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Abstract
Uniqueness of normal forms w.r.t. conversion (UNC) of term rewriting systems (TRSs) guarantees
that there are no distinct convertible normal forms. It was recently shown that the UNC property of
TRSs is decidable for shallow TRSs (Radcliffe et al., 2010). The existing procedure mainly consists
of testing whether there exists a counterexample in a finite set of candidates; however, the procedure
suffers a bottleneck of having a sheer number of such candidates. In this paper, we propose a new
procedure which consists of checking a smaller number of such candidates and enumerating such
candidates more efficiently. Correctness of the proposed procedure is proved and its complexity
is analyzed. Furthermore, these two procedures have been implemented and it is experimentally
confirmed that the proposed procedure runs much faster than the existing procedure.
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1 Introduction

A term rewriting systems (TRS for short) is a well-known model of computation, which plays
many roles in equational deduction and formal verification. A key property of the computation
of TRSs that it is non-deterministic, which enables flexible computations in TRSs as well as
flexible transformations between TRSs and equational axioms. Due to the non-determinism
in the computations, however, it is not always guaranteed that results of computations are
unique. Thus, properties ensuring unique results of computations are important topics in
the study of TRSs. The most well-known such a property is confluence (CR), meaning
that two convertible terms are joinable. Less known such properties include uniqueness of
normal forms w.r.t. conversion (UNC) meaning that there are no distinct convertible normal
forms. The UNC property1 of TRSs has been studied in e.g. [3, 4, 11, 12, 13, 19, 10, 20].
Furthermore, interests in automation of proving these properties initiated to start Confluence
Competition [1, 2, 14] among software tools for proving such properties; there the category of
the UNC property has been started from the 2016 edition of the Competition.

1 The UNC property have been also studied under the name of UN or UN=. We use UNC, following the
convention employed in the Confluence Competition.
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11:2 A Fast Decision Procedure for UNC of Shallow TRSs

One of the important topics concerning these properties is (un)decidability. It is known
that the first-order theory of rewriting is decidable for left-linear right-ground TRSs [9].
Indeed, an implementation of the decision procedure of such theory have been reported in [18],
and has been applied for (dis)proving these properties of left-linear and right-ground TRSs.
An implementation of more efficient decision procedures of these properties for ground TRSs
(a subclass of left-linear and right-ground TRSs) have been also reported in [11]. Another
line of criteria for such (un)decidability is shallowness and flatness. Shallowness or flatness
restricts the depth of (variable) occurrences in the rewrite rules. It is known that confluence
is undecidable for flat (and hence shallow) TRSs [15]. In contrast, a polynomial algorithm
for deciding the UNC property of linear shallow TRSs have been shown in [20], and it was
recently shown that the UNC property of shallow TRSs is decidable [16, 17].

The existing procedure of [17] mainly consists of testing whether there exists a counter-
example in a finite set of candidates. However, the procedure suffers a bottleneck of having
a sheer number of such candidates even for small examples. In this paper, we propose a new
procedure which reduces the number of such candidates to be checked and also enumerates
such candidates more efficiently. The proposed procedure has the same structure and is
based on the same ideas as the one of [17]; the difference is in the ways of checking the two
main cases (whether or not there exists a counterexample to UNC in which the convertible
normal forms are convertible to a constant in ÊR, a complete equations set for TRS R [8]).

The idea of the proposed method is to construct normal forms which can be reached
by minimal constant expansion steps of ÊR. Based on this idea, we introduce constant
propagation algorithm that incrementally constructs normal forms of each constant. Using
this algorithm, we can determine whether there exists any minimal counterexample that is
equivalent to a constant efficiently. If there exists no such a counterexample, we can check
the UNC property efficiently by using the normal forms obtained by the algorithm.

We prove correctness of the proposed decision procedure and analyze its complexity.
Furthermore, we implement two UNC decision procedures those based on existing method
[17] and those based on proposed method, and experimentally confirm that proposed method
runs much faster than existing one.

The rest of the paper is organized as follows: In Section 2, we present basic notions
and notations used in this paper, and recall some preliminary backgrounds on our decision
procedure. In addition, we overview the existing procedure [17]. In Section 3, we present
our new decision procedure, together with its main ingredients – construction of two key
sets CPNF and CW – illustrating them through concrete examples. In Section 4, a notion of
constant propagation class is introduced; it is used to show the correctness of checking the
existence of a minimal witness that is equivalent to a constant by CPNF in Section 5. Section
6 is devoted to show the correctness of checking the existence of a minimal witness that is
not equivalent to a constant by CW . The correctness theorem and complexity analysis of
our decision procedure are given in Section 7. In Section 8, we report our implementation
and experiments. In Section 9, we conclude.

2 Preliminaries

In this section, we fix notations that will be used in this paper. Familiarity with term
rewriting systems are assumed (see e.g. [6]).

2.1 Term rewriting systems
We denote by V a countably infinite set of variables, and by F the finite set of (arity-
fixed) function symbols, which includes the set C of constants; variables are denoted by
x, y, z, . . ., function symbols by f, g, h, . . ., and constants by a, b, c, . . .. The set of terms
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is denoted by T(F ,V) and the set of non-constant non-variable terms by Tf (F ,V); they
may be abbreviated to T and Tf , respectively. We define height(t) = 0 for t ∈ C ∪ V, and
height(f(t1, . . . , tn)) = 1 + max{height(t1), . . . ,height(tn)} (n ≥ 1). The size of a term t,
denoted by |t|, is 1 if t ∈ V , and is 1 +

∑n
i=1 |ti| if t = f(t1, . . . , tn). The set of variables in a

term t is denoted by V(t). The root symbol of a term t is denoted by root(t).
A substitution σ is a mapping σ : V → T(F ,V) such that the set dom(σ) = {x | σ(x) 6= x}

is finite. When dom(σ) ⊆ {x1, . . . , xn}, we also write it as {x1 := σ(x1), . . . , xn := σ(xn)}.
A substitution is identified with its homomorphic extension; we write tσ for σ(t). We write
s 6 t if σ(s) = t for some substitution σ. A renaming substitution is a substitution that is a
permutation on variables (i.e. a bijective mapping from V to V); renaming substitutions are
denoted by σα, ρα, . . .. The symbol N (N∗) stands for the set of (resp. the finite sequences
of) natural numbers. We denote the set of (variable) positions in a term t by Pos(t) (resp.
PosV(t)). The root position is denoted by ε and the subterm at a position p by t|p. A subterm
t|p is a direct (variable) subterm of t if p ∈ N (resp. t|p ∈ V). A hole is a special constant,
denoted by �. A context is a term containing exactly one hole. For a context C and a term
t, we denote by C[t] the term obtained by replacing the hole in C by t. A context C is also
written as C[ ]. Especially, we write C[ ]p to specify the position of the hole in C[ ]. We write
t[ ]p to denote the context obtained by substituting the hole at the position p in a term t.

A rewrite rule l→ r satisfies l /∈ V; we don’t assume, however, the other usual variable
restriction V(r) ⊆ V(l) in this paper. A term rewriting system (TRS) is given by 〈F ,R〉
where R is a finite set of rewrite rules over F . When 〈F ,R〉 is abbreviated to R, some
appropriate F is fixed. Let R be a TRS. If there exist l → r ∈ R, a substitution σ and a
context C[ ]p such that s = C[lσ]p t = C[rσ]p, we have a rewrite step s→R t. The subscript
R may be abbreviated when it is clear from the context. When we need to make (some
of) p, l → r, σ explicit, we write s→p,l→r,σ t, etc. A rewrite step s→p t is root if p = ε. A
non-root rewrite step is denoted by s →>ε t. A term s is a normal form if s → t for no t;
the set of normal forms is denoted by NF . The symmetric closure of → is denoted by ↔, its
transitive closure by +→, its reflexive transitive closure by ∗→. its equivalence closure by ∗↔. A
successive composition of rewrite steps s1 → · · · → sn is called a rewrite sequence, which may
be abbreviated as s1

∗→ sn. These notations are reused for other similar relations as well and
could be combined. Terms s and t are convertible if s ∗←→ t. A TRS R satisfies uniqueness of
normal forms w.r.t. conversion (UNC) if there are no convertible distinct normal forms, i.e.
s
∗←→ t with s, t ∈ NF implies s = t. A finite set of equations is called an equational system

(ES for short). We identify equations l ≈ r and r ≈ l. A rewrite step s↔E t by an equation
l ≈ r ∈ E is defined in the same way as for a rewrite rule. For a TRS R, the associated ES
{l ≈ r | l→ r ∈ R} is denoted by ER.

2.2 UNC of shallow TRSs
A term t is shallow if PosV(t) ⊆ {ε} ∪ N, i.e. t ∈ C ∪ V or t contains a variable only as a
direct subterm. For example, terms x, a, g(y), f(x, g(a)) are shallow but f(x, g(y)) is not. A
TRS R is shallow if l, r are shallow for all l→ r ∈ R. In [17], a decision procedure for the
UNC property of shallow TRSs is given. We now explain some crucial characterizations of
UNC, some notions and notations in [17] that will be also used in our decision procedure.

The first step of our decision procedure, as well as that of [17], is to translate shallow
TRSs to flat TRSs. A term t is flat if height(t) ≤ 1; a TRS R is flat if l, r are flat for all
l→ r ∈ R. Clearly, flat TRSs are shallow. On the other hand, a term f(x, g(a)) is shallow
but not flat. It is known that one can transform shallow TRSs into flat TRSs preserving
(non-)UNC; we refer details to [20].

FSCD 2020
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I Example 1. Let Rshallow = {f(x, y)→ g(h(a))}. As height(g(h(a))) = 2, the TRS Rshallow
is not flat. Now, by the UNC-preserving flatting translation [20], we obtain a flat TRS
R = {b→ h(a), f(x, y)→ g(b)} from Rshallow. Here, b is a newly introduced constant.

Our procedure, as well as the one of [17], employs this transformation. Henceforth, we
focus on flat TRSs.

The pattern of direct subterms in a term t = f(t1, . . . , tn) ∈ Tf , denoted by Patt(t), is
the set {{i, j} | 1 ≤ i, j ≤ n, i 6= j, t|i = t|j}; its subset {{i, j} ∈ Patt(t) | t|i ∈ V} is denoted
by PattV(t). The following property of root rewrite steps of flat TRSs will be heavily used:

I Lemma 2 ([17]). Let R be a flat TRS and t a term. Then, t→ε,l→r
R t′ for some t′ iff (1)

root(l) = root(t), (2) l|i = t|i for all i ∈ N with li ∈ C, and (3) PattV(l) ⊆ Patt(t).

An ES is flat if so are all equations in it. An important ingredient of the decision procedure
is the completion of flat ESs [8]: Given a flat ES E, one can construct a closure Ê of E with
respect to the following rules:

g ≈ d, l ≈ r
dσ ≈ rσ

if l, g /∈ V, σ = mgu(l, g) (1)

l ≈ d, y ≈ r
d ≈ rσ

if y ∈ V, l ∈ C ∪ V, σ = {y := l} (2)

C[a] ≈ d, a ≈ b
C[b] ≈ d if a, b ∈ C (3)

Here, mgu stands for a most general unifier. Then, Ê is a flat ES that is equivalent to E (i.e.
∗←→E = ∗←→

Ê
) and is ground complete w.r.t. the ordered rewriting [7]. We won’t go into the

detail of the latter property, but remark that only we concern in this paper is that, from the
latter property, for any given terms s, t, it is decidable whether s ∗←→

Ê
t holds. Our procedure,

as well as the one of [17], heavily uses the completion ÊR of ER (= {l ≈ r | l→ r ∈ R}).

I Example 3. Let R = {a → b, a → f(x, c, d), c → g(d), h(a) → d, e → g(e)}. Then, for
example, one obtains ÊR = {a ≈ b, a ≈ f(x, c, d), b ≈ f(x, c, d), f(x, c, d) ≈ f(y, c, d), c ≈
g(d), h(a) ≈ d, h(b) ≈ d, h(a) ≈ h(b), e ≈ g(e)}. It is decidable whether s ∗←→

ÊR
t (equivalently,

s
∗←→R t ) for any given terms s, t.

We have one further point to explain about the use of ÊR in the decision procedures. A
TRS R (or an ES E) is inconsistent if x ∗←→R y (resp. x ∗←→E y) for some distinct variables
x, y; it is consistent if it is not inconsistent. Clearly, UNC of a TRS R implies consistency
of R. It is also easy to see that a TRS (or an ES) is inconsistent iff there exists a term t

convertible to x ∈ V \ V(t). For a flat ES E, this characterization can be strengthened as
follows [8]: E is inconsistent iff there exists x ≈ t ∈ Ê such that x /∈ V(t). Thus, one can
check whether R is consistent using ÊR.

In the beginning of the decision procedures, one computes a completion ÊR of ER. Then,
one checks if there exists an equation x ≈ t ∈ ÊR such that x /∈ V(t). If this is the case, one
knows that ÊR is inconsistent, and hence so is R. As inconsistency implies non-UNC, one
can conclude R is not UNC. Thus, the rest of the procedure only deals with the case R is
consistent. For this reason, we focus on the case that R is consistent in Sections 4–6.

The following properties are easily obtained using the definition of Ê [8]. These properties
will be used in subsequent sections without mentioning.
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I Proposition 4 ([8]). Let E be a consistent flat ES, and Ê its completion. (1) If s ∗←→E t,
then there exists a rewrite sequence s ∗←→

Ê
t that has at most one root rewrite step. (2) For

any c, c′ ∈ C with c 6= c′, c ∗←→
Ê
c′ iff c ≈ c′ ∈ Ê. (3) Suppose c ∗←→

Ê
c′. Then, c ≈ r ∈ Ê iff

c′ ≈ r ∈ Ê.

As we focus on the UNC property of R, a pair 〈s, t〉 of distinct normal forms s, t such
that s ∗←→R t is called a witness (of non-UNC). We call a witness 〈s, t〉 is equivalent to a
constant c if s ∗←→ c and t ∗←→ c. If |s|+ |t| is minimal among all witnesses, 〈s, t〉 is a minimal
witness. The set of all subterms of any minimal witness is denoted by SubMinWitR. Clearly,
R has UNC property iff there exists no (minimal) witness. It is not at all easy to see what
actually SubMinWitR is, but it satisfies the following useful claims that will be used later.

I Proposition 5 ([17]). Let f(t1, . . . , tn) ∈ SubMinWitR. If ti
∗←→ tj then ti = tj.

I Lemma 6. Let f(t1, . . . , tn) ∈ SubMinWitR. If ti
∗←→ c ∈ C ∩NF then ti = c.

2.3 Existing Decision Procedure
Here, we briefly describe the decision procedure of [17]. It is based on these two lemmas:

I Lemma 7 ([17]). Let R be a TRS. One can add a finite number of constants to R to get
the TRS R′ which meets the following condition: a witness exists in R iff a ground witness
exists in R′.

I Lemma 8 ([17]). Let R be a flat TRS. If there exists a witness, there exists a witness
〈s, t〉 such that height(s),height(t) ≤ max(1, |C|).

Think of a given shallow TRS Rshallow. As we explained above, one can get a flat TRS
R from Rshallow preserving (non-)UNC, and its completion ÊR. From Lemmas 7 and 8, we
simply need to check there exists a ground witness 〈s, t〉 s.t. height(s),height(t) ≤ max(1, |C|),
adding a finite number of constants to R. Since there are only finitely many ground terms
that satisfy height ≤ max(1, |C|), one can construct all of them. Thus, it remains to check
there exists any pair of such terms that is a witness – this can be decided using R (whether
its components are normal forms) and ÊR (whether it consists of convertible terms).

3 New Decision Procedure

In this section, we describe our new decision procedure for the UNC property of shallow
TRSs and motivate later sections where we prove its correctness.

3.1 The Whole Procedure
Below, the rewrite step ↔ of ÊR will be abbreviated as ↔ and NF denotes the set of normal
forms w.r.t. →R.

The whole decision procedure is given in Figure 1. Apart from the same part as the
existing procedure (Step 1) and simple checking, the procedure contains two main ingredients
– construction of the set CPNF and that of the set CW . We are going to explain the details
of these constructions shortly. Actually, these two steps are closely related to the correctness
proofs of the previous algorithm [17]. In [17], the authors divide the UNC problem into two
main cases according to whether there exists a witness equivalent to a constant. The Step
3 checks whether there exists such a witness and the Step 4 checks whether there exists a
witness that is not equivalent to any constant.

FSCD 2020
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Input: a shallow TRS
Output: UNC or Non-UNC

Step 1 Transform the input shallow TRS into a flat TRSR preserving the UNC property,
and calculate its completion ÊR. If R is inconsistent (this can be detected when
calculating ÊR), then return Non-UNC.

Step 2 Calculate CPNF by the Constant Propagation Algorithm.
Step 3 If there exists (ĉ, r̂, t, h) ∈ CPNF such that t has a direct variable subterm, then

return Non-UNC. If there exist (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t,
then return Non-UNC.

Step 4 Calculate CW . If there exist 〈s, t〉 ∈ CW such that s 6= t and s, t ∈ NF , then
return Non-UNC.

Step 5 Return UNC.

Figure 1 Proposed decision procedure for UNC of shallow TRSs.

3.2 Constant Propagation Algorithm
Here, we describe how to construct CPNF by Constant Propagation Algorithm, which
determine whether there exists any minimal counterexample that is equivalent to a constant.

We first need a couple of notion and notation.

I Definition 9 (equivalence relation ' on flat terms). We define an equivalence relation '
on flat terms like this: s ' t iff either (1) s, t ∈ V and s = t, (2) s, t ∈ C and s

∗←→ t,
or (3) s = f(s1, . . . , sn), t = f(t1, . . . , tn) (n ≥ 1) such that (a) si ∈ C iff ti ∈ C for all
1 ≤ i ≤ n, (b) si

∗←→ ti for all si ∈ C, and (c) there exists a renaming substitution σα such
that σα(si) = ti for all si ∈ V.

It is easy to see that ' is indeed an equivalence relation. The '-equivalence class of a
flat term t is denoted by [[t]].

I Definition 10. We fix a representative element of [[c]] (c ∈ C) and denote it by ĉ. We denote
the set {ĉ | c ∈ C} by Ĉ. For an arbitrary flat term t, we define x̂ = x and t̂ = f(t̂1, . . . , t̂n)
for t = f(t1, . . . , tn), in addition.

The idea of our algorithms comes from the observation that, for any term t which
is equivalent to a constant c, we have t ∗→ c by the ordered rewriting of ÊR, and c (or
maybe another constant that is equivalent to c) is a ÊR-normal form of t. Our algorithm
incrementally searches normal forms of each constant, tracing the inverse direction of the
ÊR-rewriting sequences.

I Definition 11 (Constant Propagation (CP) Algorithm). Suppose a flat TRS R and its
completion ÊR are given. The algorithm incrementally computes a set of quadruples CPNF
by the pseudo-code presented in Figure 2.

Actually, the fourth element of quadruples is unused to compute the result; the sole
purpose of adding auxiliary parameter H is to use it in our proof below.

I Example 12. Let R and ÊR be given as in Example 3. The constant propagation algorithm
runs as follows:
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Input: a flat TRS R and its completion ÊR
Output: CPNF

Step 1: H := 0; Ĉ := {ĉ1, . . . , ĉm}
For each i = 1, . . . ,m : Yĉi

:= {r̂ | r ∈ Tf , ĉi ≈ r ∈ ÊR}
Step 2: CPNF := {(ĉ, ĉ, c, 0) | c ∈ C ∩NF}
Step 3: Repeat the following (main loop):

H := H + 1; Xtmp := ∅
Calculate a function χH : Ĉ ∪ V → P(T) as follows :

χH(ĉ) =
{
{u | (ĉ,_, u,_) ∈ CPNF} if ∃(ĉ,_, u,_) ∈ CPNF
{ĉ} otherwise

χH(x) = {x}

For each i = 1, . . . ,m, calculate as follows :
For each r̂ = f(û1, . . . , ûn) ∈ Yĉi , calculate as follows :

Xi,r̂ :=
{

(ĉi, r̂, f(u′1, . . . , u′n), H)
∣∣∣∣ u′j ∈ χH(ûj) (1 ≤ j ≤ n)
f(u′1, . . . , u′n) ∈ NF

}
Yĉi :=

{
Yĉi
\{r̂} if Xi,r̂ 6= ∅

Yĉi
otherwise

Xtmp := Xi,r̂ ∪Xtmp
CPNF := Xtmp ∪ CPNF
If Xtmp = ∅, exit the main loop

Figure 2 Constant Propagation Algorithm.

1. Choose a representative element among convertible constants. As we have a ∗←→ b, let
us pick up a as their representative, i.e. â = b̂ = a (picking b leads no problem). Since
there are no other distinct convertible constants, we have Ĉ = {a, c, d, e}. Thus, we set
Ya = {f(x, c, d)}, Yc = {g(d)}, Yd = {h(a)} and Ye = {g(e)} in Step 1.

2. In Step 2, as C ∩NF = {b, d}, we initialize CPNF := {(a, a, b, 0), (d, d, d, 0)}. Intuitively,
this expresses that a term b (d) is one of the convertible normal forms of the constant a
(resp. d).

3. Now we run into the first loop of the Step 3. We have χ1(a) = {b} and χ1(x) = {x}
for x 6= a. Now, we check whether this replacement mapping χ1 can make elements
of Ya ∪ Yc ∪ Yd ∪ Ye a normal form. Then, we find that g(d) ∈ NF is obtained from
g(d) ∈ Yc and h(b) ∈ NF is obtained from h(a) ∈ Yd. Thus, we updates the sets as:
CPNF := CPNF ∪ {(c, g(d), g(d), 1), (d, h(a), h(b), 1)}, Yc := ∅ and Yd := ∅. Intuitively, in
this step, we found a normal form g(d) (h(b)) equivalent to a constant c (resp. d).

4. Now we run into the second loop of the Step 3. We have χ2(a) = {b}, χ2(c) = {g(d)},
χ2(d) = {d, h(b)} and χ2(x) = {x} for x /∈ {a, c, d}. Again, we check whether this replace
mapping can make remaining elements of Ya ∪ Ye a normal form. Then, we find that
f(x, g(d), d), f(x, g(d), h(b)) ∈ NF are obtained from f(x, c, d) ∈ Ya. Thus, we update the
sets as: CPNF := CPNF ∪ {(a, f(x, c, d), f(x, g(d), d), 2), (a, f(x, c, d), f(x, g(d), h(b)), 2)}
and Ya := ∅.

5. The third round of the loop of the Step 3 finds no new normal forms, and Xtmp = ∅.

FSCD 2020
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Thus, we exit the loop.
Finally, we have CPNF ={

(a, a, b, 0), (a, f(x, c, d), f(x, g(d), d), 2), (a, f(x, c, d), f(x, g(d), h(b)), 2),
(c, g(d), g(d), 1), (d, d, d, 0), (d, h(a), h(b), 1)

}
.

Observe that, for any quadruples (c, r, u, h) ∈ CPNF , we have c ∗←→ u and u ∈ NF . Thus,
from the final CPNF , one easily see some witnesses equivalent to a constant: e.g. 〈d, h(b)〉
(equivalent to d), 〈b, f(x, g(d), d)〉 and 〈f(x, g(d), d), f(x, g(d), h(b))〉 (equivalent to a). One
also obtains a witness 〈f(x, g(d), d), f(y, g(d), d) (equivalent to a), since renaming x to y leads
f(x, g(d), d) ∗←→ a ∗←→ f(y, g(d), d).

To characterize the situation where we couldn’t find any witness from CPNF , we introduce
the following property.

I Definition 13 (consistency of CPNF). CPNF is consistent if (i) there exists no (ĉ, r̂, t, h) ∈
CPNF such that t has a direct variable subterm, and (ii) no (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF
such that s 6= t. It is inconsistent if it is not consistent.

Before ending this subsection, we introduce one notation that will be used below.

I Definition 14. We define TCP = {t | (ĉ, r̂, t, h) ∈ CPNF}.

3.3 Construction of CW

CPNF finds only constant-equivalent witnesses, so we need to know yet whether there exist
any minimal witnesses that are not equivalent to a constant.

From Step 3, we may suppose that CPNF is consistent. Assume a term t is equivalent to
a constant c. We denote a term t̃ such that t̃ ∈ TCP and c ∗←→ t̃. If such a term exists, it
must be unique from the assumption.

I Definition 15. (1) Define δ′′(t) for t ∈ C ∪ V as follows: δ′′(t) = t̃ if t ∈ C, and δ′′(t) = t

otherwise. (2) Define ψ′′(t) for non-constant flat terms t as follows: ψ′′(t) = t if t ∈ V, and
ψ′′(t) = f(δ′′(t1), . . . , δ′′(tn)) if t = f(t1, . . . , tn) (n ≥ 1). (3) Finally, define the set CW:

CW = {〈ψ′′(l), ψ′′(r)〉 | l ≈ r ∈ ÊR, l, r /∈ C}.

I Example 16. Let us consider R of Example 1. Through the Step 1 of the Figure 1, we
obtain a completion of R as ÊR = {b ≈ h(a), f(x, y) ≈ g(b), f(x, y) ≈ f(x1, y1)}. By the Step
2, we obtain CPNF := {(a, a, a, 0), (b, h(a), h(a), 1)}. The conditions of Step 3 fails, and thus
we run into Step 4. Note here that from CPNF , we have ã = a and b̃ = h(a). Thus, we obtain
CW = {〈f(x, y), g(h(a))〉, 〈f(x, y), f(x1, y1)〉}. Since none of f(x, y), g(h(a)), f(x, y), f(x1, y1) is
a normal form of R, we conclude that R (and hence Rshallow) is UNC.

In the subsequent sections, we prove the correctness of our decision procedure, and report
its complexity analysis and the result of experiments.

4 Constant Propagation Class

In the previous section, we introduced CPNF that finds witnesses that are equivalent to
constants. In this section, we introduce a notion of constant propagation class, a key notion
that acts as a mediator between CPNF and constant-equivalent witnesses.
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In subsequent sections, we fix a TRS R that is consistent and flat, and its completion
ÊR. For convenience, we also use R and ÊR as if they are closed under renaming, i.e. we
assume R (ÊR) includes all the rules (resp. equations) whose variables are renamed, and use
ÊR as if it contains trivial equations c ≈ c (c ∈ C).

I Definition 17 (constant expansion). A term t is obtained from s by a constant expansion,
written as s −⇀

ÊR
t, if there exists c ∈ C with c ≈ r ∈ ÊR and a position p such that s|p = c,

t = s[r]p and V(r) ∩ V(s) = ∅.

Henceforth, we will omit the subscript ÊR of s −⇀
ÊR

t. Clearly, t −⇀ t′ implies t↔ t′.

I Example 18. Let R and ÊR be given as in Example 3 (enhanced by trivial equations and
renamed rules, as explained). Then we have a −⇀ a, a −⇀ b, a −⇀ f(x, c, d) −⇀ f(x, c, h(a)) −⇀
f(x, c, h(f(y, c, d))), and a −⇀ f(x, c, d) −⇀ f(x, c, h(b)) −⇀ f(x, c, h(a)) −⇀ f(x, g(d), h(a)).

For any r ∈ Tf , we have r ∗−⇀ t iff r ∗−⇀>ε t, and hence r ∗−⇀ t implies root(r) = root(t).
This motivates us to introduce a term class parameterized by c ∈ C and r ∈ Tf as follows.

I Definition 19 (constant propagation class). Let c ∈ C, r ∈ T . Define the constant propaga-
tion class (CPC) of the pair 〈c, r〉 as follows:

CP(c, r) = {t | r ∈ Tf , c ≈ r ∈ ÊR, ∃t′ s.t. c −⇀ r
∗−⇀ t′ 6 t}

Remark that t ∈ CP(c, r) implies that t ∈ Tf and root(t) = root(r).

I Example 20. Let ÊR be as in Example 18. Then, f(b, c, h(f(x, c, d))) ∈ CP(a, f(x, c, d)) as
a −⇀ f(x, c, d) ∗−⇀ f(x, c, h(f(y, c, d))) 6 f(b, c, h(f(x, c, d))).

Next lemma shows that the class CP(c, r) is invariant under renaming.

I Lemma 21. Let c ∈ C, r ∈ Tf , and assume c ≈ r ∈ ÊR. Then, CP(c, r) = {t |
∃t′, σα s.t. c −⇀ σα(r) ∗−⇀ t′ 6 t}, and hence CP(c, r) = CP(c, σα(r)).

The invariance of the CP(c, r) can be extended further than renaming. Firstly, CP(c, r)
and [[c]] share the following property.

I Lemma 22. Let t ∈ CP(c, r) ∪ [[c]]. Then, (1) c ∗−⇀ t′ 6 t for some t′, and (2) c ∗←→ t.

We are now going to show that any CPC is preserved under ' (Theorem 25).

I Lemma 23. Let c, c′ ∈ C and r, r′ ∈ Tf . (1) c ' c′ iff c ≈ c′ ∈ ÊR. (2) If r ' r′ then
c ≈ r ∈ ÊR iff c ≈ r′ ∈ ÊR.

I Lemma 24. Let c, c′ ∈ C and r, r′ ∈ Tf . (1) If c ' c′ then c −⇀ c′. (2) If c ' c′, then
c −⇀ r iff c′ −⇀ r. (3) If c ' c′ and r ' r′, then c −⇀ r iff c′ −⇀ r′. (4) If r ' r′ then there
exists σα such that σα(r′) ∗−⇀ r.

I Theorem 25 (preservation of CPCs by '). CPCs are preserved by ', i.e. if c ' c′ and
r ' r′ then CP(c, r) = CP(c′, r′). In particular, CP(c, r) = CP(ĉ, r̂).

Proof. Use above four lemmas and Proposition 4. See appendix for the detail. J

Before ending the section, we relate SubMinWitR and CPCs.

I Theorem 26. Let c ∈ C and t ∈ SubMinWitR such that c ∗←→ t. Then, there exists a term
r such that t ∈ CP(c, r) ∪ [[c]]. Hence, t ∈ CP(ĉ, r̂) ∪ [[ĉ]].
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Proof. The proof proceeds by induction on h = height(t). Let c ∈ C and t ∈ SubMinWitR,
and assume c ∗←→ t.
1. (B.S.) Suppose h = 0. Then t ∈ C ∪ V holds. It follows from the consistency of R that

t ∈ C. Since c ∗←→ t, we have c ' t. Thus t ∈ [[c]].
2. (I.S.) By h > 0, we have t /∈ [[c]]. From c

∗←→ t and Proposition 4, it follows that we have

c↔ε f(s′1, . . . , s′n) ∗←→>ε f(t1, . . . , tn) = t.

Let c↔ f(s1, . . . , sn) ∈ ÊR be the rule used at the rewrite step c↔ε f(s′1, . . . , s′n). Then,
there exists a substitution σ such that f(σ(s1), . . . , σ(sn)) = f(s′1, . . . , s′n) and σ(si)

∗←→ ti
(1 ≤ i ≤ n). Now, define ui and σi such that si

∗−⇀ ui, σi(ui) = ti (i = 1, . . . , n) so that⋃
i σi is well-defined, according to the following case distinction:

a. Case si = ci ∈ C. Then, σ(si) = ci
∗←→ ti holds. From consistency of R, we know

ti /∈ V. By ci
∗←→ ti and ti ∈ SubMinWitR, it follows from induction hypothesis that

there exists ri such that ti ∈ CP(ci, ri) ∪ [[ci]].
i. Case ti ∈ [[ci]]. Put ui = ti and σi = {} (the identity substitution). Then
si = ci ' ti = ui, and hence we have si −⇀ ui by Lemma 24. Clearly, σi(ui) = ti
and V(ui) = ∅.

ii. Case ti ∈ CP(ci, ri). Then, ri ∈ Tf holds. From Lemma 21, ci −⇀ σαi
(ri)

∗−⇀ t′i 6 ti
for some t′i and σαi

such that the variables in σαi
(ri) or t′i are fresh. Put ui = t′i

and take σi as a substitution such that σi(t′i) = ti. Clearly, we have si = ci
∗−⇀ ui

and σi(ui) = ti. Furthermore, variables in dom(σi) and V(ui) are fresh.
b. Case ri ∈ V. Put ui = ri and σi = {ui := ti}. Clearly, we have ri

∗−⇀ ui and
σi(ui) = ti.

Now, we show the substitution σ =
⋃

1≤i≤n σi is well-defined. From the construction, it
is clear that it suffices to show tp = tq whenever sp = sq ∈ V (1 ≤ p, q ≤ n). If sp = sq,
then tp

∗←→ σ(sp) = σ(sq)
∗←→ tq holds. Then, since t ∈ SubMinWitR, we have tp = tq by

Proposition 5. Hence, σ is well-defined. Now we have c −⇀ f(s1, . . . , sn) ∗−⇀ f(u1, . . . , un)
and σ(f(u1, . . . , un)) = t. Thus, t ∈ CP(c, f(s1, . . . , sn)).

Thus, there exists r such that t ∈ CP(c, r) ∪ [[c]]. Also, t ∈ CP(ĉ, r̂) ∪ [[ĉ]] by Theorem 25. J

5 Correctness of Constant Propagation Algorithm

In this section, we describe the correctness of Constant Propagation Algorithm given in
Figure 2, which checks whether there exists a minimal witness that is equivalent to a constant.

Because of the main loop, termination of the algorithm needs to be clarified.

I Lemma 27. CP algorithm terminates.

The following properties of elements in CPNF are immediate from the definition.

I Lemma 28. Let t ∈ C ∩NF. Then, t ∈ [[ĉ]] iff (ĉ, ĉ, t, 0) ∈ CPNF .

I Lemma 29. Let (ĉ, r̂, t, h) ∈ CPNF . Then, (1) height(t) = h, (2) root(r̂) = root(t), (3)
r̂|i ∈ V ⇒ r̂|i = t|i for each i ∈ N, (4) t ∈ NF, and (5) t /∈ V.

Further properties are established as well.

I Lemma 30. Let (ĉ, r̂, t, h) ∈ CPNF . Then, (1) ĉ −⇀ r̂
∗−⇀ t, (2) if h > 0 then t ∈ CP(ĉ, r̂),

and (3) ĉ ∗←→ t.
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From the previous lemma and Lemma 28, (ĉ, r̂, t, h) ∈ CPNF implies t ∈ CP(ĉ, r̂) ∪ [[ĉ]].
We now consider the reverse direction. In fact, we have already shown the case t ∈ [[ĉ]] in
Lemma 28. For the case t ∈ CP(ĉ, r̂), we need a further assumption that t ∈ SubMinWitR.

I Lemma 31. Let t ∈ SubMinWitR ∩ CP(ĉ, r̂). Then, (ĉ, r̂, t′, h′) ∈ CPNF for some t′ and
h′ ≤ height(t).

A final property of elements in CPNF we need is a kind of injectivity.

I Lemma 32. Suppose (ĉs, r̂s, s, hs), (ĉt, r̂t, t, ht) ∈ CPNF . Then s = t implies ĉs = ĉt and
r̂s = r̂t.

Now we arrive at the main result of this section – CPNF gives a necessary and sufficient
criteria to find a minimal witness equivalent to a constant.

I Theorem 33. There exists a witness that is equivalent to a constant iff CPNF is incon-
sistent.

Proof. (⇒) Let 〈u, v〉 be a minimal witness that is equivalent to a constant c. We have
c
∗←→ u, c ∗←→ v, u 6= v and u, v ∈ NF . From Theorem 26, there exists ru, rv such that

u ∈ CP(ĉ, r̂u) ∪ [[ĉ]] and v ∈ CP(ĉ, r̂v) ∪ [[ĉ]]. We distinguish four cases:
1. Case u ∈ [[ĉ]] and v ∈ [[ĉ]]. From Lemma 28, we have (ĉ, ĉ, u, 0), (ĉ, ĉ, v, 0) ∈ CPNF . Since

u 6= v, the claim holds.
2. Case u ∈ CP(ĉ, r̂u) and v ∈ [[ĉ]]. From Lemma 31, there exists u′ ∈ CP(ĉ, r̂u) such that

(ĉ, r̂u, u′, h′u) ∈ CPNF . From Lemma 28, we have (ĉ, ĉ, v, 0) ∈ CPNF . Since r̂u /∈ C, ĉ 6= r̂u
holds. Hence Lemma 32 leads u′ 6= v.

3. Case u ∈ [[ĉ]] and v ∈ CP(ĉ, r̂v). Similar to the previous case.
4. Case u ∈ CP(ĉ, r̂u) and v ∈ CP(ĉ, r̂v). If (ĉ, r̂u) 6= (ĉ, r̂v), then u 6= v by Lemma 32. So,

suppose otherwise, i.e. (ĉ, r̂u) = (ĉ, r̂v). By r̂u = r̂v, root(u) = root(r̂u) = root(r̂v) =
root(v). Thus, one can let u = f(tu,1, . . . , tu,n), v = f(tv,1, . . . , tv,n) and r̂u = r̂v =
f(s1, . . . , sn). Then, there exist u′, v′ ∈ Tf , σu, σv ∈ Σ such that

c −⇀ f(s1, . . . , sn) ∗−⇀ f(u1, . . . , un) = u′, σu(u′) = u,

c −⇀ f(s1, . . . , sn) ∗−⇀ f(v1, . . . , vn) = v′, σv(v′) = v

where si
∗−⇀ ui, si

∗−⇀ vi for all 1 ≤ i ≤ n. Since u 6= v, σu(ui) 6= σv(vi) for some 1 ≤ i ≤ n.
Assume σu(ui) 6= σv(vi). Suppose si ∈ C. Then, we have σu(ui)

∗←→ si
∗←→ σv(vi). Since

σu(ui), σv(vi) ∈ NF , 〈σu(ui), σv(vi)〉 is a witness equivalent to the constant si. This
violates the minimality of 〈u, v〉. Hence si ∈ V. Now, as u ∈ SubMinWitR ∩ CP(ĉ, r̂u),
there exists u′ ∈ CP(ĉ, r̂u) ∪ [[ĉ]] such that (ĉ, r̂u, u′, h′u) ∈ CPNF by Lemma 31. Because
of si ∈ V , we have si = r̂u|i = u′|i by Lemma 29. Hence u′ has a direct variable subterm.

(⇐) Suppose (i) of the definition of CPNF holds. One can take σα such that σα(t) 6= t.
Then 〈t, σα(t)〉 is a witness as t, σα(t) ∈ NF and t ∗←→ c

∗←→ σα(t). Suppose (ii) holds. Then
s, t ∈ NF by Lemma 29 and s ∗←→ ĉ

∗←→ t by Lemma 30. Thus 〈s, t〉 is a witness. J

Before ending the section, we present a property regarding TCP (see Definition 14).

I Lemma 34. Suppose CPNF is consistent. Then, (1) for any s, t ∈ TCP ∪V, s ∗←→ t implies
s = t. (2) Suppose c ∗←→ t for c ∈ C and t ∈ SubMinWitR. Then, there exists a unique
s ∈ TCP such that c ∗←→ s.
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6 Minimal Witness that is Not Equivalent to a Constant

In the previous section, a sufficient criteria for having a minimal witness that is equivalent a
constant is obtained. In this section, we turn our attention to the check whether there exists
a witness that is not equivalent to a constant.

We use the following result of [17] as our starting point. For each term t, one can assign
a variable xt in such a way that xs = xt if and only if s ∗←→ t. Using this convention, the
following definition is given.

I Definition 35 ([17]). Let δ and ψ be defined as follows: (1) δ(t) = t if t is equivalent to a
constant, and δ(t) = xt otherwise. (2) ψ(t) = t if t ∈ C ∪ V, and ψ(t) = f(δ(t1), . . . , δ(tn)) if
t = f(t1, . . . , tn) (n ≥ 1).

I Proposition 36 ([17]). Let 〈s, t〉 be a minimal witness that is not equivalent to a constant.
Then, either 〈ψ(s), y〉, 〈y, ψ(t)〉 or 〈ψ(s), ψ(t)〉 is a witness for some variable y.

We first refine δ so that the candidates of δ(t) form a smaller set. As we focus the case
that there is no witness that is equivalent a constant, for the rest of the section, we suppose
CPNF is consistent. We refine δ to δ′ by substituting a unique term t̃ for δ′(t) (see section
3.3); the existence of such a term is guaranteed for t ∈ SubMinWitR by our assumption just
given and Lemma 34.

I Definition 37. Let δ′ and ψ′ be defined as follows: (1) δ′(t) = t̃ if t is equivalent to a
constant, and δ′(t) = xt otherwise. (2) ψ′(t) = t if t ∈ C ∪V, and ψ′(t) = f(δ′(t1), . . . , δ′(tn))
if t = f(t1, . . . , tn) (n ≥ 1).

The following lemma is readily checked.

I Lemma 38. Let t ∈ SubMinWitR. (1) Then, root(t) = root(ψ(t)) = root(ψ′(t)). (2) If
t ∈ Tf and ψ(t)|i ∈ V then ψ(t)|i = ψ′(t)|i for all i ∈ N. (3) If t ∈ Tf , then ψ(t)|i

∗←→ ψ′(t)|i
for all i ∈ N. (4) We have ψ(t) ∗←→ ψ′(t).

A further property of ψ′ is as follows.

I Lemma 39. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant. Then,
s /∈ V (t /∈ V) implies ψ′(s) ∈ NF (resp. ψ′(t) ∈ NF).

We can now refine Proposition 36 as follows.

I Lemma 40. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant. Then,
either 〈ψ′(s), y〉, 〈y, ψ′(t)〉 or 〈ψ′(s), ψ′(t)〉 is a witness for some variable y.

The definition of ψ′ gives rise to the following characterization of terms.

I Definition 41. We define TCP
f = {f(t1, . . . , tn) | ti ∈ TCP ∪ V for all i}.

The following lemma will be used later.

I Lemma 42. Let 〈s, t〉 be a witness such that s, t ∈ TCP
f ∪ V. Then, there exists a proof

s
∗←→ t which has precisely one root rewrite step using a non-trivial equation.

CW (Definition 15) is now used to further restrict the witnesses class. Because ÊR is
finite, CW is a finite set, and it can be checked whether an element of CW is a witness:

I Lemma 43. Let 〈s, t〉 ∈ CW. Then, 〈s, t〉 is a witness if and only if s, t ∈ NF and s 6= t.
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We now arrive at the main result of this section that a witness (if it exists) can be found
in CW , if there is no minimal witness equivalent to a constant.

I Theorem 44. Suppose CPNF is consistent. If there exists a minimal witness that is not
equivalent to a constant, then there exists a witness in CW.

Proof. We show that if there exists a witness 〈s, t〉 such that s, t ∈ (TCP
f ∩ NF) ∪ V

then there exists a witness 〈s′, t′〉 ∈ CW . Then the claim follows from Lemma 40, as
ψ′(s), ψ′(t) ∈ TCP

f ∩NF by Lemma 39. Let 〈s, t〉 be a witness such that s, t ∈ (TCP
f ∩NF)∪V .

Then, w.l.o.g. one can suppose (a) s = f(u1, . . . , um) and t = g(um+1, . . . , um+n), or (b)
s = f(u1, . . . , um) and t = um+1 ∈ V. Now, we repeatedly refine the witness 〈s, t〉 until we
get a desired witness 〈s′, t′〉 ∈ CW .

We first describe one step refinement from 〈s, t〉 to 〈s′, t′〉 for the case (a). Suppose
s, t ∈ TCP

f ∩NF with s = f(u1, . . . , um) and t = g(um+1, . . . , vm+n).
By Lemma 42, there exist f(µ1, . . . , µm), g(µm+1, . . . , µm+n) such that

s
∗←→>ε f(µ1, . . . , µm)↔ε g(µm+1, . . . , µm+n) ∗←→>ε t

Let f(s1, . . . , sm) ≈ g(sm+1, . . . , sm+n) ∈ ÊR be the equation used in the root rewrite step.
Then, there exists a substitution σ such that ui

∗←→ µi = σ(si) for all 1 ≤ i ≤ m+n. Suppose
there exists si ∈ V either ui = µi ∈ V does not hold, or there exists j such that si 6= sj and
µi = µj . If there is no such si, the refining step stops.

Let {k1, . . . kp} = {j ∈ N | si = sj}. Then, we have uk1
∗←→ uk2

∗←→ · · · ∗←→ ukp . Since
s, t ∈ TCP

f , uk1 , . . . , ukp
∈ TCP ∪ V. Thus, Lemma 34 yields uk1 = · · · = ukp

. Now, take a
fresh variable x, and let u′j , µ′j be x for all j ∈ {k1, . . . kp} and uj , µj , respectively, otherwise.
Then we obtain a proof

s′
∗←→>ε f(µ′1, . . . , µ′m)↔ε g(µ′m+1, . . . , µ

′
m+n) ∗←→>ε t′

where s′ = f(u′1, . . . , u′m) and t′ = g(u′m+1, . . . , u
′
m+n).

By construction, it is clear that s′, t′ ∈ TCP
f . Since s ∈ NF and Patt(s′) ⊆ Patt(s),

we have s′ ∈ NF by Lemma 2. Similarly, t′ ∈ NF . Thus, 〈s′, t′〉 is a witness such that
s′, t′ ∈ TCP

f ∩NF .
Next, we describe one step refinement from 〈s, t〉 to 〈s′, t′〉 for the case (b). So, assume

s = f(u1, . . . , um), t = um+1 ∈ V with s ∈ TCP
f ∩NF .

By Lemma 42, there exists f(µ1, . . . , µm) such that

s = f(u1, . . . , um) ∗←→>ε f(µ1, . . . , µm)↔ε t

Suppose the equation f(s1, . . . , sm) ≈ sm+1 ∈ ÊR was used for the root rewrite. Suppose
there exists si ∈ V such that either ui = µi ∈ V does not hold, or there exists j such that
si 6= sj and µi = µj . Then, similar to the case (a), one can obtain a witness 〈s′, t′〉 such that
s′ ∈ TCP

f ∩NF and t′ ∈ V.
Since 〈s′, t′〉 is a witness such that s′, t′ ∈ (TCP

f ∩NF) ∪ V, we can repeatedly apply the
refinement step above. Since one can iterates the refining steps at most n+m-times, eventually
one obtains a witness 〈s′′, t′′〉 so that, for some equation f(s1, . . . , sm) ≈ g(t1, . . . , tn) ∈ ÊR
(note the all renaming equations are in ÊR), s′′|i ∈ TCP ∪ V, s′′|i = si if si ∈ V, and
s′′|i

∗←→ si if si ∈ C for all 1 ≤ i ≤ m, and similarly for all ti’s.
Furthermore, since there are no (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t, we have

s′′ = ψ′′(f(s1, . . . , sm)), t′′ = ψ′′(g(t1, . . . , tn)). Hence, 〈s′′, t′′〉 ∈ CW . J
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Table 1 Construction of CPNF by CP algorithm.

ĉ r̂ (or ĉ) normal forms h

a a b 0
f(x, c, d)

c c - -
g(d)

d d d 0
h(a)

e e - -
g(e)

(CP table after Step 2)

ĉ r̂ (or ĉ) normal forms h

a
a b 0

f(x, c, d) f(x, g(d), d) 2
f(x, g(d), h(b)) 2

c c - -
g(d) g(d) 1

d d d 0
h(a) h(b) 1

e e - -
g(e)

(Final CP table)

7 Correctness of the Decision Procedure and Its Complexity

Combining preparations in the previous sections, we now show the correctness of the decision
procedure for the UNC property of shallow TRSs in Figure 1. The following is immediate.

I Lemma 45. The procedure given in Figure 1 terminates.

Our main theorem follows from Theorems 33 and 44.

I Theorem 46. It can be decided whether a given shallow TRS is UNC or not, by the
procedure given in Figure 1.

We now analyze the complexity of our algorithm. Following [17], the complexity of the
algorithm is evaluated in terms of the number of rules in the flat TRS R, and we omit the
cost of constructing ÊR.

In Section 3, we give a set-based description of the constant propagation algorithm. To
evaluate the complexity, we introduce a data structure CP table as illustrated in the following
example.

I Example 47. Let R and ÊR be as in Example 12. One can obtain CPNF as in Table 1
according to following procedure:
1. Enumerate all constants in Ĉ and fill the first column of the table.
2. For all ĉ ∈ Ĉ, enumerate all elements of [[ĉ]] and all equations ĉ ≈ r̂ ∈ ÊR (r /∈ C) to fill

the second column.
3. Fill the 1st, 3rd, 5th and 7th rows according to CPNF := {(ĉ, ĉ, c, 0) | c ∈ C ∩NF}.
4. When an element (ĉ, r̂, t,H) is added to CPNF in the main loop of the algorithm, fill the

third and forth columns with t,H whose first and second columns correspond to ĉ ≈ r̂.
The table is referred to as a CP table. A row of the CP table with non-empty third column
corresponds an element of CPNF . Thus, χH(ĉ) is given by look up of the third columns of
the rows with h < H and having ĉ at the first column.

I Theorem 48. The procedure in Figure 1 runs in O(α|R|4α+5), where α is the maximal
arity of function symbols and |R| is the number of rules in R.

Proof. Let R be the flat TRS obtained by the transformation from the input shallow TRS,
and ÊR the completion of ER. Let N = |R| and M = |ÊR|.
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Let us first evaluate the CP algorithm. If the set Xtmp is non-empty, then Xi,r̂ is non-
empty for some i, r̂. Thus in each iteration of the main loop, the number of Yĉi

reduces for
some i. As

∑
i |Yĉi

| ≤M , the number of iterations of the main loop is bounded by M .
In each iteration, the calculation of χH is replaced with the look up of the CP table for

calculating CPNF (Table 1) Each pair 〈ĉ, r̂〉 in the table is from an equation c ≈ r ∈ ÊR. If
one finds two normal forms for the pair 〈ĉ, r̂〉, during the construction of the CP table, then
one can stop the construction and output a counter example. Thus, the height of the CP
table is bounded by the number of such pairs, i.e. by M . The calculation of a candidate of
new normal form f(u′1, . . . , u′n) is done by representing non-variable direct subterms of r̂ as
a pointer to an entry of the CP table. Then, one has to check the candidate f(u′1, . . . , u′n)
is whether a normal form; as as u′1, . . . , u′n are normal forms and R is flat, this is done in
O(αN). Note that each non-variable u′i can be identified as a pointer to an entry of the CP
table. Thus, the calculation of each entry of the CP table is done in O(αN).

Thus, each iteration of the main loop is bounded by O(αNM), and hence the CP
algorithm is bounded by O(αNM2). During the construction of the CP table the checks in
Step 3 can be done in O(1). Thus, this accounts the complexity of the Steps 2, 3.

For the Step 4, first note that computing c̃ costs M . Thus, computing ψ′′(t) costs at
most αM . Since the size of CW is at most M , one needs O(αM2) for computing the set
CW . For each 〈s, t〉 ∈ CW , checking whether s, t ∈ NF needs O(αN), and checking whether
s 6= t needs O(α), Since the size of CW is at most M , checking the existence of a witness in
CW costs O(αNM). Thus, the Step 4 runs in O(αM2 + αNM).

Thus, the complexity is dominated by Step 1, that is, O(αNM2). Now it is known that
M is bounded by O(N2α+2) [17]. Hence, we conclude that the complexity of the algorithm
is O(αN4α+5). J

I Remark 49. It is shown in [17] that the complexity of the algorithm given there is
O(|R|2α+2(|R|+ (|F|+ β + 1)O(βα|C|)), where β = O(max(α, |C| − 1))). This is of the form
O(N(M + L)) where L is the number of candidates for witnesses (and N,M as in the proof
above). This complexity comes from check s 6= t of the candidates 〈s, t〉 of the witnesses. In
their algorithm, the complexity of the candidates construction part O(αML) does not affect
the final complexity. In contrast, our complexity comes from the candidates construction
part O(αNM2). In this view, a large set L of candidates is reduced to a set of size O(NM)
in our algorithm, and the witness checking part is omittable in contrast.

8 Implementations and Experiments

We have implemented our decision procedure, as well as the existing one described in [17].
We use the functional programming language SML/NJ for the implementations.

We have prepared 13 shallow TRSs which covers various situations of the algorithm for
our experiments. The timeout was set to 300 seconds. When the execution exceeds 300
seconds, we regard the decision was failed, and we write the execution time as ∞. Our
computer used for the experiments has Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz and
4GB memory. Standard ML of New Jersey of v110.79 has been used.

A summary of the experiments is shown in Table 2. Here, “YES” stands for UNC and
“NO” stands for Non-UNC; when it cannot judge UNC by timeout, the result is shown
as “ - ”. WEC stands for “a witness equivalent to a constant.” The results show that our
procedure can judge UNC for all examples 1–13. On the other hand, the existing procedure
cannot for examples 7–9,11, because the execution time sharply increased as the rules become
complicated. Furthermore, except for very simple examples, the proposed procedure was
able to run significantly faster than the existing method.
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Table 2 A summary of experiments on examples for various situations.

Procedure of [17] Proposed procedure
TRS Result Time(s) Result Time(s) features of the TRS
R1 NO 0.003 NO 0.001 signature with only constants
R2 NO 0.177 NO 0.002 flat with WEC
R3 NO 0.001 NO 0.000 flat without WEC
R4 YES 0.001 YES 0.001 flat, simple, UNC
R5 NO 0.000 NO 0.000 inconsistent
R6 YES 0.868 YES 0.000 shallow, simple, height 2
R7 - ∞ YES 0.000 shallow, simple, height 3
R8 - ∞ NO 0.014 shallow, complex, with WEC
R9 - ∞ NO 0.013 shallow, complex, without WEC
R10 YES 0.004 YES 0.001 shallow, simple, UNC
R11 - ∞ YES 0.011 shallow, complex, UNC
R12 NO 0.003 NO 0.001 non-linear, Non-UNC
R13 YES 0.900 YES 0.000 non-linear, UNC

Table 3 A summary of experiments on problems from Cops.

Procedure of [17] Proposed procedure
Result Num of examples Num of examples
YES 38 94
NO 18 45

timeout 90 7

We have also tested how procedures fare for the problems from the Cops (confluence
problems) database2. At the time of the experiment, the database consists of 1137 problems,
containing 146 shallow TRSs in it. The timeout was set to 60 sec., which is the timeout used
in the Confluence Competition. A summary of the experiments is shown in Table 3. Our
procedure succeeds 139 examples and have 7 timeouts, while the previous procedure succeeds
56 examples and have 90 timeouts. Our decision procedure has been also incorporated to
the confluence tool ACP [5], which have won the category of UNC in the 2019 edition of
Confluence Competition (CoCo 2019)3.

Our implementations as well as the details of the experiments can be found in the webpage
http://www.nue.ie.niigata-u.ac.jp/experiments/fscd20/.

9 Conclusion

In this paper, we have proposed a new decision procedure for the UNC property of shallow
TRSs. We have introduced a constant propagation algorithm that efficiently constructs
candidates of counter examples that are equivalent to a constant. Those candidates have been
also used to construct candidates of counter examples that are not equivalent to a constant
either. Thus, a large enumeration of candidates for counter examples have been avoided, in
contrast to the existing algorithm of [17]. The correctness of the proposed procedure has

2 https://cops.uibk.ac.at/
3 http://project-coco.uibk.ac.at/2019/

http://www.nue.ie.niigata-u.ac.jp/experiments/fscd20/
https://cops.uibk.ac.at/
http://project-coco.uibk.ac.at/2019/
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been proved and its complexity has been analyzed. Furthermore, we have implemented the
proposed decision procedure and the existing one, and it has been experimentally confirmed
that the proposed procedure runs much faster than the existing procedure.
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A Omitted Proofs

Proof of Lemma 6. Let t = f(t1, . . . , tn). Then there exists a minimal witness 〈u, v〉 such
that t is a subterm of u or v. Assume ti

∗←→ c ∈ C ∩ NF with ti 6= c. From u, v ∈ NF , we
know ti ∈ NF . Thus, 〈ti, c〉 is a witness. But, as |ti|+ |c| = |ti|+ 1 < |t|+ 1 ≤ |u|+ |v|, this
contradicts the minimality of 〈u, v〉. J

Proof of Lemma 21. Note that, by our convention, c ≈ r ∈ ÊR iff c ≈ σα(r) ∈ ÊR. (⊆)
Clear. (⊇) Observe σα(r) ∗−⇀ t′ implies r ∗−⇀ σ−1

α (t′) 6 t′ 6 t. J

Prof of Lemma 22. (1) For t ∈ [[c]], we have t ∈ C by the definition, and thus, c ↔ t or
c = t by Proposition 4 (1). For t ∈ CP(c, r), it is clear from the definition. (2) From
(1), we have c ∗−⇀ t′ 6 t. Hence we have c ∗←→ t′ and σ(t′) = t for some σ. Therefore,
c = cσ

∗←→ t′σ = t. J

Proof of Lemma 23. (1) follows immediately from Proposition 4 and our convention that
c ≈ c ∈ ÊR for c ∈ C. (2) is a consequence of (1) and the inference rule (3) for Ê ([8], p. 160)
and by our convention that ÊR is closed under renaming. J

Proof of Lemma 24. (1) By Lemma 23. (2) By Proposition 4. (3) Use (2) and Lemma 23.
(4) Then r = f(s1, . . . , sn), r′ = f(t1, . . . , tn) (n ≥ 1), and there exists σα such that
si = σα(ti) for all si ∈ V, and si ' ti for all si ∈ C. From (1), ti −⇀ si for all si ∈ C. Thus,
σα(r′) ∗−⇀ r. J

Proof of Theorem 25. By the definition of CPC, we only consider the case c, c′ ∈ C. Since
r ' r′, we have either (a) r, r′ ∈ V , (b) r, r′ ∈ C or (c) r, r′ ∈ Tf . For the cases (a), (b), we
have CP(c, r) = ∅ = CP(c, r) by the definition. Thus, assume furthermore, r, r′ ∈ Tf . It
suffices to show that (1) c ' c′ implies CP(c, r) = CP(c′, r) for any r ∈ Tf , and (2) r ' r′

implies CP(c, r) = CP(c, r′) for any c ∈ C. (1) follows from Proposition 4. (2) Suppose r ' r′.
Then, by Lemma 24, σα(r′) ∗−⇀ r for some σα. Furthermore, from r ' r′, we have c ≈ r ∈ ÊR
iff c ≈ r′ ∈ ÊR by Lemma 23. Suppose t ∈ CP(c, r). Then, we have c −⇀ r

∗−⇀ t′ 6 t for some
t′. Hence c −⇀ σα(r′) ∗−⇀ t′ 6 t. Thus, by Lemma 21, we obtain t ∈ CP(c, r′). J

Proof of Lemma 27. k =
∑m
i=1 |Yĉi | is finite for H = 0, and the algorithm decreases k in

each iteration of the main loop. J

Proof of Lemma 30. (1) The proof proceeds by induction on h. (B.S.) Then r̂ = ĉ and t = c.
Thus ĉ ' t and the claim follows by Lemma 24. (I.S.) By Lemma 29, let r̂ = f(û1, . . . , ûn),
t = f(u′1, . . . , u′n). As r̂ ∈ Yĉ, we have ĉ ≈ r ∈ ÊR, and thus, ĉ ≈ r̂ ∈ ÊR by Lemma 24.
Hence ĉ −⇀ r̂. Consider the relation between ûi and u′i, according to the following case
distinction:
1. Case ûi ∈ V. Then, by Lemma 29, u′i = ûi.

https://doi.org/10.4230/LIPIcs.FSCD.2016.36
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2. Case ûi ∈ C. Then, by the definition of χH , either (a) (ûi, r̂i, u′i, h′i) ∈ CPNF for some
r̂i and h′i < hi or (b) ûi = u′i. In the former case, we have ûi −⇀ r̂i

∗−⇀ u′i by induction
hypothesis. In the latter case, ûi

∗−⇀ u′i trivially.
Thus, ĉ −⇀ r̂ = f(û1, . . . , ûn) ∗−⇀ f(u′1, . . . , u′n) = t. (2) If h > 0, then r̂ ∈ Tf by Lemma 29,
and thus the claim follows from (1). (3) is also clear from (1). J

Proof of Lemma 31. The proof proceeds by induction on h = height(t). Let
t ∈ SubMinWitR ∩CP(ĉ, r̂). (B.S.) By t ∈ CP(ĉ, r̂), we have h > 0. Thus, the claim trivially
holds. (I.S.) By the definition of CPC, one can let r̂ = f(s1, . . . , sn) and t = f(t1, . . . , tn),
and for some u = f(u1, . . . , un),

c −⇀ε f(s1, . . . , sn) ∗−⇀>ε f(u1, . . . , un) 6 f(t1, . . . , tn).

Let σ(f(u1, . . . , un)) = f(t1, . . . , tn). By si
∗←→ ui, we have σ(si)

∗←→ σ(ui) = ti. Now, define
t′i and hi (1 ≤ i ≤ n) according to the following case distinction:
1. Case si = ci ∈ C. Then, σ(si) = ci

∗←→ ti holds. Since R is consistent, ti /∈ V. Since
ti ∈ SubMinWitR, there exists r̂i such that ti ∈ CP(ĉi, r̂i) ∪ [[ĉi]] by Theorem 26.

Case ti ∈ [[ĉi]]. Put t′i = ti and hi = 0. Since ti ∈ C∩NF , we have (ĉi, ĉi, t′i, hi) ∈ CPNF
by Lemma 28.
Case ti ∈ CP(ĉi, r̂i). By induction hypothesis, there exists t′i ∈ CP(ĉi, r̂i) such that
(ĉi, r̂i, t′i, hi) ∈ CPNF with hi = height(t′i) ≤ height(ti) < h. By Lemmas 22 and 30,
we have ti

∗←→ ĉi
∗←→ t′i. Also, by Lemma 29, t′i ∈ NF .

2. Case si ∈ V. Put t′i = si and hi = 0.

Let t′ = f(t′1, . . . , t′n). We now derive t′ ∈ NF from t ∈ NF using Lemma 2. From the
definition, t′1, . . . , t′n ∈ NF . Clearly, t′|i = t|i whenever t′|i ∈ C. Also, root(t) = root(t′).
Thus, it remains to show Patt(t′) ⊆ Patt(t), i.e. ti = tj whenever t′i = t′j . Suppose t′i = t′j .

Case t′i = t′j /∈ V. Then si, sj ∈ C, and thus, ti
∗←→ t′i and tj

∗←→ t′j . Hence, ti
∗←→ t′i =

t′j
∗←→ tj . Then, since t ∈ SubMinWitR, Proposition 5 leads ti = tj .

Case t′i = t′j ∈ V. Then, si = t′i = t′j = sj ∈ V. Thus, we have ti
∗←→ σ(si) = σ(sj)

∗←→ tj .
Since t ∈ SubMinWitR, Proposition 5 leads ti = tj .

Thus, we obtain t′ ∈ NF . Also, h′ = height(t′) = 1 + max{height(t′i)}i ≤ h.
Since h′ = 1 + maxi h′i, there exists 1 ≤ j ≤ n such that hj = h′ − 1. Then (ĉj , r̂j , tj , hj)

is added to CPNF at H = h′ − 1 by Lemma 29. Thus, the main loop the CP algorithm
is performed at H = h′. Consider the main loop for H = h′. If r̂ /∈ Yĉ already, it is clear
that there exists t′′ and h′′ ∈ N such that (ĉ, r̂, t′′, h′′) ∈ CPNF (h′′ < h′). From Lemma 30,
we have t′′ ∈ CP(ĉ, r̂). Hence the claim established in this case. Suppose r̂ ∈ Yĉi

. Then,
by the construction above, si = t′i whenever si ∈ V, and (ŝi, r̂i, t′i, hi) ∈ CPNF (hi < h)
whenever si ∈ C. Also, t′ ∈ NF . Therefore, the main loop of the CP algorithm yields
(ĉ, r̂, t′, h′) ∈ CPNF . J

Proof of Lemma 32. Suppose (ĉs, r̂s, s, hs), (ĉt, r̂t, t, ht) ∈ CPNF and s= t. From Lemma 30,
we have ĉs

∗←→ s = t
∗←→ ĉt. Thus, ĉs ≈ ĉt, and hence ĉs = ĉt. By Lemma 30, s ∈

CP(ĉs, r̂s) ∪ [[ĉs]] and t ∈ CP(ĉs, r̂t) ∪ [[ĉs]]. We distinguish four cases:
1. Case s ∈ [[ĉs]] and t ∈ [[ĉs]]. Then, s, t ∈ C. Thus, hs = ht = 0 and r̂s = ĉs = ĉt = r̂t.
2. Case s ∈ [[ĉs]], t ∈ CP(ĉs, r̂t). Then height(s) > 0 = height(t), which contradicts s = t.
3. Case s ∈ CP(ĉs, r̂s), t ∈ [[ĉs]]. Similar to the previous case.
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4. Case s ∈ CP(ĉs, r̂s), t ∈ CP(ĉs, r̂t). From Lemma 30, we have ĉs −⇀ r̂s
∗−⇀ s and

ĉs −⇀ r̂t
∗−⇀ t. Thus root(r̂s) = root(s) = root(t) = root(r̂t). Thus, one can let

r̂s = f(u1, . . . , un), r̂t = f(v1, . . . , vn), s = f(s1, . . . , sn) = t. Furthermore, we have
ui

∗−⇀ si and vi
∗−⇀ si for all 1 ≤ i ≤ n. If si ∈ V then ui = si = vi by Lemma 29.

Suppose si /∈ V. Then, ui, vi ∈ C, and thus ûi = ui and v̂i = vi (as they are subterms
of r̂s, r̂t). Since ui

∗←→ si
∗←→ vi, we have ui ≈ vi, and hence ui = vi. Thus, we obtain

r̂s = f(u1, . . . , un) = f(v1, . . . , vn) = r̂t. J

Proof of Lemma 34. (1) Suppose s ∗←→ t. By Lemma 29, TCP ∩ V = ∅. Thus, we can
distinguish four cases. The case s, t ∈ TCP follows from the assumption, and the case s, t ∈ V
follows from the consistency of R. If s ∈ TCP and t ∈ V then (ĉ, r̂, s, hs) ∈ CPNF for some
ĉ, r̂, hs, and thus ĉ ∗←→ s

∗←→ t ∈ V by Lemma 30. This contradicts the consistency of R. The
case t ∈ TCP and s ∈ V follows similarly. (2) Suppose c ∗←→ t for c ∈ C and t ∈ SubMinWitR.
Then, by Theorem 26, t ∈ CP(c, r) ∪ [[c]]. Then, by Lemma 31, (ĉ, r̂, s,_) ∈ CPNF for some
s. Then, we have s ∈ TCP and c ∗←→ ĉ

∗←→ s by Lemma 30. If s′ ∈ TCP and c ∗←→ s′, then
s
∗←→ c

∗←→ s′, and thus s = s′ by (1). J

Proof of Lemma 38. (1), (2) are immediate. (3) If t|i is not equivalent to a constant, from
definitions of ψ and ψ′, we have ψ(t)|i = ψ′(t)|i. If t|i is equivalent to a constant c, we have
c
∗←→ t|i. From the definition of ψ, t|i = ψ(t)|i. Also, from the definition of ψ′, c ∗←→ ψ′(t)|i.

Hence ψ(t)|i
∗←→ ψ′(t)|i. (4) Clear from (1) and (3). J

Proof of Lemma 39. From Lemma 29, we have t′1, . . . , t′n ∈ NF . Thus it suffices to show
there’s no root rewrite step from ψ′(s). It is known that ψ(s) ∈ NF [17]; thus (as R is
flat) the claim follows if we have: (a) t′i ∈ C implies t′i = ti for all 1 ≤ i ≤ n and (b)
Patt(ψ′(s)) ⊆ Patt(ψ(s)). To show (a), suppose t′i ∈ C. Then t′i ∈ C ∩ NF . From Lemma
38, ti

∗←→ t′i holds. Also, by definition of ψ, ui = ti holds. Thus, ui = ti
∗←→ t′i ∈ C ∩ NF .

Since s = f(u1, . . . , un) ∈ SubMinWitR, ti = ui = t′i holds by Lemma 6. Next, we show (b).
Suppose t′i = t′j . We distinguish two cases:

Case t′i = t′j /∈ V. Then ui, uj are equivalent to constants, and hence ui = ti and uj = tj

by the definition of ψ. By ui = ti
∗←→ t′i = t′j

∗←→ tj = uj and s ∈ SubMinWitR, we obtain
ti = ui = uj = tj by Proposition 5.
Case t′i = t′j ∈ V. Then ti = t′i = t′j = tj by definitions of ψ and ψ′. J

Proof of Lemma 40. Let 〈s, t〉 be a minimal witness that is not equivalent to a constant.
By Proposition 36, either 〈ψ(s), y〉, 〈y, ψ(t)〉 or 〈ψ(s), ψ(t)〉 is a witness for some variable y.
By Lemma 38, ψ(s) ∗←→ ψ′(s) and ψ(t) ∗←→ ψ′(t) hold. We distinguish three cases.

Case 〈ψ(s), y〉 is a witness. Then ψ(s) /∈ V as R is consistent. By the definitions, we
have ψ(s) /∈ V iff s /∈ V iff ψ′(s) /∈ V, and thus ψ′(s) ∈ NF \ V by Lemma 39. Since
ψ′(s) ∗←→ ψ(s) ∗←→ y, 〈ψ′(s), y〉 is also a witness.
Case 〈y, ψ(t)〉 is a witness. Same as the previous case.
Case 〈ψ(s), ψ(t)〉 is a witness. If ψ(s) ∈ V or ψ(t) ∈ V, then one can use the same
argument as above. So, suppose ψ(s), ψ(t) /∈ V. Then, ψ′(s), ψ′(t) /∈ V as above, and
thus ψ′(s), ψ′(t) ∈ NF by Lemma 39. Since ψ′(s) ∗←→ ψ(s) ∗←→ ψ(t) ∗←→ ψ′(t), it remains
to show ψ′(s) 6= ψ′(t). If root(ψ(s)) 6= root(ψ(t)) or if ψ(s)|i 6= ψ(t)|i with ψ(s)|i ∈ V or
ψ(t)|i ∈ V for some i ∈ N, then it follows from Lemma 38 that ψ′(s) 6= ψ′(t). Consider
the case where roots of 〈ψ(s), ψ(t)〉 and all direct variable subterms are same. Then,
we have ψ(s)|i 6= ψ(t)|i and ψ(s)|i, ψ(t)|i /∈ V for some i ∈ N. Then by definition of ψ,
we have s|i = ψ(s)|i and t|i = ψ(t)|i. Thus, s|i 6= t|i. Then, if ψ′(s)|i = ψ′(t)|i, then
s|i = ψ(s)|i

∗←→ ψ′(s)|i = ψ′(t) ∗←→ ψ′(t)|i = t|i by Lemma 38. Then 〈s|i, t|i〉 becomes a
witness, which contradicts the minimaliy of 〈s, t〉. J
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Proof of Lemma 42. From Proposition 4, there exists a proof s ∗←→ t which has at most
one root rewrite step. Clearly, one can assume the root step by a trivial equation have
been removed. Suppose s ∗←→ t does not have a root rewrite step. Then, s = f(s1, . . . sn),
t = f(t1, . . . tn) and si

∗←→ ti for all 1 ≤ i ≤ n for some f and si, ti (1 ≤ i ≤ n). Then,
s, t ∈ TCP

f and hence si, ti ∈ TCP ∪ V for all 1 ≤ i ≤ n. Then, from Lemma 34, we know
si = ti for all 1 ≤ i ≤ n. Thus, s = f(s1, . . . sn) = f(t1, . . . tn) = t, but this contradicts that
〈s, t〉 is a witness. J

Proof of Lemma 43. Let 〈s, t〉 ∈ CW . Then, there exists l ≈ r ∈ ÊR such that ψ′′(l) = s

and ψ′′(r) = t. It immediately follows from the definition of ψ′′ that ψ′′(l) ∗←→ l and
r
∗←→ ψ′′(r). Hence s ∗←→ t. The claim is an easy consequence of this. J

Proof of Lemma 45. Step 1 terminates and a flat TRS R and a finite set ÊR is computed
[8, 20]. Step 2 terminates by Lemma 27, and a finite set CPNF is obtained. As the set CPNF
is finite, Step 3 terminates. As a consequence of Step 3, t̃ is defined uniquely. Thus, by the
finiteness of CPNF and ÊR, a finite set CW can be computed. By Lemma 43, one can check
whether there exists a witness in CW . Thus, Step 4 terminates. J

Proof of Theorem 46. It suffices to decide that the flat TRS R obtained by the transform-
ation has the UNC property or not. If R is inconsistent, then R is not UNC. In this case,
UNC is returned at the Step 1 of the procedure. For the rest of the procedure, one can
assume R is consistent. Suppose there exists (ĉ, r̂, t, h) ∈ CPNF such that t has a direct
variable subterm or there exist (ĉ, r̂s, s, hs), (ĉ, r̂t, t, ht) ∈ CPNF such that s 6= t. Then R is
not UNC by Theorem 33. In this case, Non-UNC is returned as the Step 3 of the procedure.
Suppose this does not hold. Then, by Theorem 33, there exists no minimal witness equivalent
to a constant. If there exists a minimal witness that is not equivalent to a constant, then
there exists a witness in CW by Theorem 44. Thus, in this case, Non-UNC is returned as
the Step 4 of the procedure. Suppose otherwise. Clearly, if a witness exists, then there exists
a minimal witness. Thus, one can conclude that there is no witness, and hence R has the
UNC property. In this case, UNC is returned as the Step 5 of the procedure. J
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B Examples in our Experiments

Bellow we present examples used in our experiments given in Table 2.

R1 = {a → b, a → c, c → c, d → c, d → e}
R2 = {f(x, a) → a, a → b}
R3 = {g(y) → f(x, y)}
R4 = {a → b, b → a, f(x, y) → a}
R5 = {a → b, b → a, f(x, y) → a, f(x, y) → z}
R6 = {f(g(a), y) → y}
R7 = {f(g(h(a)), y) → y}

R8 =
{

f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u, x), b1 → b,

b → h(x, d), h(y, d) → i(c), u → j(v)

}
R9 =

{
f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u), b1 → b
b → h(x, d), h(y, d) → i(c), u → j(v), m(x, x) → n(y)

}
R10 =

{
f(x, y) → g(h(a))

}
R11 =

{
f(x, y) → a, f(k(l(a1, a2), a1, a3), y) → a, f(x, u) → a, a → g(b1, u), b1 → b
b → h(x, d). h(y, d) → i(c), u → j(v)

}
R12 = {f(x) → g(a, x), f(x) → g(x, a), g(x, x) → f(x)}
R13 = {f(x, x) → g(x), f(a, b) → g(a)}

C Implementation of Existing Decision Procedure

Here, we briefly explain our implementation of the existing decision procedure [17] and
illustrate why it suffers a bottleneck of having a sheer number of candidates for the witness.

We use the following algorithm:
1. Transform a shallow TRS into a flat TRS R preserving UNC.
2. Calculate ÊR. (Here, the program also judges whether R is consistent.)
3. Add new constants Cnew to F of the size |Cnew| = 2 ∗ αh−1, where h = max(1, |C|) and

α = max{arity(f) | f ∈ F}.
4. Make all ground terms over F ∪ Cnew of height ≤ h.
5. Check whether there exists a pair of such terms that is a witness.

Below, we provide a (straight) estimation of the number of candidates for the witness for
our examples R6 and R7. These examples are very similar (see the previous section) but our
implementation of the existing procedure succeeds for R6 but fails for R7.

I Example 50. Consider the TRS R6. The UNC-preserving flatting translation makes the
following flat TRS {f(c0, x)→ x, g(a)→ c0}. Since we have h = |C| = 2 and α = 2, we add
2 ∗ 21 = 4 new constants. Hence, we consider ground terms over function symbols f, g and
2 + 4 = 6 constants. We have 6 ground terms of height 0. There are 6 ground terms of height
1 having root g and 6× 6 = 36 ground terms of height 1 having root f. Thus, the number
of ground terms of height ≤ 2 to be used to constructing the candidates is 6 + 6 + 42 = 48.
This means there are 48× 47 = 2, 256 candidates to be checked.

I Example 51. Consider the TRS R7. The UNC-preserving flatting translation makes the
following flat TRS {f(c1, x) → x, g(c0) → c1, h(a) → c0}. Since we have h = |C| = 3 and
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α = 2, we add 2 ∗ 22 = 8 new constants. Hence, we consider ground terms over function
symbols f, g and 3 + 8 = 11 constants. We have 11 ground terms of height 0. There are
11 ground terms of height 1 having root g, and 11 × 11 = 121 ground terms of height 1
having root f. Thus, the number of ground terms of height 1 to be used is 11 + 121 = 132.
There are 132 ground terms of height 2 having root g. Now we calculate the number of
ground terms of height 2 having root f distinguishing three cases. The number of terms
f(s, t) with height(s) = 0, height(t) = 1 is 11× 121 = 1331; so is the number of terms f(s, t)
with height(s) = 1, height(t) = 0. The number of terms f(s, t) with height(s) = height(t) = 1
is 121× 121 = 14, 642. Thus, we have 132 + 1331 + 1331 + 14, 641 = 17, 435 ground terms
of height 2. Hence,the number of ground terms of height ≤ 2 be used to constructing the
candidates is 11 + 121 + 17435 = 17567. This means there are 17567× 17566 (≈ 300 millions)
candidates to be checked.
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