroot 7→ x} =⇒Dec

{x1 : f(a, c) , c, x2 : a , b}; ∅; ∅; {xroot 7→ g(x1, x2)} =⇒Exp-U-L, Dec×2

{x3 : a , εf , x4 : c , c, x5 : a , c, x6 : c , εf , x2 : a , b}; ∅; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, x4), x1 7→ f(x5, x6)} =⇒Dec

{x3 : a , εf , x5 : a , c, x6 : c , εf , x2 : a , b}; ∅; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, c), x1 7→ f(x5, x6)} =⇒Solve×4

∅; {x3 : a , εf , x5 : a , c, x6 : c , εf , x2 : a , b}; ∅;
{xroot 7→ g(x1, x2), x1 7→ f(x3, c), x1 7→ f(x5, x6)}

1 Linear U-anti-unification is discussed in [9].
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We refer to the final binding set as B. Thus, L(G(B)) ≈U {g(f(x3, c), x2), g(f(x5, x6), x2)}.
Note that g(f(x5, x6), x2) ≺U g(f(x3, c), x2).

I Theorem 11 (Termination). The procedure GU-lin is terminating.

Proof. Let the depth of an AUP be dep(x : t , s) = dep(t) + dep(s), and the complexity
measure of a configuration A;S;L;B be the multiset of depths of AUPs in A. We compare
measures by multiset extension of the standard ordering on natural numbers. The extension
is well-founded. After each iteration of the loop in Algorithm 2, the complexity measure of
C strictly decreases. Hence, the algorithm terminates. J

Termination of GU-lin means that any sequence of rule transformations, starting from the
initial configuration, is finite: {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B. In the terminal
configuration the first component is empty, for otherwise there is always an applicable rule.
The set of bindings B at the end is called the GU-lin-computed set of bindings.

I Theorem 12 (Soundness). If {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B is a transforma-
tion sequence of GU-lin, then for every r ∈ L(G(B)), r �U t and r �U s.

Proof. We can prove soundness by induction over the length of the derivation, based on
the fact that if L(G(B)) is a set of generalizations of an AUT x : t , s and {x : t ,
s} ∪ A;S;L;B =⇒ A′;S′;L′;B′ is a transformation step, then L(G(B′)) is also a set of
generalizations of x : t , s. For a transformation with Dec rule the proof of this property is
standard. For Solve rule it is obvious. For the expansion rules it follows from two facts: first,
B′ is obtained from B by bindings of a variable to a variable (e.g., x to x1) and second, all
new AUTs obtained by these rules are U-equivalent to the original one (e.g., an AUT whose
generalization is x1 is U-equivalent to the AUT whose generalization was x). J

For the set B computed by the procedure, we call L(G(B)) the set of generalizations
computed by GU-lin.

I Theorem 13 (Completeness of GU-lin). Let s be a linear U-generalization of two terms t1 and
t2. Then there exists a transformation sequence {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B
in GU-lin such that for some term r ∈ L(G(B)), s �U r.

Proof. See Appendix A. J

I Theorem 14. The set L(G(B)) computed by GU-lin is finite for any input.

Proof. At every step of GU-lin only one of the inference rules is applicable to the current
configuration. None of the rules used in the GU-lin procedure introduce cycles into the
grammar. Thus, the final set of bindings produces a tree grammar with a finite language. J

I Theorem 15. Linear unital anti-unification is finitary.

Proof. By Theorem 13 & 14. J

5 One-unital fragment

The next special case of U-anti-unification allows arbitrary generalizations (not only linear
ones), but takes input from a language with only one unital function. We call this special
case a one-unital fragment, and the corresponding alphabet one-unital alphabet.
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Lifting the linearity restriction leads to an extension of the rule system. If two variables
generalize the same AUTs, they should be merged. Besides, cycles should be permitted in
the grammar. These changes are reflected in the set of rules Rone(f) given below. They will
be used together with the Rlin rules to solve generalization problems with one unital symbol.

One will probably notice that the cycle rules allows the construction of a grammar with
an infinite language, however, as shown in Theorem 20, only a finite number of these terms
are least general generalization. In some sense the cycle rules allow for the construction
of more expressive tree grammars than necessary for finding the minimal complete set of
generalizations. It is reasonable to expect that less expressive versions of the rules may be
developed specifically for the one-unital fragment. However, as presented here we highlight
the relationship between this fragment and the algorithm we present for the general procedure.
Essentially in the one-unital fragment only a finite portion of the terms generated by the
cycles are least general generalizations where in the general case all the terms resulting from
a cycle may be ordered by generality.

Start-Cycle-U: Cycle introduction for Unit
{x : t , s} ·∪A; S; L; B =⇒ {y1 : f(t, εf ) , f(εf , s), y2 : f(εf , t) , f(s, εf ), y3 : t , s} ∪A;

S; {({x : t , s}, {εf})} ∪ L; B ∪ {x 7→ y1} ∪ {x 7→ y2},
where U ∈ Ax(f), ({y : t , s},Un) 6∈ L for any y and Un, head(t) 6= εf or head(s) 6= εf ,
U 6∈ Ax(head(t)) ∪Ax(head(s)), and y1 and y2 are fresh variables.

Sat-Cycle-U: Cycle Saturation for Unit
{x : t , s} ·∪A; S; {({y : t , s},Un)} ∪ L; B =⇒
{x : t , s} ∪A; S; ({y : t , s},Un) ∪ L; B{x 7→ y} ∪ {y 7→ x},

where x 6= y and {y 7→ x} 6∈ B.

Merge: Merge
∅; {x1 : s1 , t1, x2 : s2 , t2} ·∪ S; L; B =⇒ ∅; {x1 : s1 , t1} ∪ S; L; B{x2 7→ x1},
where s1 ≈U s2 and t1 ≈U t2.

For a given AUT, the Start-Cycle-U rule adds two new AUTs, which are U-equivalent to
the given one. The original AUT is still present, just with a renamed generalization variable.
It will be used for saturation. In Algorithm 3, we define a strategy for applying the new
cycle rules. We “exhaustively” (see line 6) apply Sat-Cycle-U because applying Dec to the
AUPs resulting from Start-Cycle-U may result in AUPs present in the cycle set L.

Algorithm 3 Procedure Cycle(C,a).

Require: A configuration C = A;S;L;B, an AUT a = x : t , s

1: if ∃f ∈ F : (U ∈ Ax(f) ∧ ({y : t , s}, Un) 6∈ L) then
2: Apply Start-Cycle-U to a resulting in C′ = {a1,a2, x

′ : t , s} ∪A;S;L′;B′
3: Apply Dec to a1,a2 resulting in C′′. Update C← C′′ and a← x′ : t , s

4: end if
5: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
6: return (C,a)

The one-unital-function anti-unification algorithm GU(f) is a strategy of applying the
rules in Rlin ∪Rone(f) as defined in Algorithm 4.
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Algorithm 4 Procedure for GU(f).

Require: A configuration C = A;S;L;B
while A 6= ∅ do

a← x : t , s ∈ A
(C,a)← Cycle(C,a) (See Algorithm 3)
C← Step(C,a) (See Algorithm 1)
Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗

end while
Exhaustively apply Merge to C resulting in C∗. Update C← C∗
return C

I Example 16. Observe that the AUP addressed in Example 10 is solved over an alphabet
with a single unital function symbol. Now we try to solve it using GU(f).

{x : g(f(a, c), a) , g(c, b)}; ∅; ∅; {xroot 7→ x} =⇒Start-Cycle-U

{x1 : g(f(a, c), a) , g(c, b), x2 : f(g(f(a, c), a), εf ) , f(εf , g(c, b)),

x3 : f(εf , g(f(a, c), a)) , f(g(c, b), εf )}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ x2, x 7→ x3} =⇒Dec

{x1 : g(f(a, c), a) , g(c, b), x2 : f(g(f(a, c), a), εf ) , f(εf , g(c, b)), x4 : εf , g(c, b),

x5 : g(f(a, c), a) , εf}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ x2, x 7→ f(x4, x5)} =⇒Dec

{x1 : g(f(a, c), a) , g(c, b), x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf ,

x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b)}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5)},=⇒Sat-Cycle-U

{x1 : g(f(a, c), a) , g(c, b), x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf ,

x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b)}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5), x 7→ x1} =⇒Dec

{x4 : εf , g(c, b), x5 : g(f(a, c), a) , εf , x6 : g(f(a, c), a) , εf , x7 : εf , g(c, b),

x8 : f(a, c) , c, x9 : a , b}; ∅; {(x : g(f(a, c), a) , g(c, b), {εf})};
{xroot 7→ x, x 7→ f(x6, x7), x 7→ f(x4, x5), x 7→ g(x8, x9)} =⇒Start-Cycle-U

· · ·

∅; {x10 : εf , g(c, b), x17 : g(f(a, c), a) , εf , x33 : a , b, x40 : εf , c, x76 : εf , b,

x83 : a , εf , x146 : a , c, x153 : c , εf};L; {xroot 7→ x, x 7→ g(f(x28, x61), f(x83, x76)),
x 7→ g(f(x83, f(x153, x40)), x33), . . . , x 7→ g(f(x83, c), f(x76, x83)),

x 7→ g(f(x70, x28), x33), x 7→ g(f(x83, f(x40, x153)), x33), . . . ,
x 7→ g(f(x61, x28), f(x76, x83)), x 7→ g(f(x83, c), f(x83, x76)), . . .}.

The complete derivation contains 217 rule applications. Here we skipped most of them.
The final binding set, after removing useless bindings, has 26 bindings together with a single
non-terminal.2 However, the majority of the generalizations contained in the language of
this grammar are comparable. We underline the two incomparable generalizations pro-
duced by the algorithm, and refer to them as g1 and g2. In fact, the set {g1,g2} forms

2 See Section C for the grammar generated by our implementation.
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mcsgU(g(f(a, c), a), g(c, b)).3 Observe that they are less general than the terms computed in
Example 10, indicating that the expansion rules are not enough to construct all non-linear
generalizations even when only one function symbol is unital. We did not even need the
Merge rule to obtain those nonlinear generalizations. The cycle rules created them.

I Theorem 17 (Termination). GU(f) is terminating for AUPs over an one-unital alphabet.

Proof. To a given AUT, Cycle can apply only once, because afterwards the AUT is put in
the set L. To each of the AUTs obtained by the application of the Start-Cycle-U the same
rule can apply again at most once, since the further obtained AUTs are either of the form
x : εf , εf , or are already placed in L. The saturation rule applies once to each element in L.
Hence, the cycle rules can apply only finitely many times. The other rules strictly decrease
the measure as defined in the proof of Theorem 11. It implies that GU(f) terminates. J

I Theorem 18 (Soundness). If {x : t , s}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B is a transforma-
tion sequence of GU(f) for AUPs over an one-unital alphabet, then for every g ∈ L(G(B)),
g �U t and g �U s.

Proof. Similar to Theorem 12. For the cycle rules, the argument is the same as for the
expansion rules. J

The notion of computed grammar is defined for GU(f) in the same way as for GU-lin.

I Theorem 19 (Completeness of GU(f)). Let t1, t2, and s be terms over an one-unital alphabet
such that s is a U-generalization of t1 and t2. Then there exists a transformation sequence
{x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒∗ ∅;S;L;B using the procedure GU(f) such that for some
term r ∈ L(G(B)), s �U r.

Proof. We assume that t1, t2, and s are in U-normal form. We prove the theorem by
induction on dep(t1) + dep(t2) which we denote by n. Furthermore we will denote the unital
function by f and its unit by εf .
Case 1: n = 2, i.e., t1 and t2 are constants.
a) The case dep(s) = 1 is handled in a similar way as case 1 a) of the proof of Theorem 13.
b) Now assume as the induction hypothesis that for every generalization s of t1 and t2 of

depth at most k, either s �U t1 and t1 = t2, or s �U x and t1 6= t2. We show that this
holds for a generalization s′ of depth k + 1. By our assumptions, s′ = f(s1, s2) for some
terms s1 and s2.

Let σ1 and σ2 be substitutions such that s′σ1 = t1 and s′σ2 = t2. If s1σ1 = s1σ2 = εf
(resp. if s2σ1 = s2σ2 = εf ), then, by the induction hypothesis, s2 �U t1 (resp., s1 �U t1)
when t1 = t2, or s2 �U x (resp., s1 �U x) when t1 6= t2. Without loss of generality,
this implies that for every x ∈ var(s1), xσ1 = xσ2 = εf , being that f is the only unital
function. Thus, there exists a substitution ϑ such that s1ϑ = εf and s2ϑ ≈U s

′
2 where s′2

is still a generalization of t1 and t2, i.e., s′ϑ = s′2 or s′ ≺U s
′
2.

However, if s2σ1 = εf and s1σ2 = εf , or vice versa, then additional observations are
required. We assume the former case, without loss of generality.

If t1 = t2 then both s1 and s2 are generalizations of t1 , t2 and by the induction
hypothesis s1 �U t1 and s2 �U t1. If t1 6= t2 then we need to make a distinction:

3 The algorithm in [1] computes generalizations that are more general than g1 and g2.
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b1. If neither t1 nor t2 is εf , then there exists a variable y occurring in s1 such that
yσ1 = t1 and a variable y′ occurring in s2 such that y′σ2 = t2. Note that if either t1 or
t2 occurs in s′ then s′ is not a generalization t1 , t2. Let use assume that either y or
y′ occurs in s2 or s1, respectively. without loss of generality we assume that y occurs
in s2. However, this would imply that s2σ1 = t1 resulting in the term f(t1, t1) unless
t1 = εf , which contradicts our assumptions. Thus, y cannot occur in s2. This implies
that there exist two substitutions σ′1 and σ′2 which coincide everywhere with σ1 and
σ2 except on y and y′ respectively. That is, yσ′1 = t1, yσ′2 = t2, y′σ′1 = yσ′2 = εf .
This implies that s1 is a generalization of t1 , t2 which has depth < k + 1. Thus,
s1 �U x.

b2. Either t1 or t2 is εf . The proof is similar to the case b1 by showing that the variable
generalizing the term which is not equivalent to εf cannot occur in both s1 and s2.

Case 2: n > 2.
a) Assume that t1 = g(w1, . . . , wm) and t2 = g(r1, . . . , rm), such that U 6∈ Ax(g). Then GU(f)

performs the following rule applications to the initial configuration:

{x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Start-Cycle-U, (Dec×2)

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, x3 : t1 , t2}; ∅;

{(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(y2, y1)} =⇒Sat-Cycle-U

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, x3 : t1 , t2}; ∅;

{(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(x2, x1), x 7→ x3} =⇒Dec

{x1 : t1 , εf , x2 : εf , t2, y1 : t1 , εf , y2 : εf , t2, z1 : w1 , r1, . . . , zm : w1 , rm};

∅; {(x : t1 , t2, {εf})}; {xroot 7→ x, x 7→ f(x1, x2), x 7→ f(x2, x1), x 7→ g(z1, . . . , zm)}

The case when s = g(s1, . . . , sm) is handled in a similar fashion as in case 2a) of the proof
of Theorem 13, though we may need to apply additional Merges.
If s = f(s1, s2) then it may be the case, without loss of generality, that s1 generalizes
t1 , εf and s2 generalizes εf , t2. This case may also be handled in a similar fashion as
in case 2a) of the proof of Theorem 13, though we may need to apply additional Merges.
The final case to consider is s = f(s1, s2) and, without loss of generality, s2 generalizes
εf , εf . This implies that for all x ∈ var(s2), xσ1 = xσ2 = εf . Similar to case 1b) above
we can reconstruct the substitutions such that s �U s1.

b) Assume that t1 = f(w1, w2) and t2 = f(r1, r2), such that U ∈ Ax(f). We can proceed in
a similar fashion as in case 2a).

c) Assume that ti = f(w1, w2) and t(i+1 mod 2) = g(r1, . . . , rk), where i ∈ {1, 2}. we can
proceed in a similar fashion as in case 2b) except that we apply Exp-U-Both, Exp-U-L or
Exp-U-R prior to applying Dec. J

I Theorem 20. The set L(G(B)) computed by GU(f) contains only finitely many incomparable
generalizations.

Proof. Notice that in case 1 of Theorem 19 only one generalization exists for a given
AUP whose left and right term are constant. In case 2 of Theorem 19 we show that the
generalizations of a given AUP can be constructed from the generalizations of the direct
subterms. The only point which makes reference to possibly infinite chains of generalizations
comes at the end of case 2a). However, it was shown that this case is degenerate. Thus,
we can redo the inductive construction of Theorem 19 to prove that L(G(B)) contains only
finitely many non-comparable generalizations. To show that it is not unitary we need only
to consider the f(a, a) , a where U ∈ Ax(f), which has two generalizations. J
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I Theorem 21. Anti-unification over an one-unital alphabet is finitary.

Proof. By Theorem 19 & 20. J

A problem one might have noticed concerning GU(f) is that the computed bindings
produce a verbose grammar. Most of the generalizations in the language of the grammar are
comparable. However, prior to termination, it is not clear which paths may be pruned from
the search. The binding set produced by GU(f) almost always produces a tree grammar with
an infinite language which contains a finite set of incomparable generalizations. Possible
ways of pruning need further investigations.

6 An algorithm for unrestricted unital anti-unification

The unrestricted case generalizes one-unital anti-unification by permitting more than one
unital symbol. To accommodate them in cycles, we need an extra rule, which resembles
to Start-Cycle-U in that it extends the set L, but only for AUTs already existing there, by
adding a new unit element.

Branch-Cycle-U: Branching Cycle for Unit
{x : t , s} ·∪A; S; {({y : t , s},Un)} ∪ L; B =⇒
{y1 : f(t, εf ) , f(εf , s), y2 : f(εf , t) , f(s, εf ), y3 : t , s} ∪A; S;
{({y : t , s}, {εf} ∪Un)} ∪ L; B{x 7→ y} ∪ {y 7→ y1} ∪ {y 7→ y2},

where U ∈ Ax(f), εf 6∈ Un, head(t) 6= εf or head(s) 6= εf , U 6∈ Ax(head(t)) ∪ Ax(head(s)),
and y1 and y2 are fresh variables.

We get the set of all rules for unital generalization RU := Rlin∪Rone(f)∪{Branch-Cycle-U},
and the procedure that is based on them is denoted by GU. It is formulated in Algorithm 5.

Algorithm 5 Procedure GU.

Require: A configuration C = A;S;L;B
1: while A 6= ∅ do
2: a← x : t , s ∈ A
3: (C,a)← Cycle(C,a) (See Algorithm 3)
4: if ∃f ∈ A : (U ∈ Ax(f) ∧ ({y : t , s},Un) ∈ L ∧ εf 6∈ Un) then
5: repeat
6: Apply Branch-Cycle-U to a resulting in C′ = {a1,a2, x

′ : t , s} ∪A;S;L′;B′
7: Apply Dec to a1,a2 resulting in C′′. Update C← C′′ and a← x′ : t , s

8: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
9: until ∀f ∈ A : (U ∈ Ax(f) ∧ ({y : t , s},Un) ∈ L)⇒ εf ∈ Un)
10: end if
11: C← Step(C,a) (See Algorithm 1)
12: Exhaustively apply Sat-Cycle-U to C resulting in C∗. Update C← C∗
13: end while
14: Exhaustively apply Merge to C resulting in C∗. Update C← C∗
15: return C

Note that at each step in the procedures outlined in Algorithms 2, 4, and 5, there is only
one rule applicable to the current configuration. Thus, each procedure produces a single tree
grammar whose language is the computed generalizations of the initial AUP. Termination
and soundness of GU depends on termination and soundness of Branch-Cycle-U, which can
be established similarly to Start-Cycle-U. Completeness of GU needs further study.
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I Theorem 22. The algorithm GU is terminating and sound.

We have seen in Section 3 that unital anti-unification with two unital symbols is nullary,
based on the AUPs εf , εg. Such AUPs can be generated with the help of Branch-Cycle-U
even from such trivial problems as, e.g., a , a.

7 Combined theories

In this section we consider the combination of unit element theories with other common
equational theories such as A (Associativity), C (Commutativity), and I (Idempotency).

Observe that the anti-unification problems used to prove Theorem 9, i.e., εf , εg and εg ,
εf , are still problematic when considering the combined theories CU, AU, ACU. For example,
modulo CU, AU, and ACU, f(x, g(x, y)) 6≈u x, for u ∈ {CU,AU,ACU}, when U ∈ Ax(f) and
U ∈ Ax(g). Thus, the argument outlined in Section 3 still applies to these cases. However,
for UI we have f(x, g(x, y)) �UI x, i.e., f(x, g(x, y)){y 7→ x} = f(x, g(x, x)) �UI f(x, x) �UI x

where U, I ∈ Ax(f) and U, I ∈ Ax(g). Thus, our proof of nullarity for unital theories cannot
be extended to UI. As it was shown in [8], a theory with a single idempotent function is
infinitary if there is an AUP with a so called base set of generalizations of size at least two.
It is not completely clear that a similar result will hold for UI and ACUI.

Concerning the special cases, since C, A, and AC are finitary [1], we expect that their
linear variant and one-unital fragment remain finitary, despite the fact that the existing
algorithms are not based on the tree grammar representation and would require reworking.
This can be done in a straightforward manner similar to our handling of the U-decomposition
rules we define above. When using the tree grammar formulation described in this paper or
as described in [8], one either needs to describe how to join tree grammars as in [8], or write
rules in such a way that all possibilities are exhausted by a single rule application. Notice the
U-decomposition rules introduce all possible decompositions modulo U into the configuration.
The existing rules for C, A, and AC can be adjusted to our framework in a similar way, i.e.,
it would require writing a rule which adds all decomposition paths simultaneously to the
current configuration.

8 Discussion

In this work we showed that unital anti-unification is of type zero. We also distinguished two
cases the problem is finitary: linear variant and one-unital fragment. We provided procedures
for solving those special cases, and proved their termination, soundness, and completeness.
Besides, we provide a terminating and sound general procedure for computing unrestricted
unital generalizations. These procedures are based on tree grammar construction in a similar
fashion as in earlier work on idempotent equational theories [8]. We also briefly discussed
generalization type in combined theories such as CU, AU, ACU, ACUI, and UI.

We end the paper with the following list of open questions:
Is the general procedure GU complete for arbitrary unital theories?
Modify the one-unital procedure GU(f) so that it produces less verbose tree grammars.
Can the rules outlined in [1] be joined with the rules from Rone(f) to produce minimal
complete procedures for restrictions of CU, AU, ACU.
Are unrestricted ACUI and UI infinitary or nullary?
Can the techniques used here and [8] be generalized to AU for any collapse theory?
Are there non-trivial collapse theories with unitary or finitary AU type?
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A Proof of Theorem 13

Proof. We assume that t1, t2, and s are in U-normal form. We prove the theorem by
induction on dep(t1) + dep(t2) which we denote by n.
Case 1: n = 2, i.e., t1 and t2 are constants.
a) First, assume that dep(s) = 1. If t1 = t2, then s = t1 = t2 and s is computed by the

derivation {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Dec ∅; ∅; ∅; {xroot 7→ t1}. If t1 6= t2, then s

must be a variable, computed by the derivation {x : t1 , t2}; ∅; ∅; {xroot 7→ x} =⇒Sol
∅; {x : t1 , t2}; ∅; {xroot 7→ x} . Note that, in both cases the resulting tree grammars
are trivial, both have a language of size 1. Thus, we will refer to the members of these
languages directly rather than evoking the tree grammar itself.

b) Now assume as the induction hypothesis that for every generalization s of t1 and t2 of
depth at most k, either s � t1 and t1 = t2, or s � x and t1 6= t2. We show that this holds
for a generalization s′ of depth k + 1. Let head(s′) = f . Our assumptions imply that
U ∈ Ax(f) because both t1 and t2 are of depth 1. Thus, s′ = f(s1, s2).

By the definition of a generalization, there must exists two substitutions σ1 and σ2
such that s′σ1 = t1 and s′σ2 = t2. If s1σ1 = s1σ2 = εf (resp. if s2σ1 = s2σ2 = εf ), then
s2 (resp., s1) is, by the induction hypothesis, more general than t1 when t1 = t2, or more
general than x when t1 6= t2. This implies, by the linearity assumption that there exists a
substitution ϑ such that s2ϑ = s2 and s1ϑ = εf . Thus, s′ϑ = s2, i.e. s′ ≺ s2.

However, if s2σ1 = εf and s1σ2 = εf , or vice versa, then additional observations are
required. We assume without loss of generality the former case.

If t1 = t2 then both s1 and s2 are generalizations of t1 , t2 and by the induction
hypothesis s1 � t1 and s2 � t1. If t1 6= t2 then we need to make a distinction:
b1. If neither t1 nor t2 are units of function constants ft1 and ft2 , respectively, which

may appear in s, then there exists a variable y occurring in s1 such that yσ1 = t1 and
a variable y′ occurring in s2 such that y′σ2 = t2. However, by the linearity of S, this
implies that there exist two substitutions σ′1 and σ′2 which coincide everywhere with
σ1 and σ2 except on y and y′ respectively. That is, yσ′1 = t2 and y′σ′2 = t1. This
implies that both s1 and s2 are generalizations of t1 , t2 which have depth ≤ k + 1.
Thus, s1 � x and s2 � x.

b2. If either t1 or t2 is a unit of the function constants ft1 and ft2 , respectively, which
may appear in s, then additional observations are necessary. If neither t1 or t2 occurs
in s then we have the same situation as in case b1. Otherwise, if ft1 occurs in s1
(respectively ft2 in s2) then it must occur as the head symbol of a term with t1 as
a subterm because s1σ2 = εft1

. This implies that there must be a variable y in s1
which σ1 maps to t1. Similar can be said concerning s2, t2, and σ2. We can construct
a new substitution which coincides with σ1 (respectively, with σ2) everywhere but on
the variable y (resp. y′) which it maps to t2 (resp. to t1). This means that s1 and s2
are generalizations of t1 , t2 and by the induction hypothesis s1 � x s2 � x. This
completes the case 1.

Case 2: n > 2.
a) Let us assume that t1 = f(w1, . . . , wm) and t2 = f(r1, . . . , rm), such that U 6∈ Ax(f).

Then by applying the Dec rule to the AUP x : t1 , t2 we get m AUPs x1 : w1 , r1, . . . ,

xm : w1 , r1 each of which has a depth sum ≤ n−1. Thus, by the induction hypothesis, for
each generalization s′ generalizing Xi : wi , ri there exists a generalization s∗i ∈ L(G(Bi)),
where Bi is the final set of bindings computed using GU-lin, such that, s′ � s∗i . Now
let S∗i be the set of all such generalizations computed using GU-lin. We may now define
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the set of generalizations S∗ as S∗ = {f(s∗1, . . . , s∗m) | s∗i ∈ S∗i for all 1 ≤ i ≤ m} . Note
that each term in S∗ is a generalization of X : t1 , t2 computed using GU-lin in is
contained in L(G(B)), where B is the final set of bindings computed using GU-lin. Thus,
any generalization s′ of X : t1 , t2 such that head(s′) = f is more general than
some generalization of S∗. Thus we need only to consider generalization s′ such that
head(s′) 6= f . This implies that U ∈ Ax(head(s′)).

If s′ does not contain f , then s′ � X. Thus let us assume that s′ = g(s′1, s′2) where
U ∈ Ax(g) and without loss of generality head(s′1) = f . This implies that s′2 � εg (note
that s′ is linear) and thus s′1 � s′. This reduction can be performed inductively thus
showing that for any generalization s′ with head(s′) 6= f there exists s′′ ∈ S∗ such that
s′ � s′′.

b) Let us assume that t1 = f(w1, w2) and t2 = f(r1, r2), such that U ∈ Ax(f). Then we can
proceed in a similar fashion as in case b) by constructing S∗. Thus, any generalization s′
of X : t1 , t2 such that head(s′) = f and s′ = f(d1, d2), where d1 is a generalization of
w1 , r1, d2 a generalization of w2 , r2, is more general than some generalization of S∗.
When U ∈ Ax(head(s′)) and some generalization s′′ is a subterm of s′ such that there
exists s∗ ∈ S∗ with s′′ � s∗, a similar approach can be taken as in the second half of case
2a).

c) Let us assume that t1 = f(w1, . . . , wm) and t2 = g(r1, . . . , rk), where either U ∈ Ax(f) or
U ∈ Ax(g), or both. By an application of Exp-U-Both, Exp-U-L, or Exp-U-R this case can
be reduced to two (possibly four) instances of case 2b). J

B Example used for the proof of nullarity

Below is the tree grammar computed from the final configuration of GU applied to εg , εf .
Computation of the final binding set required the application of 86 rules to the initial
configuration.

G =


{x} ,


x,x1,

x5,x11
x18,x29

 ,


f, g,

εf , εg,

x8, x36

 ,



x 7→ g(x,x5), x 7→ g(x5,x)
x 7→ x1, x 7→ x8
x1 7→ f(x,x11), x1 7→ f(x11,x)
x5 7→ f(x,x18), x5 7→ f(x18,x)
x5 7→ εg, x11 7→ g(x18,x)
x11 7→ g(x,x18), x11 7→ εf
x18 7→ x29, x18 7→ x36
x18 7→ g(x5,x18), x18 7→ g(x18,x5)
x29 7→ f(x18,x11), x29 7→ g(x11,x18)




.

If we clean the grammar by removing redundant bindings we get the tree grammar G′:

G′ =


{x} ,

{
x,
y

}
,


f, g,

εf , εg,

y, z

 ,



x 7→ g(x, f(x,y)), x 7→ f(x, g(x,y))
x 7→ f(g(y,x),x), x 7→ x

x 7→ g(x, f(y,x)), x 7→ f(x, g(y,x))
x 7→ f(g(x,y),x), x 7→ g(f(y,x),x)
x 7→ g(f(x,y),x), y 7→ f(g(y,x),y)
y 7→ g(y, f(y,x)), y 7→ f(y, g(y,x))
y 7→ g(f(y,x),y), y 7→ y

y 7→ f(y, g(x,y)), y 7→ g(y, f(x,y))
y 7→ f(g(x,y),y), y 7→ g(f(x,y),y)




.
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Some of the generalizations contained in the language of this grammar are x, f(x, g(x, y)),
f(x, g(y, x)), f(g(y, x), x), f(g(y, x), f(x, g(x, y))), f(g(y, f(x, g(x, y))), f(x, g(x, y))), and
f(f(x, g(x, y)), g(f(x, g(x, y)), y)). Observe that some of these generalizations are comparable
and form a subsequence of an infinite chain of less generality.

C Grammar generated for Example 16

Below is the tree grammar computed from the final configuration of GU(f) applied to
g(f(a, c), a) , g(c, b). Note that g is non-unital and no unit elements show up in the
initial AUP. Computation of the final binding set required the application of 217 rules to the
initial configuration. We only provide the cleaned version of the tree grammar. Note that
the language of the resulting tree grammar is finite.

G =
(
{x} ,

{
x
}
,

{
f, g, εf , a, b,

c, y, z, y′, z′

}
, B

)
,

where B is the set

x 7→ g(f(f(y, z), y′), z′) x 7→ g(f(y, z), f(y′, z′)) x 7→ g(f(f(z, y′), y), f(z, z′))
x 7→ g(f(f(z, y), y′), f(z, z′)) x 7→ g(f(y, y′), z′) x 7→ g(f(f(y, z), y′), f(z′, z))
x 7→ g(f(y, f(z, y′)), z′) x 7→ g(f(z, f(y, y′)), z′) x 7→ g(f(z, f(y′, y)), z′)
x 7→ g(f(f(z, y), y′), f(z′, z)) x 7→ g(f(f(z, y′), y), f(z′, z)) x 7→ f(y, z)
x 7→ g(f(z, c), f(y, z)) x 7→ g(f(y, y′), f(z′, z)) x 7→ g(f(z, f(y, y′)), f(z, z′))

x 7→ g(f(y, f(z, y′)), f(z, z′)) x 7→ g(f(z, f(y′, y)), f(z, z′)) x 7→ g(f(z, c), z′)
x 7→ g(f(f(z, y′), y), z′) x 7→ g(f(z, f(y, y′)), f(z′, z)) x 7→ g(f(y, f(z, y′)), f(z′, z))
x 7→ g(f(f(y, z), y′), f(z, z′)) x 7→ g(f(z, c), f(z, y)) x 7→ g(f(z, f(y′, y)), f(z′, z))
x 7→ f(y, z) x 7→ g(f(f(z, y), y′), z′)



.

Observe that of the 26 terms contained in L(G), there are only two incomparable terms,
g(f(z, c), f(y, z)) and g(f(z, c), f(z, y)).
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