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Abstract
We present a study of the continuation-composing style (CCS) that describes the image of the CPS
translation of Danvy and Filinski’s shift and reset delimited-control operators. In CCS continu-
ations are composable rather than abortive as in the traditional CPS, and, therefore, the structure of
terms is considerably more complex. We show that the CPS translation from Moggi’s computational
lambda calculus extended with shift and reset has a right inverse and that the two translations
form a reflection i.e., a Galois connection in which the target is isomorphic to a subset of the source
(the orders are given by the reduction relations). Furthermore, we use this result to show that
Plotkin’s call-by-value lambda calculus extended with shift and reset is isomorphic to the image
of the CPS translation. This result, in particular, provides a first direct-style transformation for
delimited continuations that is an inverse of the CPS transformation up to syntactic identity.
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1 Introduction

In higher-order programming languages based on the λ-calculus, continuation-passing style
(CPS) is a program format in which functions accept an additional parameter – a continuation
– that represents the entire rest of the computation [17]. In CPS, computations are explicitly
sequentialised according to a given evaluation strategy, the intermediate results are named,
and there are no nested function calls, i.e., all function calls are tail calls. A notion
associated with CPS is the notion of a CPS translation that transforms a term in direct
style, i.e., where continuations are not passed around, to the corresponding term in CPS [8,
16]. Such translations have been routinely used both to define continuation semantics of
higher-order programs, where object-level constructs are CPS-translated to the meta-level
λ-calculus [21, 18], and as a compilation step bridging the gap between higher-order and
low-level languages [23, 1].

In the context of compilation, a critical concern is correctness of the CPS translation.
In his seminal work [16], Plotkin introduced the call-by-value lambda calculus λv, equipped
with a reduction → and equality = theories, along with a CPS translation ∗ to the call-
by-name lambda calculus λn, for which he proved equational soundness, i.e., M = N in
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18:2 A Reflection on Continuation-Composing Style

the source implies M∗ = N∗ in the target, and he showed that the converse does not hold,
i.e., the translation is not complete. Completeness has been obtained by Moggi who devised
a monad translation, including a CPS translation as a special case, from the computational
lambda calculus λc (an extension of λv) to the monadic metalanguage λml (equipped with
an equational theory only) [15]. This result was strengthened by Hatcliff and Danvy [11], who
showed that Moggi’s monad translation ∗ has an inverse translation # such that M = M∗#

in the source and N#∗ = N in the target, i.e., it is an equational correspondence. Finally,
Sabry and Felleisen further improved on Plotkin’s result by devising a CPS translation that
forms an equational correspondence between λc and λn [19].

Whereas all these results concern equality theories, Sabry and Wadler obtained stronger
results in which equality is replaced with reduction (viewed as directed code optimisation) [20].
In particular, they presented a CPS translation ∗ from λc to λn along with its inverse #
that form a Galois connection satisfying:

soundness: if M � N# in the source then M∗ � N in the target;
completeness: if M∗ � N in the target then M � N# in the source;

This means that evaluation in the source language is equivalent to compiling, evaluating in
the target and decompiling. Moreover, this Galois connection is a reflection by satisfying
an additional condition: compiling is a left inverse to decompiling, M#∗ ≡M , where ≡ is
syntactic identity. Interestingly, Danvy developed a direct-style transformation from λn to
λv that is a left inverse to Plotkin’s CPS translation [2], but he did not consider reduction or
equality theories.

A particularly interesting application of CPS is in defining the semantics of control
operators, i.e., constructs that access and manipulate the continuation [17, 24, 5]. For
abortive control operators such as call/cc, which model jumps, the image of the CPS
translation is more challenging to characterise than in the pure case. The main reason is that
in the pure case one continuation identifier suffices, whereas the abortive control operators
may use any of the lexically visible continuation identifiers – continuations can be used out
of turn. Sabry and Felleisen [19] considered an extension of Felleisen et al.’s λv-C-calculus
(including call/cc and the abort operator) [6], and they showed a CPS-translation to λn
that forms an equational correspondence. A direct-style translation for call/cc was also
developed by Danvy and Lawall [4]. Their transformation is related to the CPS translation via
a Galois connection, induced from the translations and based on the the syntactic structure
of terms rather than on reduction relations.

In this work, we study the continuation-composing style (CCS), which arises as the image
of the CPS translation of Danvy and Filinski’s delimited-control operators shift and
reset [3]. In CCS continuations are composable rather than abortive, which means that not
all calls are tail calls and the conditions imposed on where continuation identifiers occur
in terms are further relaxed. Continuation composability is central to the expressibility of
arbitrary computational effects with continuations [25, 7]. There exist some work devoted to
the image of the double CPS translation of shift and reset in which a meta-continuation
is introduced to eliminate nested computations of CCS [3]. Most notably, Kameyama
and Hasegawa introduced a direct-style translation which led to a direct-style equational
characterisation of the image of the double CPS translation with βη-equality (a subset
of λn) [12]. However, we are not aware of any published study of the reduction theory of
CCS, and the goal of the present work is to fill this vacuum.

To that end, we follow the programme of Sabry and Wadler [20], and we construct a
reflection of CCS in two calculi with shift, considered as a combinator, and reset. We first
focus on the λcS -calculus, which is Moggi’s computational lambda calculus λc, extended with
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shift and reset for which we give a CPS translation that eliminates administrative redexes.
The image of the translation is λ∗cS , a call-by-value lambda calculus equipped with a set of
dedicated reduction rules. We then define a direct-style translation from this calculus back to
a subset of λcS that we call λ.cS (the kernel of λcS) and we prove that it is a right inverse to
the CPS translation. We then show that the two translations form a reflection with respect
to orders given by the respective reduction relations and that the reflection decomposes into
an inclusion of λcS in the kernel λ.cS and an order isomorphism of λ.cS and λ∗cS .

Second, we consider λS , a subcalculus of λcS that is a more traditional calculus of
delimited control and that coincides with λv extended with shift and reset. Building on
the results for λcS and restricting the CPS translation to λS , we show that λS is isomorphic
to λ∗S , its image through the CPS translation and a subcalculus of λ∗cS . A byproduct of
this development is a one-pass direct-style translation for delimited-control operators, a long
missing continuation of the work by Danvy for pure call-by-value lambda calculus [2], and by
Danvy and Lawall for abortive control operators [4]. Such transformations make it possible
to automatically map continuation-passing programs to their more concise, but at the same
time more challenging to design, direct-style counterparts.

The remainder of this article is structured as follows. In Section 2, we briefly introduce
the basic notions related to Galois connections and reflections. In Section 3, we introduce
the calculi λcS and λ∗cS along with the CPS translation from λcS to λ∗cS . In Section 4, we
characterise the image of the CPS translation and we define its right inverse – the direct
style translation. In Section 5, we prove that the two translations form a reflection and we
identify the kernel of the reflection in λcS . In Section 6, we show that when restricted to λS ,
the CPS translation has an inverse such that the two transformations form an isomorphism.
We conclude in Section 7.

2 Galois Connections and Reflections

Below, we recall the essential facts about Galois connections that we use throughout the
article. We refer the reader to Sabry and Wadler’s work [20] for more detailed background.
We treat each set A as equipped with a preorder (i.e., reflexive and transitive) relation
�A. In our development, we define these in two ways: either by applying reflexive-transitive
closure on a reduction relation →A, or by truncating a preorder (multi-step reduction)
relation �X of a superset X ⊇ A (�A is then an induced preorder). In the following, ≡A
denotes the syntactic identity on A .

In the following, it may be helpful to think about A and B as a source and target
calculi, respectively, whereas f and g can be thought of us compiling and decompiling,
respectively. We start with the standard notion of monotonicity, i.e, preservation of reduction
by the compiling map.

I Definition 1 (Monotone function). A function f : A → B is monotone if, and only if
∀x1, x2 ∈ A . x1 �A x2 =⇒ f(x1)�B f(x2).

A Galois connection expresses a form of harmony of compiling and decompiling with
respect to reduction relations.

I Definition 2 (Galois connection). Monotone functions f : A → B and g : B → A form a
Galois connection if, and only if a �A g(b)⇐⇒ f(a)�B b.

There is an alternative characterisation of a Galois connection.

FSCD 2020
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terms L,M,N ::= V |P
values V,W ::= x |λx .M | S
nonvalues P,Q ::= M N | letx = M inN |〈M〉
pure contexts J,K ::= [ ] |KM |V K | letx = K inM
(β.v) (λx .M)V → M [x := V ]
(η.v) λx . V x → V

(β.let) letx = V inM → M [x := V ]
(η.let) letx = M in x → M

(assoc) letx = let y = L inM inN → let y = L in letx = M inN
(let.1) P N → letx = P in xN
(let.2) V Q → let y = Q inV y
(β.S) 〈J [S N ]〉 → 〈N (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

Figure 1 Direct style calculus λcS .

I Theorem 3 (Equivalent definition of Galois connection). Monotone functions f : A → B

and g : B → A form a Galois connection if, and only if
a �A g(f(a)) and
f(g(b))�B b.

When compiling is a left inverse to decompiling, then we have a reflection.

I Definition 4 (Reflection). A Galois connection (f : A → B, g : B → A) is a reflection if,
and only if f(g(b)) ≡B b.

In case compiling is also a right inverse to decompiling, we have an isomorphism.

I Definition 5 (Order isomorphism). A reflection (f : A → B, g : B → A) is an order
isomorphism if, and only if a ≡A g(f(a)).

Every reflection factors into an inclusion and an order isomorphism.

I Theorem 6 (Reflection decomposition). Every reflection (f : A → B, g : B → A)
decomposes into a reflection (called inclusion) (g ◦ f : A → g[B], idg[B] : g[B]→ A) and an
order isomorphism (f : g[B]→ B, g : B → g[B]), where g[B] ⊆ A has an induced preorder.

It follows from Theorem 6 that given a reflection (f : A → B, g : B → A), the source
calculus has a kernel g[B] (or equivalently, g[f [A]]) that is isomorphic with B, or that
reflects B. The goal of this work is to identify such a reflection of CCS in call-by-value
lambda calculi with delimited continuations.

3 Delimited-Control Operators Shift and Reset

We begin with Moggi’s calculus of computations, λc, extended with shift and reset delimited
control operators, which we dub λcS . The syntax and semantics are presented in Figure 1.
The terms of the calculus are divided into values, which include variables, lambda abstractions
and the shift combinator S, and computations, which include applications, let-bindings and
the reset operator, which serves to delimit the scope of the continuation. Moreover, we
introduce the syntactic domain of pure evaluation contexts, which encode a left-to-right
call-by-value evaluation strategy and, crucially do not contain the reset operators.
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∗ : λcS → λ

M∗ = λ k .(M : k)
V : K = K V †

(P Q) : K = P : (λx .(Q : (λ y . x y K)))
(P W ) : K = P : (λx . xW †K)
(V Q) : K = Q : (λ y . V † y K)
(V W ) : K = V †W †K

(letx = M inN) : K = M : (λx .(N : K))
〈M〉 : K = K (M : (λx . x))
x† = x

(λx .M)† = λx .M∗

S† = λw j .w (λ y k . k (j y)) (λx . x)

Figure 2 Conversion from λcS to Continuation-Composing Style.

The operational semantics of the calculus is given by a contraction relation, which may
be performed within any context, as we consider general reduction rather than evaluation.
Nonetheless, we still require the pure fragment of evaluation contexts: these are used to
match the shift operator with the enclosing reset by the (β.S) rule. This rule matches a S
operator applied to some term N in a pure context J closed by a reset operator, captures
the latter context (together with the reset), reifies it as a function and passes it as an argument
to N . Note the duplication of the reset operator in the contractum, which is an important
characteristic of shift/reset [22].

Except for (β.S) and the simple (β.R) rule, the rules are those of λc, including β and η
rules for applications and the let-bindings, as well as a rule for association, or hoisting, of
let bindings. Note, however, that we do not include any η rules for the control operators,
restricting ourselves to the appropriate β-reductions, which leads to a minimal extension
of λc with delimited control. It can be shown that the resulting calculus is confluent. While
most presentations treat S as an operator with a binder (for a continuation variable) rather
than as a combinator, the latter approach is hardly non-standard: in particular, most
implementations provide shift as a combinator.

We now turn to the CPS transformation for λcS , which is presented in Figure 2. Since
the CCS calculus is rather complex, the transformation targets syntactic lambda-terms, and
we establish the fact that it only produces terms in CCS a posteriori. This translation extends
Sabry and Wadler’s CPS translation for λc [20], which eliminates unnecessary administrative
redexes, to handle the shift and reset delimited control operators. Note that, in contrast
to some of the classic one-pass CPS translations for shift and reset, including Danvy and
Filinski’s [3], the translation does not reduce matching shift-reset pairs at transformation
time. Note that without this more conservative approach to source-language redexes we
could not hope for establishing the desired reflection.

4 Back to Direct Style

Having defined the CPS translation for the extended computational calculus, we now turn to
precisely identifying its image. To this end, we introduce a new calculus, λ∗cS , presented in
Figure 3. The syntax is given as a mildly context-sensitive grammar in the style of literal
movement grammars [10]. In this case, context-sensitivity amounts to annotating both term

FSCD 2020
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roots R ::= λ k .Mk

terms∆ M,N ::= K∆ V |V W K∆ |K∆M•
values V,W ::= x |λx .R |S
shift S ::= λw j .w (λ y k . k (j y)) (λx . x)
continuations∆ J,K ::= (∆=k) k | (∆=•) λx . x |λx .M∆

(β.v) (λx k .Mk)V K∆ → Mk[x := V ][k := K∆]
(η.v) λx k . V x k → V

(β.let) (λx .M∆)V → M∆[x := V ]
(η.let) λx .K∆ x → K∆
(β.S) SW J• → W (λ y k . k (J• y)) (λx . x)
(β.R) (λx . x)V → V

Figure 3 Continuation-composing style calculus λ∗cS .

and continuation nonterminals with ∆, which ranges over the set of variables extended with •,
and limiting certain productions to particular annotations. This serves to distinguish the
“tail-recursive” parts of the term, where there is a current continuation that needs to be used,
from the “returning” calls, where there is no access to the current continuation (and thus
the only trivial continuation is the identity). Throughout the following, we use ∆ `NC M

to mean that a term M is derived as a member of syntactic class N of calculus C under
assumptions ∆ of the shape appropriate for the given calculus and non-terminal combination;
in the case of standard context-free grammars, this assumption context is always empty.

For the semantics of our calculus, we follow the methodology of Sabry and Wadler [20],
extending their λcps calculus with reductions that notionally match our control operators.
Note that while this calculus can be considered a subsystem of the lambda-calculus, its
reductions take much larger steps, and thus the system is not closed under general λv
reductions. We begin by establishing that the image of the CPS translation defined in
previous section is indeed contained within λ∗cS .

I Lemma 7 (Characterisation of CCS). For all M ∈ λcS , M∗ ∈ λ∗cS .

Proof. We prove the following propositions by mutual structural induction on the term:
`MλcS

M =⇒ `Rλ∗
cS
M∗,

`MλcS
M ∧∆ `Kλ∗

cS
K =⇒ ∆ `Mλ∗

cS
(M : K),

`VλcS
V =⇒ ∆ `Vλ∗

cS
V †. J

4.1 Direct-Style Transformation
With the calculus λ∗cS defined, we now turn to a translation to direct style. The target of
such translation is λcS , the computational calculus with shift and reset, and the translation
is defined in Figure 4, with the definition proceeding inductively on the structure of terms
of λ∗cS . We can now show that the CPS and DS translations form a retraction pair with
respect to syntactic equality (as usual, up to implicit α-equivalence) in λ∗cS . We take I∆ to
denote the trivial continuation for ∆, i.e., Ik = k and I• = λx . x.

I Theorem 8 (Right inverse of ∗). For all R ∈ λ∗cS , R#∗ ≡ R. Also, the following equalities
hold: M ]

∆ : I∆ ≡M∆, V \† ≡ V , K[
∆[M ] : I∆ ≡M : K∆.

Proof. By mutual structural induction. J
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# : λ∗cS → λcS

(λ k .Mk)# = M ]
k

(K∆ V )] = K[
∆[V \]

(V W K∆)] = K[
∆[V \W \]

(K∆M•)] = K[
∆[〈M ]

•〉]
x\ = x

(λx .R)\ = λx .R#

(λw j .w (λ y k . k (j y)) (λx . x))\ = S
k[ = [ ]
(λx . x)[ = [ ]
(λx .N∆)[ = letx = [ ] inN ]

∆

Figure 4 Back to Direct Style from λ∗cS .

terms M,N ::= K[V ] |K[P ]
values V,W ::= x |λx .M | S
nonvalues P,Q ::= V W |〈M〉
pure contexts J,K ::= [ ] | letx = [ ] inM
(β.v) K[(λx .M)V ] → M [x := V ] : K K maximal
(η.v) λx . V x → V

(β.let) letx = V inM → M [x := V ]
(η.let) letx = [ ] inK[x] → K

(β.S) 〈J [S W ]〉 → 〈W (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

V : K = K[V ]
P : K = K[P ]
(letx = V inM) : K = letx = V in(M : K)
(letx = P inM) : K = letx = P in(M : K)

Figure 5 The kernel direct style calculus λ.
cS .

This result establishes that λ∗cS does not overestimate the set of valid CCS terms, as
any root in λ∗cS can be obtained by the CPS transformation from its own translation to λcS .
However, not all terms of λcS can be obtained as the result of the direct style translation.
Thus, we define yet another calculus, λ.cS , which characterises the kernel of λcS . The definition
presented in Figure 5 again follows and extends Sabry and Wadler’s take on a refined calculus
(this time extending their λc∗∗); the major difference with respect to λcS is the fact that all
the let-bindings are hoisted, i.e., normalised with respect to associativity rule. The reduction
rules need to preserve this fact, which again leads to larger reduction steps: this time, when
reducing an application, we may need to reassociate arbitrarily many let-bindings. We finish
this section by establishing that the image of our direct style translation falls within λ.cS .

I Lemma 9 (Characterisation of kernel DS). For all M ∈ λ∗cS , M# ∈ λ.cS .

Proof. We prove the following propositions by mutual structural induction on the term:
`Rλ∗

cS
R =⇒ `Mλ.

cS
R#,

∆ `Mλ∗
cS
M =⇒ `Mλ.

cS
M ],

FSCD 2020
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`Vλ∗
cS
V =⇒ `Vλ.

cS
V \,

∆ `Kλ∗
cS
K =⇒ `Kλ.

cS
K[. J

5 Reflection: Computational λ-Calculus with Shift and Reset

Having introduced the three main calculi involved in the reflection and established a syntactic
inverse in one direction (in Theorem 8), we now turn to establishing a Galois connection
between λcS and λ∗cS . By Theorem 6, such a connection will decompose into an isomorphism
and a reflection: in the following we establish that λ.cS is such a factorisation.

5.1 Monotonicity
In order for our CPS and DS transformations to form a Galois connection, we must first
establish that they are monotone maps, i.e., that they preserve the order given by reflexive-
transitive closure of the reduction relation of, respectively, λcS and λ∗cS . Since for some
intermediate results we require zero or one reduction steps, we also introduce→? as a reflexive
closure of the relation →. We begin by establishing that any pure evaluation context J
of λcS can be matched by a continuation of λ∗cS .

I Lemma 10 (Existence of a continuation for each context). For all J,∆ and K∆, exists Ĵ∆
such that for all M , J [M ] : K∆ ≡M : Ĵ∆.

Proof. By structural induction on J . J

Next, we show that any reduction of λ∗cS continuations extends to the colon translations of
a common λcS term.

I Lemma 11 (Single-step reduction preservation by : in the second argument). For any λcS
term M and λ∗cS continuations J∆ and K∆ such that J∆ → K∆ we have M : J∆ →? M : K∆.

Proof. By structural induction on M . J

Finally, we can show that the CPS translation preserves single-step reductions, possibly
without making a transition in λ∗cS . Monotonicity of CPS follows as a simple corollary.

I Lemma 12 (Single-step reduction preservation by :, ∗ and †). The following implications
hold:

M → N =⇒ ∀K .M : K∆ →? N : K∆,
M → N =⇒ M∗ →? N∗,
V →W =⇒ V † →? W †

Proof. We prove the statements by mutual induction on the structure of the term, and invert
the reduction relation as necessary. Preservation in the second argument is used for some
congruences and (η.let). Base cases (let.1), (let.2), (assoc) follow by definition. The existence
of a continuation is used for (β.S).

We show the case for the (β.S) reduction as an interesting example. We have the following
reduction:

〈J [S W ]〉 → 〈W (λ y .〈J [y]〉)〉,

and need to prove that 〈J [S W ]〉 : K∆ →? 〈W (λ y .〈J [y]〉)〉 : K∆.
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We proceed as follows:

〈J [S W ]〉 : K∆

≡def. K∆ (J [S W ] : (λx . x))
≡existence of cont. K∆ (S W : J•)
≡def. K∆ (SW †J•)
→(β.S) K∆ (W † (λ y k . k (J• y)) (λx . x))
≡def. K∆ (W † (λ y k . k (y : J•)) (λx . x))
≡existence of cont. K∆ (W † (λ y k . k (J [y] : (λx . x))) (λx . x))
≡def. K∆ ((W (λ y .〈J [y]〉)) : (λx . x))
≡def. 〈W (λ y .〈J [y]〉)〉 : K∆

As another examples, consider the sample congruence case, where we have:

V →W

P V → P W
,

and need to show that P V : K∆ →? P W : K∆.
We proceed as follows:

V →W

=⇒ ind. hyp. V † →W †

=⇒ congruence λx . x V †K∆ → λx . xW †K∆

=⇒ second arg. preservation P : (λx . x V †K∆)→ P : (λx . xW †K∆)
≡def. (P V ) : K∆ → (P W ) : K∆ J

I Corollary 13 (Monotonicity of ∗). For all M0,M1 ∈ λcS , M0 �M1 implies M∗0 �M∗1 .

Monotonicity of the direct-style transformation is simpler to prove: we show that all
component parts preserve single-step reductions in λ.cS (which themselves are possibly
multi-step reduction sequences in λcS), and obtain monotonicity as a simple corollary.

I Lemma 14 (Single-step reduction preservation by #, ], \ and [). The following implications
hold:

R0 → R′1 =⇒ R#
0 → R#

1 ,
Mk → Nk =⇒ M ]

k → N ]
k,

M• → N• =⇒ 〈M ]
•〉 → 〈N ]

•〉,
V →W =⇒ V \ →W \,
J∆ → K∆ =⇒ ∀M .J[∆[M ]→ K[

∆[M ].

Proof. Mutual structural induction on the first term and then each case by inversion on
single-step reduction. J

I Corollary 15 (Monotonicity of #). For all R0, R1 ∈ λ∗cS , R0 � R1 implies R#
0 � R#

1 .

5.2 Reflection theorem
Recall from Section 2 that in order to establish that ∗ and # form a Galois connection, it
is enough to show that both compositions are extensive with respect to the appropriate

FSCD 2020



18:10 A Reflection on Continuation-Composing Style

reduction orderings, i.e., M � M∗# and R � R#∗, respectively. Since in Theorem 8 we
have shown that R ≡ R#∗, the latter ordering holds trivially. In this section we establish the
remaining property.

I Lemma 16 (Generalised associativity). The following reduction holds:
K[

∆[letx = L inN ]→? letx = L inK[
∆[N ].

Proof. By cases on K∆. J

I Lemma 17 (Left near inverse of : and †). The following reductions hold:
K[

∆[M ]� (M : K∆)],
V � V †\.

Proof. By mutual structural induction. The generalised associativity is used in several cases,
it conveniently wraps potential uses of (let.assoc) rule, as presented in the following example
cases for let-binders and reset.

K[
∆[letx = L inN ]

→?
gen. assoc. letx = L inK[

∆[N ]
�ind. hyp. letx = L in(N : K∆)]

≡def. (λx .(N : K∆))[[L]
�ind. hyp. ((letx = L inN) : K∆)]

K[
∆[〈M〉]

≡def. K[
∆[〈I[•[M ]〉]

�ind. hyp. K[
∆[〈(M : I•)]〉]

≡def. (K∆(M : I•))]

≡def. (〈M〉 : K∆)] J

I Theorem 18 (Left near inverse of ∗). For all M ∈ λcS , M �M∗#.

Proof. Follows from the left near inverse for the : transformation. J

I Corollary 19 (Reflection). Transformations ∗ and # form a reflection.

5.3 Reflection decomposition
By Theorem 6, any reflection decomposes into an order isomorphism and an inclusion. In
our case, this means that the reflection (∗,#) has a kernel that is isomorphic to λ∗cS . This is
our calculus λ.cS – although we still need to establish that it is in fact isomorphic to λ∗cS . To
this end, we first calculate the CPS translation as specialised to λ.cS (i.e., as a composition of
inclusion of λ.cS in λcS and ∗), which we dub ?; this transformation is presented in Figure 6.
We can then establish that ? and # compose to identity, which, together with one-to-one
matching of reductions established in Lemma 14 establishes the isomorphism.
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? : λ.cS → λ∗cS

M? = λ k .M◦k
(K[V ])◦∆ = K‡∆ V †

(K[V W ])◦∆ = V †W †K‡∆
(K[〈M〉])◦∆ = K‡∆M◦•
x† = x

(λx .M)† = λx .M?

S† = λw j .w (λ y k . k (j y)) (λx . x)
[ ]‡k = k

[ ]‡• = λx . x

(letx = [ ] inN)‡∆ = λx .N◦∆

Figure 6 Order isomorphism from λ.
cS to λ∗cS .

. : λcS → λ.cS

M. = M : [ ]
V : K = K[V †]
(P Q) : K = P : (letx = [ ] in(Q : (let y = [ ] inK[x y])))
(P W ) : K = P : (letx = [ ] inK[xW †])
(V Q) : K = Q : (let y = [ ] inK[V † y])
(V W ) : K = K[V †W †]
(letx = M inN) : K = M : (letx = [ ] in(N : K))
〈M〉 : K = K[〈M.〉]
x† = x

(λx .M)† = λx .M.

S† = S

Figure 7 Inclusion in λcS of λ.
cS .

I Lemma 20 (Left inverse of ?). For all M ∈ λ.cS we have M ≡M?#.

Proof. By mutual induction on the structure of terms, including analogous statements for
the auxiliary transformations. J

Having established that λ.cS is isomorphic to λ∗cS , we obtain an inclusion between λ.cS and
the main calculus, λcS . Thus, to conclude this section we present the one-pass transformation
. : λcS → λ.cS , which is computed from the composition of ∗ and #. This transformation,
presented in Figure 7, forms a final reflection for these calculi, together with identity: (., idλ.

cS
)

is a reflection between λcS and λ.cS .

6 Isomorphism: λv-Calculus with Shift and Reset

While the results we have obtained thus far provide some fundamental insight into the struc-
ture and reductions of computations in continuation composing style, the computational
calculus λcS we took as our source language differs somewhat from calculi with shift and
reset that are most commonly studied. Thus, in this section we study λS , the call-by-value
lambda calculus extended with delimited control operators, and apply the results we have
obtained thus far to this restricted setting.
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terms M,N ::= V |P
values V,W ::= x |λx .M | S
nonvalues P,Q ::= M N |〈M〉
pure contexts J,K ::= [ ] |KM |V K
(β.v) (λx .M)V → M [x := V ]
(η.v) λx . V x → V

(β.S) 〈J [S N ]〉 → 〈N (λ y .〈J [y]〉)〉
(β.R) 〈V 〉 → V

Figure 8 Subcalculus λS : λcS without let.

roots R ::= Vε |Mε

termsΣ M,N ::= (Σ=Σ1Σ2)KΣ1 [PΣ2 ]
valuesΣ V,W ::= (Σ=x)x | (Σ=ε) x | (Σ=ε) λx .R | (Σ=ε) S
nonvaluesΣ P,Q ::= (Σ=Σ1Σ2) VΣ1 WΣ2 | (Σ=ε) 〈R〉
pure contextsΣ J,K ::= (Σ=ε) [ ] | letx = [ ] inMΣx

(β.v) KΣ[(λx .R)Vε] → R[x := Vε] : KΣ KΣ maximal
(η.v) λx . Vε x → Vε
(β.S) 〈Jε[S Wε]〉 → 〈Wε (λ y .〈Jε; y〉)〉
(β.R) KΣ[〈Vε〉] → KΣ;Vε KΣ maximal
[ ];Vε = Vε
(letx = [ ] inMΣx);Vε = MΣx[x := Vε]
Vε : KΣ = KΣ;Vε
PΣ2 : KΣ1 = KΣ1 [PΣ2 ]
(letx = PΣ2 inMΣx) : KΣ1 = letx = PΣ2 in(MΣx : KΣ1)

Figure 9 Subcalculus λ.
S : the image of λS via ..

The syntax and semantics of λS are presented in Figure 8. It is clear that this calculus
embeds in λcS . The reduction relation is defined via contraction relation and is a strict
subrelation of the induced reduction relation (e.g., (λx . x)M �M in λcS , but not in λS).
The reduction relations for the CCS and kernel calculi, presented later on in this section, are
images of this restricted reduction relation. It is worth noting that it would also be sound to
use the induced relations instead: all transformations, including all-new /, are designed to
be monotone with respect to the original, wider reduction relations. However, we do not
pursue the task of characterising the induced relations in this work, and therefore stick to
the restricted relations.

We begin by considering the image of λS under the reflection defined in previous section:
this is the calculus λ.S , defined in Figure 9. We establish that it contains the image of λS
under ., while deferring the other inclusion till later.

I Lemma 21 (Restriction of .). For all M ∈ λS , M. ∈ λ.S .

With λ.cS defined, we need to define an inverse transformation, /. However, the reduction
relation on λcS – induced by its super-calculi – is cumbersome to work with. Thus, we
define this transformation for the entire calculus λcS , and establish its properties on its
particular sub-calculi post hoc. First, notice that the shape of λ.S is more constrained than
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/ : λcS → λcS

(M N)/ = M/N/

(letx = M inN)/ = N/[x := M/] (if N ≡ K[x] for some K and x 6∈ FV(K))
(letx = M inN)/ = letx = M/ inN/ (otherwise)
〈M〉/ = 〈M/〉
x/ = x

(λx .M)/ = λx .M/

S/ = S

Figure 10 Deletion of inessential let-expressions.

the general calculus λS , which is mostly due to lifting some subcomputations as pure, linear
let-expressions. Thus, the idea behind / is to inline these (and only these) let-expressions.
The transformation is presented in Figure 10.

Additionally, we lift / to pure contexts of λcS as an auxiliary construct in the following.
It is easy to check that this makes / distribute over plugging of terms into contexts:

K/[M/] ≡ (K[M ])/.

We can now show that the transformation is monotone with respect to the λcS reductions.

I Theorem 22 (Monotonicity of /). For all M,N ∈ λcS , M � N implies N/ � N/.

Proof. Induction on reflexive-transitive closure of contraction relation. To prove single-
step version, apply structural induction on the left-hand-side term and then inversion on
contraction relation. The only interesting case is the contraction of shift: given 〈J [S M ]〉 →
〈M(λ y .〈J [y]〉)〉, show 〈J [S M ]〉/ � 〈M(λ y .〈J [y]〉)〉/. Notice that we have 〈J [S M ]〉/ ≡
〈J/[S M/]〉 → 〈M/ (λ y .〈J/[y]〉)〉 ≡ 〈M (λ y .〈J [y]〉)〉/. Crucially, transformation preserves
purity of contexts. J

Now we can ensure that inlining the administrative let-expressions in λ.S produces terms
of λS , and thus that . restricted to λS is a section.

I Lemma 23 (Restriction of /). For all R ∈ λ.S , R/ ∈ λS .

I Theorem 24 (Left inverse of .). For all M ∈ λS , M ≡M./. Also, the following identities
hold: V †/ ≡ V , (M : K)/ ≡ K/[M ].

Proof. Mutual structural induction on M , V and M , respectively. J

To show that . is also a retraction, we need a tool that can apply a substitution of variables
for λS terms to a λ.S term.

I Definition 25 (Iterated flattened let-expressions). Let P,Q refer to the grammar of λS , all
other names refer to the grammar of λ.S .

ε . R = R

[x := P ] . xx = P .

[x := P , y := Q] . Mxy = [x := P ] . (Q : (let y = [ ] inMxy))

We can now establish that . is a retraction and, as a consequence, that λS and λ.S are
isomorphic.
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roots R ::= λ k . Tk
trunks∆ T ::= I∆ Vε |M∆,ε
terms∆,Σ M,N ::= (Σ=Σ1Σ2Σ3) VΣ2 WΣ3 K∆,Σ1 |K∆,Σ Tε
valuesΣ V,W ::= (Σ=x)x | (Σ=ε) x | (Σ=ε) λx .R | (Σ=ε) S

shift S ::= λw j .w (λ y k . k (j y)) (λx . x)
trivial continuations∆ I ::= (∆=k) k | (∆=•) λx . x

continuations∆,Σ J,K ::= (Σ=ε) I∆ |λx .M∆,Σx

(β.v) (λx k . Tk)VεK∆,Σ → Tk[x := Vε] : K∆,Σ
(η.v) λx k . Vε x k → Vε
(β.S) SWε J•,ε → Wε (λ y k . k (J•,ε; y)) (λx . x)
(β.R) K∆,Σ ((λx . x)V ) → K∆,Σ;V
I∆;Vε = I∆ Vε
(λx .M∆,Σx);Vε = M∆,Σx[x := Vε]
(k Vε) : K∆,Σ = K∆,Σ;Vε
Mk,ε : K∆,Σ = Mk,ε[k := K∆,Σ]

Figure 11 Subcalculus λ∗S : the CPS image of λS .

I Theorem 26 (Right inverse of .). The following identities hold:
R/. ≡ R,
(V /x [x := P ]). ≡ [x := P ] . Vx,
(M/

x [x := P ]). ≡ [x := P ] . Mx.

Proof. The proof proceeds by mutual structural induction on R, V and M , respectively. J

I Corollary 27 (Isomorphism of λS and λ.S). Transformations . : λS → λ.S and / : λ.S → λS
form an isomorphism.

Although we have shown that λS is isomorphic to its image under ., both these calculi
are in direct style. However, as any image of . (and thus of its latter component, #), λ.S is
a sub-calculus of λ.cS . Therefore, we investigate the final calculus: the image of λS under
the CPS transformation, λ∗S . The syntax of the calculus is presented in Figure 11.

Note that, as an image of a subcalculus of λcS under the CPS transformation, λ∗S is
clearly a sub-calculus of λ∗cS . Therefore, we are able to narrow down an isomorphism of λ∗cS
and λ.cS to the appropriate subcalculi arising from λS .

I Lemma 28 (Isomorphism of λ.S and λ∗S). Transformations ? : λ.S → λ∗S and # : λ∗S → λ.S
form an isomorphism.

Proof. Isomorphism of wider λ.cS and λ∗cS calculi can be narrowed. To complete the proof,
check that #[λ∗S ] ⊆ λ.S and ?[λ.S ] ⊆ λ∗S . J

By now we have established that λ.S is isomorphic to both λS and λ∗S . Therefore, by
composition of these isomorphisms, we obtain an isomorphism between λS and λ∗S . This
establishes a formal connection between a calculus for delimited control in the familiar style
and its counterpart in the continuation composing style. In order for the connection to be
made more explicit, we compute the composition of # and /, which forms the single-pass
direct-style transformation from λ∗S to λS . This transformation is dubbed � and presented
in Figure 12. We conclude with the following isomorphism theorem.
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� : λ∗S → λS

(λ k . k Vε)� = V \ε
(λ k .Mk,ε)� = Mk,ε ] ε

xx yyK∆,Σ ] σ · V ·W = K∆,Σ [ (σ, V W )
xxWεK∆,Σ ] σ · V = K∆,Σ [ (σ, V W \

ε )
Vε yyK∆,Σ ] σ ·W = K∆,Σ [ (σ, V \ε W )
VεWεK∆,Σ ] σ = K∆,Σ [ (σ, V \ε W \

ε )
K∆,Σ ((λx . x)Vε) ] σ = K∆,Σ [ (σ, 〈V \ε 〉)
K∆,ΣM•,ε ] σ = K [ (σ, 〈M•,ε ] ε〉)
x\ = x

(λx .R)\ = λx .R�

(λw j .w (λ y k . k (j y)) (λx . x))\ = S
k [ (ε,M) = M

(λx . x) [ (ε,M) = M

(λx .N∆,Σx) [ (σ,M) = N∆,Σx ] σ ·M

Figure 12 Back to Direct Style from λ∗S . We assume |σ| = |Σ| for the ] and [ translations. The \
translation only works on Vε – the other value cases are handled explicitly, hence variables annotated
with themselves.

λcS λ∗cS

λS λ.cS λ∗S

λ.S

∗

∗
#

/
∗

#

Figure 13 Summary of the relationships between the calculi. Hooked arrows denote sub-calculi,
∗ denotes the CPS transformation and # the DS transformation; both can be retracted along some
of the inclusions.

I Theorem 29 (Isomorphism of λS and λ∗S). Transformations ∗ : λS → λ∗S and � : λ∗S → λS
form an isomorphism.

7 Conclusion and Future Work

In this work we established a reflection of the image of the CPS translation for the compu-
tational lambda calculus λc extended with shift and reset. We also showed that when
restricted to an extension of the call-by-value lambda calculus λv, the reflection actually
forms an isomorphism. To the best of our knowledge, this is the first study that formally
establishes such a tight relationship of the direct-style and CCS reduction theories. In partic-
ular, the direct-style translation from CCS to λS that is an inverse of the CPS translation,
appears to be a first such translation for shift and reset in the literature. It can be seen
as a continuation of the works by Danvy [2], and by Danvy and Lawall [4]. The connections
between the various calculi we studied are summarised in Figure 13.
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Besides the theoretical aspects of the presented results, one can view them as a source of
sound code optimisations that can be performed both at the level of the source and the target
of the CPS translation, which is a standard translation step in compilers. Moreover, in the
light of Filinski’s seminal result [7], our theory makes it possible to reason about any monadic
effect, since the direct-style monad operations reflect and reify are expressible in terms
of shift and reset.

Several possible directions for future work are on the horizon. First of all, the shift
operator as considered in this work is a combinator. It seems that if, instead, shift was
introduced as a special form or as a binder, characterising the image of the CPS translation
would require more machinery. Especially in the latter case, we would need to pay special
attention to the continuation identifiers bound by shift. Introducing a construct throw for
applying a captured continuation could turn out useful in that scenario.

A delimited-control operator that has been lately gaining currency is shift0, a seemingly
mild variation on shift [3]. This operator is intimately related to the mechanism of algebraic
effects and deep handlers [9], a fairly recent and much celebrated approach to computational
effects. Establishing a reflection for shift0, based on the existing CPS translations [14, 13]
would be interesting in its own right, but it could also pave a way to a similar theory for
algebraic effects.

Finally, it is quite plausible that following the lines of the present work, one could obtain
a similar set of reflections and isomorphisms for a calculus with call/cc.
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