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Abstract
With hybrid systems becoming ever more pervasive, the underlying semantic challenges emerge in
their entirety. The need for principled semantic foundations has been recognized previously in the
case of discrete computation and discrete data, with subsequent implementations in programming
languages and proof assistants. Hybrid systems, contrastingly, do not directly fit into the classical
semantic paradigms due to the presence of quite specific “non-programmable” features, such as
Zeno behaviour and the inherent indispensable reliance on a notion of continuous time. Here, we
analyze the phenomenon of hybrid semantics from a constructive viewpoint. In doing so, we propose
a monad-based semantics, generic over a given ordered monoid representing the time domain, hence
abstracting from the monoid of constructive reals. We implement our construction as a higher
inductive-inductive type in the recent cubical extension of the Agda proof assistant, significantly
using state-of-the-art advances of homotopy type theory. We show that classically, i.e. under the
axiom of choice, our construction admits a charaterization in terms of directed sequence completion.
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1 Introduction

Hybrid semantics underlies cyber-physical systems, which are systems combining discrete
communication and control with continuous evolution of physical (chemical, biological, neuro-
morphic, etc) processes, typically described by systems of (ordinary) differential equations.
Semantic theories, rooted in the classical notion of computability, have been explored
thoroughly in recent decades [24, 15, 18]. On the one hand, this has led to a better
understanding of the corresponding discrete time systems, thus implicitly or explicitly
contributing to improving their design. On the other hand, the results were used in developing
verification environments and proof assistants. Hybrid semantics however, requires a massive
reconsideration of the established approaches due to a number of features not covered
standardly such as Zeno behaviour, i.e. the phenomenon of switching the discrete control state
infinitely many times within a (physically) finite time interval. Moreover, hybrid computation
is inherently intertwined with reasoning. For example, in order to describe the movement of a
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24:2 Towards Constructive Hybrid Semantics

ball, one has to be able to calculate the moments of collision of the ball with obstacles. From
a practical point of view, a clear mathematical formulation of hybrid semantics is needed
to be able to deal with verification challenges arising from safety critical systems such as
self-driving cars, or aircrafts, or surgeon robots. A natural way to do this is to turn to the
computational, and more specifically to the constructive side of the issue. We thus ask: “How
constructive is hybrid semantics?” and “What is the impact of the constructive viewpoint on
the verification challenges that may or may not be solved?”. In order to account for these
questions we orient towards principled constructive environments such as intensional type
theory and the corresponding implementations such as Coq and Agda.

The key concept in the heart of hybrid semantics are real numbers. The major existing
approaches to hybrid systems rely on classical (non-constructive) real numbers, which are
suitable for reasoning but not for computationally feasible operational semantics and not for
computer representation of hybrid programs. Observations in a similar vein have been made
recently [19, 5]. Here we assume a constructive notion of real numbers and constructive
hybrid trajectories, i.e. time indexed sequences, based on them.

In a nutshell, we develop a generalization of the following denotational domain

R` ˆX Y R̄` (F)

for modelling durations of hybrid programs, where R` stands for non-negative real numbers
and R̄` stands for non-negative real numbers extended with infinity. This domain contains
pairs pd, xq produced by computations that converge in time d and deliver a final value x,
and possibly infinite durations d : R̄` corresponding to computations that diverge in time d
(hence, not delivering any value). We generalize (F) in two directions: by replacing R`
with a general ordered monoid (to capture various notions of time), and by getting rid
of non-constructive principles underlying the use of (F). Roughly, the latter direction is
motivated by the fact that (F) does not adequately model iterative computation, unless the
law of excluded middle is admitted – the fact, that (F) is presented as a disjoint union of
denotation domains for convergent and divergent computations, would entail that program
termination is decidable for this semantics. This phenomenon is known for the partiality
monad [6, 4], which was developed as a replacement for the maybe monad X Z tKu, and in
exactly the same sense our present construction replaces (F). Even more so, our construction
is a direct generalization of the partiality monad construction from [4] and contains the latter
as a special case. We dub the obtained monad rL the (generalized) duration monad following
previous work [9, 10] and keeping in touch with the idea that monoid elements represent
time duration, even under a possibly far reaching generalization of the notion of time.

Despite technical similarity, our generalization raises issues which are degenerate and
hence ineffective for the partiality monad. For one thing, the idea of characterizations in terms
of complete partial orders stems from domain theory, where a suitable information order for
the target denotational domain is assumed, with a bottom element K representing divergence.
In (F), the notions of divergence continuously range over extended real numbers R̄`, in
particular, we have the least (0) and the greatest (8) notions of divergence. It turns out
that one can select K to be 0 and define the information order suitably by combining the
standard idea from domain theory, that divergent computations are denotationally smaller
than the convergent ones, with the comparison total order on real numbers.

The partiality monad thus becomes the duration monad over a trivial (i.e. single element)
ordered monoid, i.e. a computation over it either finishes instantly or diverges. The partial
order relation of the trivial ordered monoid is decidable in the type-theoretic sense (under
the propositions-as-types discipline, the corresponding type satisfies excluded middle). Our
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paramount example of an ordered monoid though are non-negative reals R` whose partial
order relation is not decidable. The move from the decidable case to possibly undecidable
ones has a significant impact on the choice of conditions for countable sequences whose least
upper bounds can be computed. Here we stick to directed sequences rather than monotone
sequences as before [4]. While in the decidable case both approaches are equivalent, in
general not only directedness of sequences differs from monotonicity, but also the former
comes in two forms: extensional and intensional. In the latter case, we demand for any two
elements of a directed sequence to exist a concrete element greater than both, while in the
former one we demand that such an element exists but it is not known which one it is. In
type-theoretic terms the difference is expressed by means of propositional truncation.

In terms of category theory, we identify each
~
LX as a suitable free object on X, or

equivalently as an initial object in a certain comma category, in accordance with the previous
construction of the partiality monad [4]. An alternative approach to constructing the latter
presupposes the axiom of countable choice and essentially amounts to quotienting the space
of monotone sequence over X Z tKu by weak bisimilarity [6, 21]. This quotienting procedure
can also be viewed as ω-completion of X Z tKu regarded as a flat domain [17]. Under
countable choice, both constructions are known to be equivalent. We establish an analogue
of this equivalence but only in classical setting (under the full axiom of choice) and, again,
replacing monotone sequences with directed ones. Remarkably, the completion procedure
gives some insight into Zeno behaviour: when forming the completion of a partial order, Zeno
behaviour contributes via duplication of least upper bounds that already exist in the original
set because those cannot be detected via the completion procedure. For example, directed
sequence completion (in contrast e.g. to Cauchy completion) cannot identify the sequence
1{2, 3{4, 7{8, . . . and 1, 1, 1, . . . To remedy this, we also introduce a coarsened version L of rL by
additionally demanding that all the originally existing least upper bounds must be kept intact.
This corresponds to a modified completion procedure [14], which is dubbed conservative
completion in [23].

We formalized our duration monad via higher inductive-inductive types in the Agda proof
assistant (version 2.6.1-96d0dd0) using the version of the cubical library from Feb 6 2020.
The recent version of our implementation can be found at https://github.com/sergey-
goncharov/hybrid-agda.

Paper Organization

After short preliminaries in Section 2, we present our motivation in Section 3. In Section 4
we provide our main construction using complete monoid modules in categorical terms, and
subsequenty characterize the obtained object in Section 5 under the assumption of the axiom
of choice. In Section 6 we give the main construction of the generalized duration monad
coping with Zeno behaviour. We discuss our formalization of both our constructions as
higher inductive-inductive types in cubical Agda in Section 7. A conclusion and our plans of
further work are given in Section 8.

2 Preliminaries

We work in an ambient theory of sets Set throughout, unless stated otherwise not assuming it
to validate either excluded middle or any form of choice. For example Set can be understood
as the type of HoTT types of h-level 2 [20]. Generally, we refer to the cited HoTT book as a
comprehensive presentation of the underlying foundational realm for our results. An ordered
monoid is a monoid pM,`, 0q together with a partial order ď on M such that 0 is the least
element and ` is monotone on the right, i.e. 0 ď a and b ď cñ a` b ď a` c for all a, b, c : M.
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We do not generally assume the dual monotonicity law (!) a ď b ñ a ` c ď b ` c. Even
though we use the additive notation ` for generic monoids, we do not assume commutativity
of `. By R, R` and R̄` we respectively denote (constructive) reals, non-negative reals and
extended non-negative reals (i.e.R` suitably extended with the infinite value 8). For least
upper bounds of families psiqi, we interchangeably use the notation

Ž

psiqi and
Ž

i si.
We assume basic familiarity with the concepts of category theory, specifically with uni-

versal arrows [13] in the form of free objects [2] (i.e. universal arrows for faithful func-
tors). A monad T (on Set) is determined by a Kleisli triple pT, η, p´q‹q, consisting of a
map T : Set Ñ Set, together with a Set-indexed class of morphisms ηX : X Ñ TX and
Kleisli lifting sending each f : X Ñ TY to f‹ : TX Ñ TY and obeying monad laws: η‹ “ id,
f‹η “ f , pf‹gq‹ “ f‹g‹ (it follows from this definition that T extends to a functor and η to
a natural transformation). The map f, g ÞÑ f‹g is called Kleisli composition. In program
semantics, in order to interpret while-loops, one more specifically needs monads equipped
with a notion of iteration. Monads from a suitable class called (complete) Elgot monads
are required to support an Elgot iteration operator pf : X Ñ T pY ZXqq ÞÑ pf : : X Ñ TY q

subject to established laws of iteration [11]. We will continue to use bold capitals (e.g. T)
for monads over the corresponding endofunctors written as capital Romans (e.g. T ).

3 Hybrid Semantics and Beyond

Let us briefly recall the hybrid language HybCore from previous work [10]. The grammar
is as follows:

v, w ::“ x | ‹ | true | false | pv, wq | fpvq pf P Σq
p, q ::“ ddvee | px, yq :“ p; q | x :“ p; q

| x :“ t. v & w | if v then p else q | x :“ p while v tqu

Here, x, y refer to variables, v, w refer to values and p, q refer to programs (as prescribed
by the fine-grain call-by-value discipline [12]). Besides the standard Boolean values (true
and false) and the canonical value ‹ of the unit type, new values can be generated by
Cartesian pairs pv, wq, and by transforming other values with functions coming from a
custom signature Σ. The latter is specifically meant to contain all the necessary parametrized
time-dependent functions of type X ˆ R` Ñ Y representing continuous dynamics, and are
regarded as atomic constructs by HybCore. A program either instantly returns a value
(ddvee), or is obtained by using one of the standard imperative style constructs, or by using
the construct x :“ t. v & w, which simultaneously abstracts v over the time variable t and
restricts the domain of definiteness of the obtained function to the largest interval (either of
the form r0, dq or r0, ds) on which the predicate w holds throughout. A standard example is
bouncing ball:

x :“ ddp5, 0qee while true tph, vq :“ px :“ t. ballpx, tq & fstx ě 0q; ddph,´0.5vqeeu

Here, the height h and the velocity v are initially set to 5 and 0 correspondingly, and ball
is a signature symbol representing the continuous dynamics of a flying ball. Each time the
ball touches the ground v is reset to ´0.5v with ´0.5 standing for the damping factor. This
behaviour is repeated in the loop indefinitely. Graphically, we obtain the following trajectory
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representing the dependency of the ball’s hight in time. Among other things, this example
demonstrates Zeno behaviour which is inherent to hybrid systems: infinitely many iterations
occur in finite time.

We use HybCore as a motivation for the duration semantics, which assigns to any
program a map f : X Ñ R` ˆ Y Y R̄` meaning that

if fpxq “ pd, yq : R` ˆ Y then the program yields the final value y in finite time d;
if fpxq “ d P R̄` then the program diverges in finite or infinite time d (e.g. by exposing
Zeno behaviour) and hence does not deliver any final value.

This semantics yields a monad R` ˆ p--q Y R̄`, which is further generalized as follows.

I Definition 1 (Monoid Module, Generalized Writer Monad [10]). Given a monoid pM,`, 0q,
a monoid module is a set E equipped with a map . : Mˆ E Ñ E, subject to the laws

0 . e “ e pm` nq . e “ m . pn . eq

Every monoid-module pair pM,Eq induces the following monad T “ pT, η, p--q‹q which we call
the generalized writer monad: T “ Mˆ p´q Y E, ηXpxq “ p0, xq, and

f‹pm,xq “ pm` n, yq where m : M, x : X, fpxq “ pn, yq : Mˆ Y

f‹pm,xq “ m . e where m : M, x : X, fpxq “ e : E

f‹peq “ e where e : E

This yields a joint generalization of the writer monad pE “ Hq and the exception mo-
nad pM “ 1q.

In order to interpret while-loops of HybCore w.r.t. the duration semantics, one needs to
turn R` ˆ p--q Y R̄` into an Elgot monad, which is, however, impossible in a constructive
setting because this would imply decidability of program divergence. This is analogous to
the fact that the maybe-monad, i.e. the generalized writer monad over M “ 1, E “ 1 cannot
generally serve as a model of partiality [4].

We next abstract from a concrete choice of M and fix the following stock of running
examples for further reference.

I Example 2 (Ordered Monoids). Following are some ordered monoids on Set.
1. p1, !, ‹, tp‹, ‹quq is a trivial ordered monoid over a one-element carrier 1 “ t‹u.
2. pN,`, 0,ďq is an ordered monoid of natural numbers N.
3. pQ`,`, 0,ďq is an ordered monoid of non-negative rational numbers Q`.
4. pR`,`, 0,ďq is an ordered monoid of non-negative real numbers R`.
5. pA‹, ¨ , ε,ďq is an ordered monoid of finite strings where ε is the empty string and ď is

defined as follows: u ď v iff u is a prefix of v, i.e. there exists a w such that uw “ v.

FSCD 2020
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6. pAr0,R`q,_, p0, !q,ďq, the monoid of (finite) trajectories over a given set A, is defined
as follows: Ar0,R`q “ Σd : R` r0, dq Ñ A is the set of finite trajectories valued on A;
elements are pairs pd, eq where d : R` and e : r0, dq Ñ A is a trajectory of duration d; the
concatenation operation _ is defined as follows:

pd1, e1q
_
pd2, e2q “ pd1 ` d2, λt. if t ă d1 then e1ptq else e2pt´ d1qq.

The unit is p0, !q where ! : r0, 0q Ñ A is the empty trajectory and the relation ď is defined as
follows: pd1, e1q ď pd2, e2q if d1 ď d2 and e1ptq “ e2ptq for every t : r0, d1q. Note that A‹ is
isomorphic to Σn : N An, hence Ar0,R`q can be understood as a counterpart of A‹ obtained
by changing the underlying notion of time from discrete (N) to continuous (R`).

7. pL,_, 0,ďq is an ordered monoid for any join semilattice L with a bottom element 0.
8. pM1 ˆ M2,`, p01, 02q,ďq is an ordered monoid, provided that so are pM1,`1, 01,ď1q and
pM2,`2, 02,ď2q; under these assumptions pa1, a2q ` pb1, b2q “ pa1 `1 b1, a2 `2 b2q and
pa1, a2q ď pb1, b2q if a1 ď1 b1 and a2 ď2 b2.

We intuitively regard ordered monoids as carriers of various (possibly exotic) notions of
time. The examples 4. and 6. are of direct use for hybrid semantics: the former (duration
semantics) corresponds to the semantics capturing only durations of programs; the latter
(evolution semantics) captures both the durations and the intermediate states arranged in
trajectories (cf. [10]). The monoids in 2. and 3. capture discrete and rational notions of
time. In 5., the discrete time instants are labelled by the elements of A, in particular, 1‹–N
corresponds to vacuous labelling. Both 5. and 6. illustrate our decision to make do without
the left monotonicity law a ď bñ a` c ď b` c, which is not satisfied by these examples.

We will treat an ordered monoid M as an input parameter to our constructions, while the
corresponding monoid module E will universally arise from M. In contrast to the generalized
writer monad, E will no longer be a disjoint component of TX, however, the equation T∅ “ E
will have to remain true. In fact, the perspective we take is to consider the whole TX as a
monoid module, regarded as an algebraic structure, and generated by X.

4 Complete Monoid Modules, Categorically

To obtain a constructively feasible replacement for the monad in Definition 1, we follow
the idea used to define the partiality monad in intensional type theory [4], which can be
abstractly summarized as follows:
1. Introduce a suitable category of algebras AlgT over Set.
2. Obtain T from an adjunction Set AlgTK .
This scenario raises three main questions:

How to specify the category of algebras AlgT?
How to construct T (i.e. prove that it exists)?
How to ensure that the constructed monad T does indeed faithfully capture the intended
semantics?

In this section we introduce a monad rL parametrized by a generic ordered monoid M. The
construction of rL is formulated in abstract category-theoretic terms, thus remaining agnostic
about any specific choice of foundations. In Section 5, we then show that classically rL can
be characterized in terms of directed sequence completion and in Section 7 we discuss a
formalization of rL in the constructive realm of HoTT and cubical Agda.

As the first step, we identify the category of algebras Alg
rL, which in our case are called

complete M-modules. Complete M-modules are a proper generalization of partiality algebras [4]
(corresponding to trivial M).
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I Definition 3 (Complete M-Modules). An ordered M-module w.r.t. an ordered monoid
pM,`, 0,ďq, is an M-module pE, . q together with a partial order v and a least element K,
such that . is monotone on the right and p´ . Kq is monotone, i.e.

K v x

x v y

a . x v a . y

a ď b

a . K v b . K

We call the last property restricted left monotonicity. An infinite sequence s1, s2, . . . is
monotone if si v si`1 for every i and directed if for every i and every j there exists k such
that si v sk and sj v sk. Clearly, every monotone sequence is directed.

An ordered M-module is (directed ω-)complete if for every directed sequence psiqi on E
there is a least upper bound

Ů

i si and . is continuous on the right, i.e.

si v
Ů

i si

@i. si v x
Ů

i si v x
Ů

i a . si v a .
Ů

i si

(the law a .
Ů

i si v
Ů

i a . si is derivable).

Note that any ordered monoid M, which is complete as a partial order is a complete M-module
under . “ `, provided that ` is right continuous. Consider further examples of complete
M-modules.

I Example 4. Let us revisit Example 2. For illustration purposes, let us assume here
that Set is a classical set theory, e.g. ZFC.

In 2.–4., N̄ “ NY t8u is an ordered N-module, Q̄` “ Q` Y t8u is an ordered Q`-module
and R̄` “ R`Yt8u is an ordered R`-module respectively: x . y “ x` y and x . 8 “ 8,
K “ 0, x ď y ñ x v y and x v 8 always. Both Q̄` and R̄` are also ordered N-modules
and R̄` is an ordered Q`-module. Now, N̄ is a complete N-module and R̄` is a complete
R`-module:

Ů

i si is the least upper bound of psiqi if s is bounded and 8 otherwise.
Also R̄` is a complete N-module and a complete Q`-module, but Q̄` is not complete
w.r.t. any monoid because it is not complete as a partial order.
In 5., the set Aω of infinite strings and the set Aďω “ A‹ Y Aω of finite and infinite
strings are both A‹-modules under prefixing a string with a finite string. Moreover, Aďω
is a complete A‹-module with the empty word as K and least upper bounds calculated in
the obvious way.
In 6. we defined the set Ar0,R`q “ Σd : R` r0, dq Ñ A of finite trajectories, which is of
course an Ar0,R`q-module on itself. Analogously, let Ar0,R̄`q “ Σd : R̄` r0, dq Ñ A be
the set of finite or infinite trajectories under the same operations, partially ordered in
the same way and with . extended as follows: pd1, e1q . pd2, e2q “ pd1, e1q

_
pd2, e2q

if d1 : R` and p8, e1q . pd2, e2q “ p8, e1q. Now, to calculate the least upper bound of
a directed sequence pd1, e1q, pd2, e2q, . . ., we first calculate d “

Ž

i di and then calculate
e : r0, dq Ñ A at each point x : r0, dq by setting epxq “ eipxq for sufficiently large i, which
is guaranteed to exist by definition. Thus Ar0,R̄`q is a complete Ar0,R`q-module.

We emphasize the non-constructive flavor of the above examples: when forming a disjoint
union such as A‹ Y Aω, we make an explicit distinction between finite and infinite data,
which cannot be realized constructively. For example, it is not possible to decide whether a
string is finite or infinite on the basis of a given finite prefix whatever long.

Complete M-modules form a category Alg
rL together with complete M-module morphisms,

which we define as follows.

FSCD 2020
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I Definition 5 (Complete M-Module Morphisms). Given two complete M-modules E and F, a
complete M-module morphism from E to F is a map f : E Ñ F such that

fpa . xq “ a . fpxq fpKq “ K

x v y

fpxq v fpyq f
`
Ů

i si
˘

“
Ů

i fpsiq

We next instantiate the general categorical notion of free object [2] to complete M-modules
as follows.

I Definition 6 (Free Complete M-Modules). A free complete M-module on a set X consists
of a complete M-module

~
LX and a map ηX : X Ñ

~
LX, such that for every map f : X Ñ E

there exists a unique complete M-module morphism f‹ :
~
LX Ñ E and the following diagram

commutes
~
LX E

X

f‹

ηX
f

(1)

In different terms, p
~
LX, ηXq is an initial object in the comma category XÓ ηX .

We proceed under the assumption that every
~
LX exists and defer further details related to

this issue until Section 7 where we discuss our construction of
~
LX as a quotient inductive-

inductive type. For now, we concentrate on checking if the object
~
LX does indeed correctly

capture the intended semantics. First, observe the following.

I Theorem 7.
1. The forgetful functor U : Alg

rL Ñ Set has a left adjoint F : Set Ñ Alg
rL inducing a

monad over
~
L “ UF with unit η and Kleisli lifting p--q‹ agreeing with (1).

2. rL is enriched over directed complete partial orders, and moreover, Kleisli composition is
strict on both sides.

3. rL is an Elgot monad with the iteration operator pf : X Ñ rLpY ZXqq: calculated as a least
fixed point of the map rη, --s‹f : pX Ñ

~
LY q Ñ pX Ñ

~
LY q.

Proof.
1. It is a standard category-theoretic fact [2] that existence of all free objects

~
LX implies

existence of the left adjoint F to the forgetful functor U . The arising monad rL is then as
described.

2. Every
~
LX carries a complete partial order by definition. The laws f‹pKq “ K,

p v q ñ f‹ppq v f‹pqq and f‹
`
Ů

i siq “
Ů

i f
‹psiq follow from the fact that f‹ is a complete

M-module morphism by definition. The dual properties of Kleisli composition amount to
f v g ñ f‹ v g‹ and

Ů

i f
‹
i “

`
Ů

i fi
˘‹ assuming pointwise extension of the order on the

function spaces. Assuming the former, the latter easily follows from the universal property (1)
since

`
Ů

i f
‹
i

˘

η “
Ů

i f
‹
i η “

Ů

i fi “
`
Ů

i fi
˘‹
η.

The fact that f v g implies f‹ v g‹ (for f, g : X Ñ
~
LY ) is by no means entailed by a

generic category-theoretic argument. We show it as follows in slightly more generality for any
f, g : X Ñ E. For any complete M-module E, let EÓ be the set of down-closed E-submodules
of E. Then EÓ is itself an E-module under

a . S “ ta . x | x : Su, K “ H, S v R ðñ S Ď R,
ğ

i
Si “

ď

i
Si.
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Now, given f, g : X Ñ E, let f Ó and gÓ be the pointwise principal ideals induced by f and g,
e.g. f Ópxq “ ty | y v fpxqu. Now, if f v g then pf‹ÓY g‹Óq η “ f ÓY gÓ “ gÓ “ g‹Ó η, hence
f‹ÓY g‹Ó “ g‹Ó, which entails the desired inequation f‹ v g‹.

3. Finally, the fact that the above defined iteration operator turns rL into an Elgot monad
was shown in previous work [11]. J

I Remark 8. Observe that Alg
rL need not be the Eilenberg-Moore category of rL. Already

with M “ 1 we obtain as Alg
rL the category of directed complete partial orders, which is

known not to be monadic over Set.

Using Theorem 7, we can immediately equip HybCore with a denotational semantics. The
key clause, not entailed by the standard monad-based paradigm [16, 12], is while-loops, for
which we put

Jx :“ p while b tquKpσq
“
`

pλσ, x. if JbKpσ, xq then p
~
L inrqJqKpσ, xq else ηpinlxqq:

˘‹
pσ, JpKσq

where σ : JΓK interprets free variables from the variable context Γ, JpK : JΓK Ñ
~
LJXK and

JqK : JΓKˆ JXK Ñ
~
LJXK are semantics of the involved programs, and JbK : JΓKˆ JXK Ñ 2 is

the semantics of the Boolean test b. By applying this to Example 2 (4) and to Example 2 (6),
we obtain duration semantics and evolution semantics correspondingly (cf. [10]).

5 Complete Monoid Modules, Classically

Throughout this section we assume that Set is a classical set theory satisfying the axiom
of choice (and hence also the law of excluded middle). Some portion of the presented
developments can in fact be interpreted constructively or using more conservative principles
such as the axiom of countable choice. However, we currently do not know how to fully
rebase the following material on such more relaxed assumptions.

Our purpose here is to obtain a concrete description of the monad rL and make sure that
the result is in agreement with the expectations. To that end we develop an alternative
characterization of

~
LX in terms of directed sequences.

I Definition 9 (Directed Sequences). A directed sequence is a countable infinite sequence
s1, s2, . . . with the property that for every i and every j there is k such that si v sk and
sj v sk. An (ω-)directed complete set is a partially ordered set in which every (ω-)directed
sequence has a least upper bound.

We start off by equipping the set MX “ M ˆ pX Z tKuq with the structure of an ordered
M-module as follows:

a .Xpb, xq “ pa` b, xq pa, inlxq vX pa, inlxq
a ď b

pa, inrKq vX pb, xq

The idea is to use the elements of directed sequences s : N Ñ MX as progressively improving
pieces of information about the final outcome of the underlying computational process. The
elements of the form pa, inlxq are the maximal elements of this order, indicating that x is a
final output of the process at time instant a. The elements of the form pa, inrKq represent
potential divergence the time instant a, or later. The constraint pa, inrKq vX pb, xq with
a ď b indicates that this potential divergence can still be resolved into successful termination
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over time. However, this need not happen. In particular, we allow for Zeno behaviour in the
form of monotone sequences:

pa1, inrKq vX pa2, inrKq vX . . .

with a1 ă a2 ă . . . where the set ta1, a2, . . .u has an upper bound in M. Existence of such
sequences, of course, depends on the properties of M. For example, they do not exist for
M “ N, but they do exist for R`, e.g. a1 “ 1{2, a2 “ 1{2` 1{4, . . .

The following property is easy to verify.

I Proposition 10. For any set X, pMX , .X , p0, inrKq,vXq is an ordered M-module.

We next need to quotient the space of directed sequences N Ñ MX suitably to ensure that
two sequences which tend to the same value are indistinguishable. To this end, we adapt
the standard idea of chain completion from domain theory [17] by moving from monotone
sequences to directed sequences.

I Definition 11 (Directed Sequence Completion). For any poset pA,ďq, we define a preorder À
on directed sequences over A as follows:

psiqi À ptiqi ðñ @i : N. Dj : N. si ď tj .

This induces the equivalence „ on directed sequences as follows:

s „ t ðñ s À t^ t À s.

The directed sequence completion
~
A of A is the poset p

~
A,Æq, defined as follows:

~
A is the

quotient of the space of directed sequences over A by „, and rss„ Æ rts„ whenever s À t,
where, as usual, we denote by rss„ :

~
A the equivalence class of s : N Ñ A in

~
A. Let us also

agree to use the notation rsisi instead of rpsiqis„.

I Remark 12 (Ideal Completion). An apparently more common, and classically equivalent,
way (see e.g. [23, 1]) to introduce

~
A is to use ideal completion. An ideal in A is a nonempty

subset of A that is downward closed and directed. We could thus alternatively view
~
A not

as a set of equivalence classes but as a set of ideals of A generated by directed sequences.
This switch of perspective is based on a representation of quotients by means of equivalence
classes, which is uncomplicated for set theory but, of course, not for type theory.
The directed sequence completion of MX yields a complete M-module

~
MX . To show this we

use the Cantor pairing function π : Nˆ N Ñ N with

πpx, yq “
1
2 px` yqpx` y ` 1q ` x,

which witnesses an isomorphism between N and N ˆ N whose inverse we denote π -1 “
pπ -11 , π

-1
2 q : N Ñ Nˆ N.

I Proposition 13. The quotient p
~
MX , . ,K,Æ,

«Ž
q is a complete M-module under

a . rsisi “ ra .X sisi, K “ rp0, inrKqsi,
«ł

i
rsi,jsj “ rsπ -1

1 piq,π
-1
2 piq
si.

Proof Sketch. If psiqi „ ptiqi for directed sequences psiqi and ptiqi then it is easy to see that
both pa .X siqi and pa .X tiqi are directed and pa .X siqi „ pa .X tiqi, hence . is correctly
defined. Let us check that

«Ž

i rsi,jsj is correctly defined. First, if psi,jqj „ pti,jqj for every i,
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then for all j there is j1 such that si,j ď ti,j1 for every i, and conversely for all j there is j1 such
that ti,j ď si,j1 for every i, hence psπ -1

1 piq,π
-1
2 piq
qi „ ptπ -1

1 piq,π
-1
2 piq
qi. Therefore, the expression

for
«Ž

i rsi,jsj does not depend on the representatives of the equivalence classes rsi,jsi. To
show correctness of the definition of

«Ž

i rsi,jsj , we are left to verify that psπ -1
1 piq,π

-1
2 piq
qi is

directed. Let n,m : N and construct a suitable k such that sπ -1
1 pnq,π

-1
2 pnq

ď sπ -1
1 pkq,π

-1
2 pkq

and
sπ -1

1 pmq,π
-1
2 pmq

ď sπ -1
1 pkq,π

-1
2 pkq

. Let pn1, n2q “ π -1pnq and pm1,m2q “ π -1pmq. By assumptions,
there is k1 such that psn1,jqj À psk1,jqj and psm1,jqj À psk1,jqj . Thus we obtain n12,m12 : N
such that sn1,n2 ď sk1,n12

and sm1,m2 ď sk1,m12
and k2 : N such that sn1,n2 ď sk1,n12

ď sk1,k2

and sm1,m2 ď sk1,m12
ď sk1,k2 . Hence, we can take k “ πpk1, k2q.

The axioms of complete M-modules then transfer from MX to
~
MX . J

The defined M-module is in fact the free one on X.

I Theorem 14. pp
~
MX , . ,K,Æ,

«Ž
q, ηq is the free complete M-module on X with ηpxq “

rp0, inlxqsi.

Proof Sketch. We fix a complete M-module pE, . ,K,v,
Ů

q together with a map f : X Ñ E.
Our goal is to construct a unique complete M-module morphism f‹ :

~
MX Ñ E satisfying

f‹pηpxqq “ fpxq. To this purpose we define an auxiliary function ` : X Z tKu Ñ E as follows:

`pinlxq “ fpxq, `pinrKq “ K.

We then define f‹ :
~
MX Ñ E by putting f‹rpai, xiqsi “

Ů

i ai . `pxiq. The remaining technical
work amounts to showing that the above definition of f‹ is valid and that f‹ is the unique
morphism making (1) commute. J

Theorem 14 can be understood as a soundness and completeness property: it shows that
the axioms of complete M-modules are sound and complete over the models arising from M
by directed sequence completion. Hence, we also obtain a more explicit description of the
object

~
LX.

I Corollary 15.
~
LX and

~
MX are isomorphic in the category of complete M-modules.

Let us write
~
M∅ simply as

~
M.

I Proposition 16.
~
LX – MˆX Y

~
M.

Proof Sketch. The argument relies on the law of excluded middle: there are precisely two
kinds of directed sequences over MX :
1. those, which contain an element of the from pa, inlxq;
2. those, which only contain elements of the form pa, inrKq.
In the first case, the limit is pa, inlxq (a is uniquely determined, because pa, inlxq and pa1, inlx1q
are incompatible, unless a “ a1 and x “ x1). In the latter case, the limit is pc, inrKq where
where c is the least upper bound over all such a that pa, inrKq is in the sequence. This
produces the dichotomy of

~
LX as MˆX Y

~
M. J

We thus obtain agreement with Example 1. Let us again revisit Examples 2 and 4.

I Example 17. By Proposition 16,
~
LX is completely determined by the initial complete

M-module
~
M. Hence we stick to the latter. We use the fact that classically directed sequence

completion and monotone sequence completion coincide. Hence w.l.o.g. we view
~
M as a

quotient of the space of monotone sequences.
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1. Completion of natural numbers yields natural numbers extended with infinity:
~
N– NY

t8u “ N̄.
2. For non-negative rational numbers we obtain

~
Q`– Q`ZpR`rt0uqZt8u–Q̄`ZpR`rt0uq.

That is, a monotone sequence s1 ď s2 ď . . . is either eventually constant, i.e. has a
rational number as a least upper bound, or unbounded and hence its least upper bound
is infinity 8, or, finally, the sequence is Zeno, i.e. its supremum which can be rational or
irrational is not reached. For example, the sequences

1{2 ď 3{4 ď 7{8 ď . . . and 1 ď 1 ď 1 ď . . .

both tend to 1, but neither directed sequence completion nor the free object construction
(which agree, as we have seen) identify them.

3. Similarly, for real numbers:
~
R` – R` Z pR` r t0uq Z t8u – R̄` Z pR` r t0uq. That is,

except for 0 and 8, every real number in
~
R` is counted twice: as a Zeno value and as a

non-Zeno value.
4. By completing finite strings we expectedly obtain finite and infinite strings:

~
A‹ “

A‹ YAω “ Aďω.
5. Recall the monoid Ar0,R`q of finite trajectories 6. from Example 2 and the monoid Ar0,R̄`q

of finite and infinite trajectories 4. from Example 4. Then, analogously to the case of
real numbers, we obtain ČAr0,R`q –Ar0,R̄`q Z pAr0,R`q r tp0, !quq.

6 Conservatively Complete Monoid Modules

The effect of duplicating values caused by Zeno behaviour makes definite computational
sense, however it might also be undesirable. The way we defined the monad rL as a result of
a universal construction allows us to remedy it easily.

I Definition 18 (Conservatively Complete Monoid Modules). A complete monoid M-module
is conservatively complete if it satisfies the following additional axiom: for every directed
sequence paiqi in M, such that the least upper bound

Ž

i ai exists, the directed sequence
pai . Kqi has the least upper bound p

Ž

i aiq . K.

Again, conservatively complete monoid M-modules form a category AlgL under the same
morphisms as complete monoid modules (i.e. AlgL is a full subcategory of Alg

rL). By
replicating the previous construction of a free object L̄X, we obtain a monad L, for which a
complete analogue of Theorem 7 holds.

I Theorem 19.
1. The forgetful functor U : AlgL Ñ Set has a left adjoint F : Set Ñ AlgL inducing a

monad over L̄ “ UF with unit η and Kleisli lifting p--q‹.
2. L is enriched over directed complete partial orders, and moreover Kleisli composition is

strict on both sides.
3. L is an Elgot monad with the iteration operator pf : X Ñ L̄pY Z Xqq: calculated as a

least fixed point of the map rη, --s‹f : pX Ñ L̄Y q Ñ pX Ñ L̄Y q.
Again, we write M̄ instead of M̄∅.

Next, we would like to establish an analogue of Theorem 14 in order to be able to explicitly
calculate L̄X. To that end, we need to rebase our approach the construction on conservative
completion of partial orders. In order to facilitate the corresponding construction [14], until
the end of this section we impose the following further assumption which is satisfied by all
our examples.
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I Assumption 20. Let paiqi and pbiqi be directed sequences over M.
1. If

Ž

i bi exists then
Ž

i a` bi “ a`
Ž

i bi.
2. If

Ž

i ai exists and for every i there exists j such that ai ď bj then either
Ž

i bi exists or
Ž

i ai ď bj for some j.
Recall the definitions of MX and

~
MX from Section 5 and let M̄X be constructed in the same

way as
~
MX , but with the following additional clause added to the equivalence relation „:

pai, inrKqi „ pa, inrKqi whenever a “
ł

i
ai. (2)

Modulo this change, the remaining definition of the complete M-module structure on M̄X
is the same as for

~
MX . The following characterization is a counterpart of Theorem 14 and

Proposition 16.

I Theorem 21. In classical set theory, ppM̄X , . ,K,Æ,
«Ž
q, ηq is the free conservatively com-

plete M-module on X with ηpxq “ rp0, inlxqsi, and M̄X – MˆX Y M̄.

Proof. The fact that under the above strengthening of „ the definition of the complete M-
module structure of M̄X remains valid relies on Assumption 20. For example, we need to make
sure that pa .Xpbi, inrKqqi „ pa .Xpb, inrKqqi for all a, bi : M whenever b “

Ž

i bi. Equival-
ently, we need to show pa` bi, inrKqi „ pa` b, inrKqi, which follows from Assumption 20 (1).
Similarly, correctness of

«Ž
requires Assumption 20 (2). J

I Example 22. Let us revisit some previous examples, again, assuming that Set is a classical
set theory. Analogously to the case of rL, for L we again obtain the property that L̄X is
isomorphic to MˆX Y M̄, hence it suffices to consider M̄.

Note that the new law (2) is often ineffective, hence e.g.
~
N “ N̄, and

~
A‹ “ A‹. However,

as expected, R` consists precisely of extended reals, i.e. R` “ R` Y t8u. Analogously,
Q` “ R`. Finally, for the monoid of trajectories, Ar0,R`q –Ar0,R̄`q.

7 Formalization in HoTT/Cubical Agda

We next embark on the details of our formalization of the material of Sections 4 and 6
using the means of homotopy type theory (HoTT). The latter is an extension of intensional
Martin-Löf type theory (MLTT) obtained by interpreting types A as topological spaces,
inhabitants of types a : A as the corresponding points, and identity types IdApa, bq as spaces
of continuous paths from a : A to b : A within A, subject to homotopy equivalence. We use
the standard Agda notation a ” b for the identity type IdApa, bq from now on.

Among various benefits and far reaching implications of HoTT, the critical feature we need
here are higher inductive-inductive types (HIITs), which in particular enable construction of
free objects in the style of category theory. We carry out our formalization in the recently
emerged cubical extension [22] of the Agda proof assistant – while Agda is generally based on
MLTT, the cubical extension adds full support of HoTT (in the form of cubical type theory [7]).
As a result, cubical Agda provides a rather accurate way for designing machine checked
proofs in the style of HoTT, and here we dim the distinction between HoTT and cubical
Agda as much as possible. We note that we only involve particular HIITs, called quotient
inductive-inductive types (QIITs) [3], which are a special case of HIITs – this specialization is
completely explicit in cubical Agda, i.e. HIITs are available via native language primitives
while QIITs are expressible as certain HIITs.

In our formalization we closely follow the previous work on constructing the partiality
monad (which is in our setting the duration monad over the trivial monoid) and the subsequent
formalization in cubical Agda by Danielsson [8].
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Since Agda supports the propositions-as-types discipline, types can be read as propositions
and the corresponding terms as proofs. Hence, universal @ and existential D quantifiers have
the same meaning as dependent product Π and dependent sum Σ operators correspondingly.
This is a standard convention for Agda, which we apply to improve readability (for technical
reasons we use slightly unusual syntax for existential quantification: Dr x s φ instead of Dx φ).
Moreover, for the same purpose, we use the disjunction symbol _ for coproducts Z and the
conjunction symbol ^ for products ˆ. For example, the following self-explanatory Agda code

IsProp A = @ (x y : A) Ñ x ” y
IsSet A = @ (x y : A) Ñ IsProp (x ” y)
IsDec A = A _ ¬ A

defines correspondingly (mere) propositions, sets and decidable types.
A derivable facility of HoTT is the propositional truncation operator ‖_‖ sending any

type A to the type ‖A‖ obtained by quotienting A under the equality x ” y for all x y : A,
which is implemented as follows:

data ‖_‖ (A : Set `) : Set ` where
|_| : A Ñ ‖ A ‖
‖‖-prop : IsProp ‖ A ‖

This provides a simple example of a quotient inductive type (QIT), i.e. an inductively defined
set with constructors for equalities. Such types already generally go beyond MLTT. Next,
given an infinite sequence σ : N Ñ A over a partially ordered set A, the following definitions

Inc σ = @ (n : N) Ñ σ n ď σ (suc n)
Dir σ = @ (n m : N) Ñ D[ k ] (σ n ď σ k ^ σ m ď σ k)
‖Dir‖ σ = @ (n m : N) Ñ ‖ D[ k ] (σ n ď σ k ^ σ m ď σ k) ‖

identify monotone (increasing), intensionally directed and extensionally directed sequences
correspondingly. The intensional version of directedness for any two numbers n and m

produces a number k with an obvious property. The extensional version ensures that such
a number exists, without producing it. Observe that Inc, Dir and ‖Dir‖ are arranged by
strength: if σ is monotone, then it is intensionally directed (k is the maximum of n and
m), and if σ is intensionally directed then it is extensionally directed (by using |_| to forget
the choice of k). Furthermore, observe that Inc, Dir and ‖Dir‖ induce the corresponding
notions of Inc-complete, Dir-complete and ‖Dir‖-complete partial orders, i.e. those partial
orders in which all least upper bounds of the corresponding sequences exist. These notions
are therefore arranged in the opposite direction: ‖Dir‖-completeness implies Dir-completeness,
and the latter implies Inc-completeness.

The discrepancy between Dir and ‖Dir‖ can be clarified in terms of the axiom of countable
choice, which can be expressed e.g. as follows:

ACω {`} = @ (P : N Ñ Set `) Ñ (@ n Ñ ‖ P n ‖) Ñ ‖ (@ n Ñ P n) ‖

This can be read as the statement that any proof of inhabitance of P n for every n, can be
converted into a proof of existence of a corresponding choice function. Intuitively, under
ACω one should be able to convert an extensionally directed sequence to an intensionally
directed one by successively pushing the truncation operator ‖_‖ upwards and then applying
the elimination principle for ‖_‖. This indeed works, and in summary we have the following
set of results:
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I Proposition 23. Let (a), (b) and (c) stand for completeness of a fixed set A w.r.t. ‖Dir‖, Dir
and Inc correspondingly. Then

(a) ñ (b) ñ (c);
(b) ñ (a) under countable choice;
(c) ñ (a) under the decidability of ď on A (i.e. under @ px y : Aq Ñ IsDec px ď yq).

Proof Sketch. Consider the last clause, which is the one we did not discuss yet. The idea is
based on Exercise 3.19. from the HoTT book [20], which can be formalized as follows:

restore-ωC : @ (P : N Ñ Set `) Ñ (@ (n : N) Ñ IsDec (P n)) Ñ ‖ D[ n ] P n ‖ Ñ D[ n ] P n

That is, under decidability of all P n, the fact that there exists n satisfying P implies a
constructive procedure for producing such an n. In our implementation such a procedure
simply finds the first n that satisfies P , and that critically depends on the decidability
assumption – otherwise the very concept “first n satisfying P” cannot be realized. Using
restore-ωC, and the decidability assumption for ď, it is easy to select a monotone subsequence
from any extensionally directed sequence and show coincidence of the corresponding least
upper bounds. J

For decidable ď, ‖Dir‖-, Dir- and Inc-completeness are therefore equivalent, which is the
case of the partiality monad. While the partiality monad is based on Inc-completeness, our
implementation of rL and L is based on Dir-completeness, as we explain next.

For rL we introduce an HIIT of a mutually dependent carrier (implicitly parametrized
by an argument A of type Set (` \ `1)) and a binary relation v on it, w.r.t. an ordered
monoid M with a carrier from Set ` and a partial order relation on M from Set `1:

data
~
L : Set (` \ `1)

data _v_ :
~
L Ñ

~
L Ñ Set (` \ `1)

The following forward reference asserts that
~
L will be a partial order

PO-v : PartialOrder
~
L

Then we introduce the constructors for
~
L:

data
~
L where

_B_ : M Ñ
~
L Ñ

~
L

K :
~
L

Ů

: DirSeq PO-v Ñ
~
L

η : A Ñ
~
L

v-antisym : @ (x y :
~
L) Ñ x v y Ñ y v x Ñ x ” y

where DirSeq PO-v is the type of intensionally directed sequences over
~
L. The corresponding

definition of _v_ is more technical, and we omit it here. This definition contains all the
necessary axioms and in particular allows us to define PO-v. Moreover, it is asserted that
IsProp (x v y) is inhabited, which implies that our carrier is a set (Theorem 7.2.2 of the HoTT
book), i.e. the HIIT we define is indeed a QIIT. The most technically involved remaining part
of the construction is the definition of the elimination principle together with the proof that
it implies initiality of

~
L which in the categorical sense is the same as freeness of each

~
LX as

an M-module on X. The construction of L̄ is analogous – essentially we add the conservative
completeness property as a new axiom to the definition of _v_.

Our definitions of
~
L and L̄ are based on the intensional notion of directedness. It is

currently not clear to us if those can also be based on the corresponding extensional notion,
and whether this would bring any benefits over the present formalization. We regard this as
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an issue for further work. For another alternative, it would be perfectly possible to base
~
L

and L̄ on Inc-completeness. We avoided that for a strategic reason: although the results of
Section 5 currently hold under rather strong classicality assumptions, some of them must
hold under weaker assumptions such as the axiom of countable choice. The challenges we
would face then would be similar to those one faces when proving completeness of Cauchy
reals. That standardly relies on a diagonalization argument roughly stating that a directed
sequence of directed sequences can be converted to a directed sequence. This argument is
constructively valid for Dir-completeness, but for Inc-completeness it seems to indispensably
rely on decidability of inequality of the underlying set.

8 Conclusions and Further Work

We proposed a constructive formalization of hybrid semantics by combining ideas from
category theory, type theory and domain theory and justified the results by an implementation
in the Agda proof assistant extended with support of cubical type theory [7]. On the one
hand, we closely followed the previous work on constructing the partiality monad, and on
the other hand, complemented this construction with an explicit “time” dimension in the
form of an ordered monoid. We thus reinforce the importance of quotient inductive-inductive
types (QIITs) [3] which have previously been used for defining constructive counterparts of
important semantic notions such as Cauchy reals and non-terminating computations so that
even the principle of countable choice is avoided. Our analysis also identifies the importance
of the notion of conservative completion [23], which seems to be little known in the computer
science community, possibly because this notion only becomes relevant when dealing with
non-discrete data types, once Zeno effects come into play. In contrast to the partiality monad
case, our characterization in terms of directed sequence completion is only established under
strong classicality assumptions and not with countable choice as the only additional axiom.
We leave it as an important pending question for further work to check if our results to
this effect can be improved. In a nutshell, a potential positive answer would amount to
implementing the relevant parts of Section 5 in cubical Agda with the axiom of countable
choice postulated.

Our work is motivated by a simple deterministic hybrid language HybCore for hybrid
computation [10], which we now provided with a constructive semantics. As a next step,
we are planning to extend HybCore with further features such as concurrency and non-
determinism in a principled fashion. In fact, the majority of existing work on hybrid systems
intertwine hybridness and non-determinism (even though, conceptually, these are independent
computational effects). From a type-theoretic perspective, an interesting insight into relating
partiality and nondeterminism is provided by Veltri [21], who proposed to build a constructive
analogue of the countable powerset monad as a quotient inductive type (instead of a QIIT!),
from which the partiality monad is then ingeniously carved out. The technical benefit of this
approach is that it enables construction of the partiality monad in environments which do
not support QIITs. We consider this approach more broadly as a way to relate partiality
and non-determinism, and in particular, we plan to investigate its potential for constructing
non-deterministic hybrid monads.
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A Omitted Proofs

A.1 Proof of Theorem 14

We fix a complete M-module pE, . ,K,v,
Ů

q together with a map f : X Ñ E. Our goal is to
construct a unique complete M-module morphism f‹ :

~
MX Ñ E satisfying f‹pηpxqq “ fpxq.

To this purpose we define an auxiliary function ` : X Z tKu Ñ E as follows:

`pinlxq “ fpxq, `pinrKq “ K.

Now, we define f‹ :
~
MX Ñ E as follows:

f‹rpai, xiqsi “
ğ

i
ai . `pxiq.

This definition is only valid if pai . `pxiqqi is directed and
Ů

i ai . `pxiq does not depend on
the specific representatives pai, xiqi of the corresponding equivalence classes. Both these
properties require us to prove that pa, xq vX pb, yq implies a . `pxq v b . `pyq, which is
shown as follows:

if pa, inlxq vX pb, inl yq then pa, inlxq “ pb, inl yq and thus a . `pinlxq v b . `pinl yq;
if pa, inrKq vX pb, inl yq then a ď b and thus a . `pinrKq “ a . K v b . K v b . fpyq “

b . `pinl yq by the restricted left monotonicity, least element and right monotonicity
axioms;
if pa, inrKq vX pb, inrKq then a ď b and thus a . `pinrKq “ a . K v b . K “ b . `pinrKq
by restricted left monotonicity.

Next, let us show that f‹ is a complete M-module morphism, by verifying the corresponding
preservation properties:

f‹pa . rpbi, xiqsiq “ a . f‹rpbi, xiqsi: the requisite calculation runs as follows:

f‹pa . rpbi, xiqsiq “ f‹ra .Xpbi, xiqsi (definition of . )
“ f‹rpa` bi, xiqsi (definition of .X)

“
ğ

i
pa` biq . `pxiq (definition of f‹)

“
ğ

i
a . pbi . `pxiqq (monoid action)

“ a .
ğ

i
bi . `pxiq (right continuity of . )

“ a . f‹rpbi, xiqsi. (definition of f‹)

f‹pKq “ K: f‹pKq “ f‹rp0, inrKqsi “
Ů

i 0 . `pinrKq “
Ů

i 0 . K “
Ů

iK “ K using the
definition of monoidal action.
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rpai, xiqsi Æ rpbi, yiqsi implies f‹rpai, xiqsi v f‹rpbi, yiqsi: If rpai, xiqsi Æ rpbi, yiqsi then
pai, xiqi À pbi, yiqi meaning that for every i : N there exists a j : N such that pai, xiq vX

pbj , yjq. This implies ai . `pxiq v bj . `pyjq v
Ů

i bi . `pyiq for every i : N by upper bound
and thus f‹rpai, xiqsi “

Ů

i ai . `pxiq v
Ů

i bi . `pyiq “ f‹rpbi, yiqsi by least upper bound.
f‹

` «Ž

irpai,j , xi,jqsj
˘

“
Ů

i f
‹rpai,j , xi,jqsj : This is obtained as follows.

f‹
´ «ł

i
rpai,j , xi,jqsj

¯

“ f‹rpaπ -1
1 piq,π

-1
2 piq

, xπ -1
1 piq,π

-1
2 piq
qsi

“
ğ

i
aπ -1

1 piq,π
-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q

“
ğ

i

ğ

j
ai,j . `pxi,jq p˚q

“
ğ

i
f‹rpai,j , xi,jqsj .

The only step that does not follow by definition is p˚q, and we show it by antisymmetry
of v as follows.

(v): Let us fix i : N and let k1 “ π -11 piq, k2 “ π -12 piq, and then

aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q “ ak1,k2 . `pxk1,k2q

v
ğ

j
ak1,j . `pxk1,jq

v
ğ

i

ğ

j
ai,j . `pxi,jq.

Since i is arbitrary, by the least upper bound property,
Ů

i aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q v

Ů

i

Ů

j ai,j . `pxi,jq.
(w): For all i, j : N, ai,j . `pxi,jq “ aπ -1pπpi,jqq . `pxπ -1pπpi,jqqq v

Ů

i aπ -1piq . `pxπ -1piqq

and hence
Ů

i

Ů

j ai,j . `pxi,jq v
Ů

i aπ -1
1 piq,π

-1
2 piq

. `pxπ -1
1 piq,π

-1
2 piq
q by the least upper

bound property.

Next we show commutativity of (1), i.e. that f‹pηpxqq “ fpxq, as follows: f‹pηpxqq “

f‹rp0, inlxqsi “
Ů

i 0 . `pinlxq “
Ů

i 0 . fpxq “
Ů

i fpxq “ fpxq using the definition of
monoidal action.

Finally, we show that the constructed morphism f‹ is unique. That is, given another
complete M-module morphism g :

~
MX Ñ E satisfying gpηpxqq “ fpxq, we show that f‹

and g are equal. First, let h : X Z tKu Ñ
~
MX be defined as hpxq “ rp0, xqsi. Note that

gphpxqq “ `pxq for any x : X Z tKu:

gphpinlxqq “ grp0, inlxqsj “ gpηpxqq “ fpxq “ `pinlxq,
gphpinrKqq “ grp0, inrKqsj “ gpKq “ K “ `pinrKq.

The desired equation f‹ “ g is obtained as follows:

grpai, xiqsi “ g
´ «ł

i
ai . hpxiq

¯

“
ğ

i
gpai . hpxiqq “

ğ

i
ai . gphpxiqq

“
ğ

i
ai . `pxiq “ f‹rpai, xiqsi.

Here, only the first step is not by definition. Let us show that, in fact, rpai, xiqsi “
«Ž

i ai . hpxiq. Note that pai, xiqi „ paπ -1
1 piq

, xπ -1
1 piq
qi basically because by definition π -11 piq can

be made arbitrary large by choosing a suitable i. Therefore rpai, xiqsi “ rpaπ -1
1 piq

, xπ -1
1 piq
qsi

and we have

rpai, xiqsi “ rpaπ -1
1 piq

, xπ -1
1 piq
qsi “

«ł

i
rpai, xiqsj “

«ł

i
ai . rp0, xiqsj “

«ł

i
ai . hpxiq,

which completes the proof. J
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