
Learning Definable Hypotheses on Trees
Emilie Grienenberger
ENS Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
emilie.grienenberger@ens-cachan.fr

Martin Ritzert
RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
ritzert@informatik.rwth-aachen.de

Abstract
We study the problem of learning properties of nodes in tree structures. Those properties are
specified by logical formulas, such as formulas from first-order or monadic second-order logic. We
think of the tree as a database encoding a large dataset and therefore aim for learning algorithms
which depend at most sublinearly on the size of the tree. We present a learning algorithm for
quantifier-free formulas where the running time only depends polynomially on the number of training
examples, but not on the size of the background structure. By a previous result on strings we know
that for general first-order or monadic second-order (MSO) formulas a sublinear running time cannot
be achieved. However, we show that by building an index on the tree in a linear time preprocessing
phase, we can achieve a learning algorithm for MSO formulas with a logarithmic learning phase.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases monadic second-order logic, trees, query learning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2019.24

Funding Martin Ritzert: This work is supported by the German research council (DFG) Research
Training Group 2236 UnRAVeL.

1 Introduction

In this paper we study the algorithmic complexity of learning properties of nodes in directed
labeled trees using a declarative framework introduced by Grohe and Turán [18]. Let T be
such a tree with nodes V (T). We call T the background tree of our learning problem. The
tree T encodes the background knowledge of the learning problem and thus provides the
information on which the classification of the nodes u ∈ V (T) can be based. In our setting a
(boolean) classifier is a function H : V (T)→ {+,−} that estimates whether a given node
admits a certain property. A learning algorithm gets a training set S ⊆ V (T) × {+,−},
that is a set of pairs (u, c) of positive and negative examples, and the background tree
T as input and returns a classifier HS : V (T) → {+,−} as its hypothesis. We say that
learning was successful if the hypothesis HS is consistent with S which means that for every
(u, c) ∈ S we have that HS(u) = c. Achieving consistency with S can be seen as the extreme
case of minimizing the training error, i.e. the number of (u, c) ∈ S such that HS(u) 6= c.
Minimizing the training error, also called empirical risk minimization, results in provably
good generalization behavior in the PAC learning model (see [6]). For those generalization
results, we use that logical formulas on trees admit bounded VC-dimension (shown by Grohe
and Turán [18]) and that any consistent learner can be turned into a PAC learner by an
appropriate training set S (see [6]). We give more details on the connection to PAC learning
in Section 2.3.

© Emilie Grienenberger and Martin Ritzert;
licensed under Creative Commons License CC-BY

22nd International Conference on Database Theory (ICDT 2019).
Editors: Pablo Barcelo and Marco Calautti; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emilie.grienenberger@ens-cachan.fr
mailto:ritzert@informatik.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.ICDT.2019.24
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Learning Definable Hypotheses on Trees

An example of a simple property a node can admit is having an ancestor with label b.
This property can be expressed by the logical formula ϕ(x) = ∃y (y < x) ∧Rb(y). We aim to
learn properties which can be defined by logical formulas with parameters based on positive
and negative examples over tree-structured data such as web pages, XML databases and
JSON files.
I Example 1. Given a large website such as a news portal. The document object model
(DOM) of a website is the tree of elements which form the website. Many websites contain a
number of ads and some of them are not trivially detectable. A learning algorithm could
then estimate the property of a position in the DOM to be part of some ad.

The output of a learning algorithm would then be a formula that distinguishes nodes
belonging to the content of the web page from those belonging to ads. Those formulas could
then be used as a basis for new simpler or better filter rules.

In Example 1, the user could select parts of a web page, which he sees as advertisement
and then let the learning algorithm produce a classifier which is consistent with his choice.
In this paper we will not go into detail of how we get our training set but instead only talk
about finding consistent hypotheses for a given training set.

We consider learning algorithms that return classifiers based on logical formulas, especially
quantifier-free formulas and formulas from monadic second-order logic. In our logical
framework, a classifier consists of a formula ϕ(x ; ȳ) and an instantiation v̄ of the free
variables ȳ. This formula ϕ has two types of free variables; we refer to x as the instance
variable and to ȳ = (y1, . . . , y`) as parameter variables, where ` ∈ N. The background
structure T is the (fixed) background knowledge that encodes the context of a node which is
to be classified. The parameters of ϕ, which can be seen as constants the formula is allowed
to use for the classification, are taken from V (T). In Example 1, a classifier would consist
of a logical formula and a number of positions in the DOM of the web page. The formula
ϕ(x ; ȳ) together with an `-tuple v̄ ∈ V (T)` of parameters then defines a binary classifier
Jϕ(x ; v̄)KT : V (T)→ {+,−} over the tree T as follows. An instance u ∈ V (T) is classified
as positive if T � ϕ(u, v̄) such that we have Jϕ(x ; v̄)KT (u) = +. Correspondingly we have
Jϕ(x ; v̄)KT (u′) = − for any u′ ∈ V (T) with T 2 ϕ(u′, v̄). We call such a classifier where ϕ is
an MSO formula an MSO definable hypothesis.

We assume the background tree T to be very large, which means large enough that
just reading it sequentially takes long, while the logical formula returned by the learning
algorithm is assumed to be small for every real-world query. This implies two strategies.
First, we use a data complexity view for the analysis considering the tree T and the training
set S as data and the hypothesis class parameterized by ` (and an additional parameter q
introduced later) as a constant, such that the complexity results are only given in terms of T
and S. Essentially this means that the influence of the formula is considered to be constant.
Second, we are interested in finding algorithms which run in sublinear time in the size of T .
As such sublinear algorithms are unable to read the whole background tree T , we model the
exploration of T using oracles. Those oracles allow the learning algorithm to explore the
tree by following edges, starting from the training examples in S. This is formally defined in
Section 2.

In general there are no consistent sublinear learning algorithms for first-order and monadic
second-order formulas over trees. In [16] the authors have shown that for learning first-order
formulas over words, linear time is necessary. The same counterexample can also be used
for trees, showing that linear time is again necessary. For structures of bounded degree,
there exists a sublinear learning algorithm for first-order formulas (see [17]). This result
is not applicable in our setting, as the ancestor relation ≤ in the signature of our trees
induces unbounded degree (the degree of the root is |V (T)| − 1 as it is an ancestor of every
other node).

E. Grienenberger and M. Ritzert 24:3

1.1 Our Results
In our formal setting, we consider learnability on trees for monadic second-order logic and the
quantifier-free fragment of first-order logic. We show that in contrast to the corresponding
case on strings (see [16]), even the relatively simple task of learning quantifier-free formulas on
trees needs at least linear time. This is due to the need to synthesize appropriate parameters,
a task which can involve searching for the largest common ancestor of two nodes. We
show that this is really the core of the problem by giving a sublinear learning algorithm for
quantifier-free formulas in Section 3 where we exploit an additional oracle providing access
to the largest common ancestor of two nodes.

As we know that there is no sublinear learning algorithm for MSO formulas on trees,
we investigate whether the necessary linear computation depends on the training examples.
This hardness still holds if the learning algorithm is allowed to return more parameters,
as long as the complete training set can not be encoded in those parameters. It turns out
that it is possible to build an auxiliary structure in linear time which can then be used for
sublinear learning. We present an algorithm which builds such an index structure without
knowledge of the training set in linear time and then uses logarithmic time to output a
consistent hypothesis. The algorithm builds on the results on strings (see [16]) as well as
known techniques for evaluating MSO formulas under updates (see [5]), combining them
in a non-trivial way to a learning algorithm for MSO formulas. The linear indexing phase
in the learning algorithm cannot be avoided since already for first-order formulas on words
it is necessary to invest at least linear time in O(|T |) to find a consistent hypothesis. The
following theorem is the main result of this paper.

I Theorem 2. There is a consistent MSO learning algorithm on trees which uses linear
indexing time O(|T |) and logarithmic learning time O(|S| log |T |).

As an application of our indexing algorithm we describe an online learning algorithm that
computes an index in O(|T |) and then, for a sequence of examples, updates its MSO-definable
hypothesis in time O(log2(T)) per example. That is, in this setting the examples arrive
one-by-one and we are able to maintain a consistent hypothesis in polylogarithmic time in
the background structure.

1.2 Related work
The field of inductive logic programming (see for example [10, 22, 24, 25, 26]) is very close
to our framework. In both cases the aim is to infer logical formulas from positive and
negative examples such that the logical formula is consistent with the training examples.
The main difference to our setting is that in the ILP framework the background knowledge
is also encoded in logic (a so called background theory), while we use a structure to encode
background knowledge. In our setting, facts such as gender and age of a person or the issuing
institute of a credit card are represented using nodes for person and credit card, as well as
unary relations to describe their attributes. Naturally facts which involve multiple entities
can be represented by edges. Our framework is able to represent such facts as long as the
union of all binary relations still describes a tree or forest while in the ILP setting there is
no such restriction. The other important difference is that ILP focuses on first-order logic
(and there especially Horn-formulas), while in this paper we work with monadic second-order
logic (MSO) which is strictly more expressive than first-order logic. There is a number of
other logical frameworks for machine learning, mainly originating from the field of formal
verification and databases. Examples are given by [1, 8, 23, 14, 20, 36].

ICDT 2019

24:4 Learning Definable Hypotheses on Trees

Another related field, which is based on the query by example strategy, is to learn XPATH
queries as in [32]. There, unary relations defined by an XPATH expression are learned for
arbitrary training sets. The main difference to our setting is that we use MSO formulas,
which are in general more expressive than XPATH statements and then restrict the maximal
complexity of our formulas.

The field of automata learning and learning of regular languages is also to some degree
similar to our setting, especially since we are also applying automata based techniques.
There are numerous negative results such as [2, 15, 28, 21, 4]. Of the positive results in that
area [3, 30, 27, 13], most of them use an active framework where a teacher iteratively gives
counterexamples until the hypothesis is correct. In our framework a consistent hypothesis
for a training set is sought and that training set is known from the beginning. Even though
our classification problem can be encoded as a learning problem for regular tree languages,
their results seem technically unrelated to ours.

2 Preliminaries

In this paper we work with logical formulas from the quantifier-free fragment of first-order
logic and formulas from monadic second-order logic. Quantifier-free formulas only consist of
boolean combinations of atomic properties, while monadic second-order logic (MSO) extends
first-order logic (FO) by quantification over sets of nodes. As an example, take the MSO
formula ∃X∀z Xz which is always satisfied as there is always a set X containing all elements
of the structure. It is known that a set of trees can be recognized by a deterministic bottom-up
tree automaton (DTA) A if and only if it can be characterized by an MSO sentence Φ and
both A and Φ can be computed from each other. For a more detailed description of MSO
and tree automata we refer to [33].

In this paper we consider labeled trees as background structures. The most prominent
examples for trees in a database context are the tree-structured data exchange formats XML
and JSON. Formally a labeled tree T = (V (T), E1, E2, R1, . . . , Rr,≤) is a structure with
vertex set V (T) and binary edge relations E1 and E2 encoding the first and second child
of a node in a binary tree, or in case of unranked trees, the first child and the next sibling
of each node. The unary relations R1, . . . Rr define the label of each node and for every
a, b ∈ V (T) we have a ≤ b if a is an ancestor of b. In this paper we use formulas over the
alphabet σ = {E1, E2,≤, R1, . . . , Rr} which means that in a formula we can access the tree
structure using E1 and E2 as well as the labels of each node using R1, . . . Rr. A fragment of
an XML document (focusing on persons) could look like the following.

<person name="A. Turing" birthday="1912-06-23">
<interest>computer science</interest>
<interest>marathon running</interest>
...

</person>

A formula has access to all tags occurring in the XML document. In the above XML fragment,
the labels are given by the unary relations ‘person’,‘name’,‘birthday’,‘interest’.
Adding additional content-based labels such as ‘computer scientist’ or ‘runner’ to the
set of unary relations allows to write formulas that depend on the content of nodes. Without
such content-based labels a formula could only use structural properties and define sets such
as all persons with at least three interests and two friends.

E. Grienenberger and M. Ritzert 24:5

u1

u2

u4,+ u5

u9

u13,+ u14

u10,−

u15,+ u16 u17

u6

u11

u3,−

u7 u8,−

u12

Figure 1 A tree with positive (green) and negative (red) example nodes.

2.1 Learning Model
We consider the model of supervised learning where the input to a learning algorithm is a
training set (or training sequence) S ⊆ V (T)×{+,−}. Each example (u, c) ∈ S consists of a
node u and its classification c. We assume that S is non-contradicting, that is if (u, c) ∈ S,
then (u,¬c) /∈ S. For the tree given in Figure 1 we define the training set:

S = {(u3,−), (u4,+), (u8,−), (u10,−), (u13,+), (u15,+)}

As already defined in the introduction, a definable hypothesis Jϕ(x ; v̄)KT assigns + to
every position u ∈ V (T) with T � ϕ(u, v̄) and − otherwise. Let ϕ(x ; y) = ∃z(E(x, z) ∧
E(z, y)) ∧ x 6= y accepting all positions with a distance of 2 from the position of y (T
contains no self-loops). In the example from Figure 1 we have Jϕ(x ; u5)KT (u) = + if
and only if u ∈ {u1, u4, u6, u13, u14, u15, u16, u17}. This hypothesis is consistent with S as
it accepts all positive and none of the negative examples from S. The formula ψ(x) =
∃ zE1(z, x) defines another consistent hypothesis with Jψ(x)KT (u) = + if and only if u ∈
{u2, u4, u7, u9, u11, u12, u13, u15}.

The quantifier rank qr(ϕ) of a formula ϕ is the maximal nesting depth of quantifiers in ϕ.
As every set S+ ⊆ V (T) is definable by a (long enough) MSO formula ϕ, we restrict our
study to sets which are definable by formulas ϕ(x ; y1, . . . y`) with qr(ϕ) ≤ q where q and `
are considered to be part of the problem. Restricting q and ` reduces the risk of overfitting
as such restricted formulas can only memorize a bounded number of positions and thus, on
larger training sets, have to exploit more general patterns in the data.

Our framework naturally admits two different learning problems. In model learning we
assume that there is a consistent classifier Jϕ(x ; v̄)KT with v̄ ∈ V (T)` and qr(ϕ) ≤ q, but
only q and ` are given to the learning algorithm. This reflects the assumption that there is a
simple, as expressed by the choice of q and `, but unknown pattern behind the classification
of the training examples from S. In parameter learning the formula ϕ of a consistent classifier
Jϕ(x ; v̄)KT is fixed. The learning algorithm is not allowed to modify ϕ and has to find a
consistent parameter setting v̄ ∈ V (T)`. This variant reflects the case where we have a
general idea about how the solution looks like, but are missing the details. Counterintuitively,
parameter learning is the harder problem: the restriction to a specific formula ϕ might
impose (unnecessary) restrictions on the parameters. An edifying example is the parameter
learning problem on a background structure T with a singleton unary relation R, using
the formula ϑ(x ; y) = R(y) and a training set S = {(u,+)} for an arbitrary u ∈ V (T). In
this example, for any fixed traversal strategy of the learning algorithm on V (T), the single
possible parameter can be placed in the position which is evaluated last. For the associated
model learning problem, a possible solution would be to return the formula ψ(x) = true
without parameters, which defines a hypothesis consistent with S. In the example given

ICDT 2019

24:6 Learning Definable Hypotheses on Trees

Figure 2 From left to right: Exploration of a tree using neighborhood queries starting from an
example node. The dark blue node is the one on which the neighborhood query has been performed
last.

in Figure 1, a learning algorithm for the model learning problem would be free to choose
between any consistent hypothesis, such as the example formulas ϕ(x ; u5) and ψ(x) given
above. In the parameter learning problem with the formula ϕ(x ; y), the (only) consistent
output is the assignment y = u5.

In practice, whenever we want to evaluate a definable hypothesis Jϕ(x ; v̄)KT , we have
to solve an instance of the model checking problem for the formula ϕ over the structure T .
For the case of a fixed MSO formula ϕ(x ; ȳ) on a tree T , there is an evaluation strategy in
O(|T |) using tree automata, see for example [33], while a quantifier-free formula ϑ can be
evaluated in time O(|ϑ|).

2.2 Access Model
A sublinear learning algorithm is unable to read the whole background structure during its
computation. We therefore model the access to the background structure by oracles.

Relation Oracles. For a k-ary relation R, the corresponding oracle returns on input of
ū ∈ V (T)k whether ū ∈ R holds in T .

Neighborhood Oracle. On input of a node u ∈ V (T), returns the 1-neighborhood of u in T .

In a binary tree, the 1-neighborhood N of a node u consists of u, its parent and its child
nodes. In the unranked case N(u) consists of u as well as its left and right sibling, first
child and parent. This access model is called local access as the tree can only be explored
by following edges. Directly jumping to the closest node that is in a relation R or to the
last child of an unranked node is not possible in this access model. In practice, those oracles
can be implemented using random access on the background tree T . A learning algorithm
using local access starts with all nodes occurring in the training set S and then explores the
background tree T using the neighborhood and relation oracles. Figure 2 illustrates how the
learning algorithm can explore the background tree using subsequent neighborhood queries
on the topmost node. The neighborhood queries return the vertices, while the relation queries
clarify directions and labels.

2.3 PAC learning
It is known that under certain simplicity restrictions, a consistent learner generalizes well to
new and potentially unseen examples. For a probably approximately correct (PAC) learning
algorithm we have that for every ε and δ there is a size s ∈ N of the training set S such that
the error of the hypothesis under new examples is bounded by ε with a confidence level of 1−δ.
This is made formal in Equation (1). Let c∗ : V (T)→ {+,−} be the function that assigns the
correct classification to every node u ∈ V (T). Let the training set S ∈ 2V (T)×{+,−} be a set
of t examples (u, c∗(u)) chosen independently and identically distributed (i.i.d.) according to

E. Grienenberger and M. Ritzert 24:7

u

v

u1
+

u2
+

u3
+ · · ·

ul+1
+

v′

ul+2
−

ul+3
−

ul+4
− · · ·

u2l+2
−

. .
.

. .
.

. .
.

.

. .
.

..
. . . .

m

`+ 1 `+ 1

Figure 3 Sketch of the tree Tm parameterized by m and ` used in Lemma 4. Substituting the
nodes v and v′ by balanced binary trees results in the actual tree Tm.

a fixed distribution D. Let (u, c∗(u)) ∼ D and S ∼ D denote the random choices according
to D. Let HS : V (T) → {+,−} be the hypothesis returned by the learning algorithm on
input of the training set S. Then the PAC criterion is given by

Pr
S∼D

(
Pr

(u,c)∼D
(HS(u) 6= c∗(u)) ≤ ε

)
≥ 1− δ (1)

where the outer probability (the confidence) PrS∼D is taken over the training set S for which
the learning algorithm produces a hypothesis HS . The inner probability is the expected
error of the hypothesis HS for an example chosen according to the distribution D. For more
details on the PAC learning model, we refer to [34].

There is a very general result from learning theory that shows that for any hypothesis
class with bounded Vapnik-Chervonenkis (VC) dimension a consistent learner can be turned
into a PAC learning algorithm by providing a large enough training set (see [35] or [6]). For
the case of MSO definable hypotheses on trees, the VC dimension is bounded (see [18]).
Hence, there is a sufficient size s of S, depending polynomially on 1

ε and 1
δ , to satisfy the

PAC criterion. Using the algorithms from our Theorems 5 and 6, each providing a consistent
learning algorithm for learning formulas on trees, we have the following corollary.

I Corollary 3. There are (efficient) PAC learning algorithms for of learning quantifier-free
formulas and monadic second-order formulas over trees.

The running time of those PAC learning algorithms follows directly from the corresponding
theorems. A PAC learning algorithm is called efficient if the dependence of the running time
on the number of training examples is polynomial which is the case in Theorem 5 and 6.

3 Quantifier-free formulas

The class of quantifier-free formulas Φσ[n] with n free variables over the signature σ is defined
as the fragment of first-order logic without quantifiers. This means that every formula
ϕ(x̄) ∈ Φσ[n] can only compare the free variables using a boolean combination of atomic
properties from σ. We exploit this limitation to obtain a learning algorithm for quantifier-free
formulas which runs in constant time with respect to T under a slightly relaxed notion of
local access. We start by showing that there is no sublinear learning algorithm using the
notion of local access as defined in Section 2.

I Lemma 4. For every ` ∈ N, there is no consistent learning algorithm using local access
that, given a binary tree T and a training set, returns a consistent hypothesis Jϕ(x ; v̄)KT with
ϕ ∈ Φσ[`+ 1] in time o(|T |).

ICDT 2019

24:8 Learning Definable Hypotheses on Trees

Proof sketch. Let L be such a sublinear learning algorithm. Consider the family of trees
(Tm)m∈N shown in Figure 3 with ` fixed to the number of parameters used in the formulas re-
turned by L. We define the training set S = {(u1,+), . . . (u`+1,+), (u`+2,−), . . . , (u2`+2,−)}
containing 2`+ 2 examples. In Figure 3, the positions of the nodes ui are indicated by their
classifications + or −. The size of Tm is linear in m for any fixed ` and therefore we can
choose m such that the running time of L on Tm is smaller than m. This is possible since L
runs in time o(|Tm|).

The formula ϕ(x;y) = y < x with parameter v as indicated in Figure 3 is consistent with S.
Let ψ(x ; ȳ) ∈ Φσ[`+ 1] be the formula and v1, . . . , v` ∈ V (Tm) the parameters returned by L
on input Tm and S. Each parameter vi is an ancestor to exactly one example from S as the
algorithm may only return nodes as parameters it has seen during the computation and every
leaf is an example node. Every quantifier-free formula can only compare the free variables (x
and ȳ) directly using relations from σ. Therefore, independent of ψ, every parameter has
the same effect on every example but (possibly) the one below the parameter. Since there
are ` + 1 positive and negative examples, at least one of them will be misclassified which
proves the lemma. Intuitively this holds as all paths locally look identical and the algorithm
is unable to detect on which side of the tree an example lies. J

In the following we extend the notion of local access to cope with the globality of the
ancestor relation.

3.1 Extended local access
Our next result states that synthesizing the parameters for quantifier-free formulas is really
the core of the linear complexity. Extended local access extends local access by a common
ancestor oracle:
Common Ancestor Oracle. On input of two nodes u and v, it returns the lowest node w

such that w ≤ u and w ≤ v (their lowest common ancestor)

The consistent parameter v for the counterexample from Theorem 4 can easily be found
using extended local access. This is generalized in the following theorem showing that for
quantifier-free formulas the gap between linear time and sublinear learnability is due to the
computation of common ancestors. Let ` ∈ N be an integer.

I Theorem 5. There is a learning algorithm that, on input of a tree T and a training set S,
outputs a consistent hypothesis Jϕ(x ; v̄)KT , where ϕ ∈ Φσ[1 + `] and v̄ ∈ V (T)` for binary
trees and ϕ ∈ Φσ[1 + 2`] (v̄ ∈ V (T)2`) for unranked trees. This algorithm uses extended local
access and runs in time O

(
|S|2 + |S|`|S|

)
.

Note that for unranked trees we consider the alphabet σ = {E1, E2,≤,�}. The additional
relation � is a partial order, defined as the reflexive transitive closure of E2. It strictly
increases the expressive power of quantifier-free formulas and accounts for need of additional
parameters.

Proof sketch. We only sketch the proof for binary trees here. The extension to unranked
trees uses the same general idea, but the candidate set for the parameters is slightly different.

The proof uses the concepts of sufficient sets and relative positions. Given a signature
σ. Then v1 and v2 share the same relative position if for every binary R ∈ σ and every
x ∈ S we have that R(x, v1) ≡ R(x, v2) and R(v1, x) ≡ R(v2, x). A sufficient set W ⊆ V (T)
for a training set S and a set of formulas Φ (such as all quantifier-free formulas) is a set
of nodes such that whenever there is a consistent hypothesis Jϕ(x ; v̄)KT with ϕ ∈ Φ and

E. Grienenberger and M. Ritzert 24:9

v̄ ∈ V (T)`, then there exists another consistent hypothesis Jψ(x ; v̄′)KT with ψ ∈ Φ and
v̄′ ∈W `. This means that we can restrict ourself to search for consistent parameters from
such a sufficient set. For the case of quantifier-free formulas, a set W is sufficient for S if
it contains a representative for every possible relative position. Let W be defined by first
closing S under lowest common ancestors and then taking the 2-neighborhood of that set.
Then W is linear in |S| since we consider binary trees and W is sufficient which can be shown
by a simple case-distinction.

The learning algorithm then uses a brute-force process and tests every possible quantifier-
free formula for every parameter setting v̄ ∈ W ` for consistency. It is bound to find a
consistent hypothesis since W is a sufficient set. The set W can be computed in time O(|S|2),
and each evaluation of a quantifier-free formula uses constant time, resulting in the total
runtime of O

(
|S|2 + |S|`|S|

)
. J

4 Monadic Second-Order Logic

In this section we consider learning of unary MSO formulas on trees. The ordering relation ≤
used in the previous chapter can be expressed in MSO, thus we do not include it in the
signature here. That is we have a binary tree T and want to learn a unary relation R ⊆ V (T)
using an MSO formula ϕ(x ; y1, . . . , y`) and ` parameters v1, . . . , v` ∈ V (T). We aim for
simple concepts and therefore restrict the number of parameters ` and the quantifier rank q
of ϕ. Let MSO[q, `+ 1] be the class of MSO formulas with `+ 1 free variables and quantifier
rank up to q. Note that the class MSO[q, `+ 1] is finite up to equivalence for every fixed q
and `, such that we can iterate over all formulas from this set to find a consistent one.

We present an algorithm that separates the task of analyzing the background structure
and building an index from the task of finding a consistent hypothesis based on that index.
Formally, we have an indexing phase in which the algorithm has local access to the tree T , but
not to the training set S, and produces an index I(T). In the learning phase, the algorithm
gets S and has local access to T and I(T). Based on that input, it produces a formula ϕ(x ; ȳ)
and a parameter configuration v̄ such that Jϕ(x ; v̄)KT is consistent with S. We call such an
algorithm an indexing algorithm, the time needed to build the index indexing time and the
time for the actual search of a consistent hypothesis based on that index search time. Note
that such an algorithm is especially useful when performing multiple similar learning tasks
on the same data as the index could be reused in that case. We show the following theorem
which implies Theorem 2 stated in the introduction.

I Theorem 6. Let q, ` ∈ N be fixed. Given a tree T and a training set S that is consistent
with an MSO formula ϑ(x ; ȳ) ∈ MSO[q, ` + 1], it is possible to find a consistent formula
ϕ(x ; ȳ) ∈ MSO[q, ` + 1] that is consistent with S in indexing time O(|T |) (without access
to S) and search time O(|S| log |T |).

Technically, we only consider binary trees, however, the results also extend to unranked
trees as there exist MSO interpretations between those classes increasing the quantifier-rank
of the resulting formula by 1.

4.1 Decomposing trees into strings
In order to apply techniques based on monoid structures we introduce the notion of path
decompositions. Given a tree T = (V (T), E(T),≤) and a partition P1, . . . , Pp of V (T). Let
T [Pi] be the induced substructure of Pi on T defined by restricting V (T), E(T) and ≤ to

ICDT 2019

24:10 Learning Definable Hypotheses on Trees

ur

u′
P2

w

Figure 4 Heavy path decomposition of a tree, solid lines indicate the different heavy paths, the
cut-off subtree of ur is shown in blue and the dependent subtree of w is shown by the orange shape.

the elements from Pi. We consider the case that each induced substructure T [Pi] is a string
which implies that ≤ restricted to Pi is a (non-reflexive) total order. Let furthermore T [u]≤
be defined as T [{w | u ≤ w}], that is we restrict T to the induced subtree rooted at u.

One special case of decompositions into strings are heavy path decompositions introduced
by Harel et al. [19]. We say that a node u ∈ V (T) is at least as heavy as v ∈ V (T) if
|{w | u ≤ w}| ≥ |{w | v ≤ w}|. That means that the heavier element is the one which is
the root of the larger induced subtree. Using this definition, we can define the heavy path
decomposition as follows.

The heavy path of T at u ∈ V (T) is a path (u0, u1, . . . , u`) such that u0 = u, the node u`
is a leaf and ui is the leftmost child of ui−1 that is at least as heavy as all other children
of ui−1 for every i ≤ `. Let T be a binary tree and P = (u0, . . . , u`) a heavy path. Then
the cut-off subtree at a node ui ∈ P with a child u′ 6∈ P is T [u′]≤. The dependent subtree
of a substring w ⊆ P consists of w and the union of the cut-off subtrees for every u ∈ w.
Note that the notions of dependent subtrees and cut-off subtrees refer to binary trees only.
The heavy path decomposition hp(T) = {P1, . . . , Pp} of T is constructed by first computing
P1 as the heavy path of T at its root and then recursively computing the heavy paths of
the cut-off subtrees for each u ∈ P1. In Figure 4 the heavy path decomposition of a tree is
shown. In this figure the blue box includes the cut-off subtree or the root ur, the node u′ is
the cut-off child of ur and the orange shape contains the dependent subtree of the string w.
We use the following property of this decomposition in our algorithm.

I Lemma 7 ([5]). Every path from the root of T to a node u ∈ V (T) touches at most log |T |
different heavy paths of the heavy path decomposition hp(T).

4.2 DFAs simulating DTAs
We now describe how we can use path decompositions such as hp(T) and deterministic finite
automata (DFAs) to simulate a tree automaton A on T as shown in [5].

Let T be a tree, hp(T) = {P1, . . . , Pp} its heavy path decomposition and A a tree
automaton with states Q. Let ρ be the run of A on T and Q′ = Q ∪̇ {q0}. We define a DFA
A and a function fρ : V (T)→ Σ×Q′ × {L,R} extending the labels of V (T) by annotations
about the state and direction of the cut-off subtree. Those extended labels from fρ allow us
to run a DFA A on hp(T) which simulates the tree automaton A on T .

I Lemma 8. Let ρ be the run of the DTA A on T and T ′ the tree we get from applying fρ
to every node of T . Then we have for every u ∈ Pi that A is in state q after reading T ′[Pi]
up to position u, if and only if ρ(u) = q.

E. Grienenberger and M. Ritzert 24:11

q4

q1 q4

q3

q2 q3

q1

q1 q1

(c, q1, L)

(a, q0, L) (b, q1, R)

(a, q3, R)

(b, q0, L) (c, q0, L)

(a, q1, R)

(a, q0, L) (a, q0, L)

ρ(T) : fρ(T) :

Figure 5 Applying the label transformation fρ to hp(T) for some tree T .

To match the evaluation order of bottom-up tree automata, the constructed DFA reads
the paths T ′[Pi] in reversed order, that is starting from the leaves and running towards the
root of T . The function fρ makes use of the run ρ of A on T and is defined as follows. For a
leaf u with label a in T we have fρ(u) = (a, q0,L). For an inner node u ∈ Pi with label a
and children u′ ∈ Pi and u′′ 6∈ Pi where u′′ is a right child of u we have fρ(u) = (a, ρ(u′′),R)
and correspondingly (a, ρ(u′′),L) if u′′ was a left child of u. Intuitively fρ stores the state of
the DTA A on the cut-off subtree at u in the label of u. Figure 5 shows an example for fρ
given a tree T and a run ρ of a DTA on T .

Let A = (Q,Σ, δ, F) be a deterministic bottom-up tree automaton and
hp(T) = {P1, . . . , Pp} the heavy path decomposition of T . We assume that the transi-
tion relation δ of A is split into δ0 : Σ→ Q for leaf nodes and δ2 : Σ×Q×Q→ Q for inner
nodes. We now define the DFA A = (Q′,Σ × Q′ × {L,R}, δ′, q0, F) where Q′ = Q ∪̇ {q0}
with Q,Σ and F taken from A. The transition relation δ′ of the DFA A is defined as follows:

δ′(q0, (a, q0, d)) = δ0(a) for all a ∈ Σ, d ∈ {L,R}
δ′(p, (a, q,L)) = δ2(a, q, p) for all a ∈ Σ, p, q ∈ Q
δ′(p, (a, q,R)) = δ2(a, p, q) for all a ∈ Σ, p, q ∈ Q

Lemma 8 holds as at every position u ∈ Pi the DFA A has access to the same information
as A through the extended alphabet.

Let <hp be the partial order showing dependence between heavy paths of hp(T). That is,
we have Pj <hp Pi if Pj is part of the dependent subtree of Pi. For every node u ∈ Pi with
cut-off child u′ ∈ Pj , the state ρ(u′) only depends on Pj with Pj <hp Pi such that we can
recursively compute ρ using A on hp(T) together with Lemma 8. We say that A accepts a
tree T if it accepts the string T [P1] where P1 ∈ hp(T) contains the root of T .

4.3 Monoids and factorization trees
A monoidM = {M, ·M , 1M} consists of a set of elementsM and an associative multiplication
operator ·M with neutral element 1M . We usually refer to the monoidM by its set of elements
M and write m1m2 or m1 ·m2 for m1 ·M m2. A monoid morphism h : M →M ′ is a function
that translates a monoid in a consistent way, meaning that we have h(m1 ·m2) = h(m1)·h(m2)
and h(1M) = 1M ′ .

The free monoidMfree = {Σ∗, ·free, ε} consists of all finite strings over Σ with concatenation
as multiplication and the empty word ε as neutral element. A language L over Σ is finitely
monoid recognizable if there is a finite monoid M , a monoid morphism h : Mfree →M and a
subset F ⊆ M such that w ∈ L if and only if h(w) ∈ F . A language L is finitely monoid
recognizable, if and only if it is regular [29]. The transition monoid M of a DFA A with

ICDT 2019

24:12 Learning Definable Hypotheses on Trees

state space Q is defined as functions m : Q→ Q with composition as multiplication, and the
identity as neutral element. The corresponding monoid morphism hM maps a string w ∈ Σ∗
to the function m : Q→ Q modelling the effect of reading w on the states of A. A monoid
element m is productive if there are m′,m′′ with m′ ·m ·m′′ ∈ F . For further details on the
equivalence between finite monoids and DFAs see for example [11, 7].

Every path Pi ∈ hp(T) induces a string T [Pi] over Σ which we interpret as an element of
the free monoid over the tree alphabet Σ. In the following we will not explicitly distinguish
between the path Pi, the corresponding string T [Pi] and the monoid element.

A factorization tree of a sequence of monoid elements s = m1,m2, . . . ,mn from a monoid
M is a tree Fs where each node u ∈ V (Fs) is labeled by an element mu from M and the
sequence of leaf labels is s. For each inner node u ∈ V (Fs) labeled by mu with children
u1, . . . , ui which are labeled by mu1 , . . . ,mui

we have mu = mu1mu2 · · ·mui
. By choosing a

balanced binary tree for Fs we get a factorization tree of height dlog |s|e. An alternative
are Simon factorization trees, where each node u is either a leaf, a binary node or satisfies
the property that all child nodes u1, . . . , un of u share the same idempotent label mu with
mu = mu ·mu.

I Theorem 9 (Simon [31]). For every sequence s = [m1,m2, . . . ,mn] of monoid elements
from M , there is a Simon factorization tree of height at most 3|M |. This factorization tree
can be computed in time n · poly(|M |).

In a set of updates U = {(i1,m1), . . . , (is,ms)} with ij ∈ N and mj ∈ M each tuple
consists of an index and the new monoid element for this index. Applying U to a sequence of
monoid elements s results a sequence sU with sU [ij] = mj for j ∈ {1, . . . , s} and sU [j] = s[j]
for all j 6∈ {i1, . . . , is} where s[i] denotes the ith element of the sequence s. We use the
following lemma from [16] to apply such updates in Simon factorization trees.

I Lemma 10 ([16]). Given a Simon factorization tree F of height h over a sequence s
of elements from M and a set U of updates. There is an algorithm returning a Simon
factorization tree of height 2h+ 3|M | for the updated sequence sU in time O(|U |h+ |U ||M |).

4.4 Constructing the necessary monoids and monoid morphisms
In the following we construct and analyze the monoid structure used in the learning algorithm
in Section 4.5. Let let T be a tree over Σ and T1 the same tree over Σ1 = Σ× 2{y1,...,y`} ×
{?, N, P} including information about the free variables of a formula ψ(P,N, ȳ) in the labels.
Let Σ2 = Σ1 ×Q′ × {L,R} be the alphabet from Section 4.2 which extends Σ1 in order to
work with string automata instead of tree automata. Let fρ : V (T) → Σ2 be the labeling
function used in Lemma 8 and T2 the tree that results from T by relabeling its nodes using fρ.
Note that the concrete states Q′, and therefore the whole construction, depend on the formula
ψ that performs the consistency check.

I Lemma 11. Let ϕ(x ; ȳ) be an MSO formula and A a tree automaton for ϕ with states Q.
Let T be a tree over Σ with hp(T) = {P1, . . . , Pn} and S a training set. Then there is

an alphabet Σ3,
a construction transforming T to a tree T3 over Σ3 depending on A

a monoid M̂ with a set F ⊆ M̂ of final elements
and a monoid morphism ĥ : Σ∗3 → M̂

such that: ĥ(T3[P1]) ∈ F if and only if there exists v̄ ∈ V (T)` such that Jϕ(x ; v̄)KT is
consistent with S.

E. Grienenberger and M. Ritzert 24:13

Proof. We start by defining the formula ψ(P,N, ȳ) which checks for a given training set
S, split into positive (P) and negative examples (N), whether for some parameter vector
v̄ ∈ V (T)` the hypothesis Jϕ(x ; v̄)KT is consistent with S:

ψ(P,N, ȳ) = ∀x(P (x)→ ϕ(x, ȳ)) ∧ (N(x)→ ¬ϕ(x, ȳ)).

The computation of the final monoid M̂ uses the following intermediate constructions.
1. DTA A on Σ1 = Σ× 2{y1,...,y`} × {?, N, P}
2. DFA A on Σ2 = Σ× 2{y1,...,y`} × {?, N, P} ×Q× {L,R}
3. Transition monoidM for A with final elements F ⊆M and monoid morphism h : Σ2→M
4. Monoid morphism h′ : Σ′2 →M with Σ′2 = Σ× 2{y1,...,y`} × {?, N, P} ×M× {L,R}
5. Monoid M̂ = 2M with elements m̂ ⊆ M for every m̂ ∈ M̂ and monoid morphism

ĥ : Σ3 = Σ× {?, N, P} × M̂ × {L,R} → M̂

The first step from ψ to the tree automaton A is a standard construction (see e.g. [9]) that
involves extending the tree alphabet Σ by unary relations for the free variables of ψ resulting
in the alphabet Σ1 = Σ×{P,N, ?}× 2{y1,...,y`}. The second step in the construction consists
of a translation from a DTA with states Q to a DFA with states Q′ = Q ∪̇ {q0} which uses
the construction from Lemma 8. The constructed DFA A is able to simulate a run of A on
the tree T2 over the alphabet Σ2 = Σ1 ×Q′ × {L,R} where T2 = T but the labels are given
by fρ from Lemma 8. The monoidM computed in the third step is the transition monoid
of A (for the construction see e.g. [33]), h : Σ2 →M is the corresponding monoid morphism
and F ⊆ M is the set of accepting monoid elements. In the fourth step we construct the
monoid morphism h′ that works on Σ′2 = Σ×2{y1,...,y`}×{?, N, P}×M×{L,R}; that is, we
substitute the component containing for every node u the state qu of A on the cut-off subtree
by a monoid element mu ∈M. Essentially this step works as we can extract the state qu on
the cut-off subtree at u from the monoid element mu and then call the morphism h. With
M and h′ we can check whether the hypothesis Jϕ(x ; v̄)KT for some v̄ ∈ V (T)` is consistent
with the training set S.

In the fifth and last step we construct the monoid M̂ and the monoid morphism ĥ based
onM and h′ such that ĥ can be used to check whether there is a consistent set v̄ ∈ V (T)` of
parameters. We then use ĥ and M̂ in the actual learning algorithm. Let M̂ = (2M, ·M̂, {1M})
be a structure with multiplication m̂1 ·M̂ m̂2 = {m1 ·M m2 | m1 ∈ m̂1,m2 ∈ m̂2}. M̂ is
a monoid as it is closed under multiplication and {1M} ∈ M̂ is neutral for ·M̂ because
1M ∈ M is the neutral element ofM. Let Σ3 := Σ × {P,N, ?} × 2M × {L,R}. The final
monoid morphism ĥ : Σ∗3 → M̂ is given using the morphism h′. For (a, m̂, d) ∈ Σ3 with
a ∈ Σ× {P,N, ?} and d ∈ {L,R} we let

ĥ((a, m̂, d)) =
{
h′((a, ȳ,m, d)

∣∣∣ ȳ ∈ 2{y1,...,y`},m∈ m̂
}
.

For a given position u ∈ V (T) labeled (a, m̂, d) ∈ Σ3, the definition of ĥ can be read as
calling h′ for every possible distribution of parameters in the cut-off subtree indicated by
m ∈ m̂ and every choice of parameters ȳ for that position. For a word w ∈ Σ∗3 we split the
word into its positions w1, . . . , wn and compute the product m̂ =

∏n
i=1 ĥ(wi) of the monoid

elements of those. This is possible since ĥ is a monoid morphism from the free monoid to M̂.
Note that the interpretation with the cut-off subtrees only makes sense for strings w = T3[Pi]
defined by heavy paths or substrings of such a w.

Let w be the string from the heavy path P1 containing the root of T . Since ĥ tests all
possible distributions of parameters in the dependent subtree, we know that if ĥ(w) ∩ F 6= ∅
then there is a consistent parameter setting. Correspondingly there is no consistent parameter
setting if m̂r ∩ F = ∅. J

ICDT 2019

24:14 Learning Definable Hypotheses on Trees

We now categorize the elements fromM constructed in the third step of the proof of
Lemma 11. Since A only accepts trees in which every parameter, indicated by a unary
relation, is assigned exactly once we get that every productive monoid element m ∈ M
contains the information which parameters have been read. This holds as otherwise there
was an accepted tree where a single parameter has been assigned multiple times or not at
all. Thus we can assign a set of parameters to every productive monoid element. We now
formalize this idea.

I Lemma 12. There is a function p :M→ 2{y1,...,y`} ∪{⊥} that assigns a set ȳ ∈ 2{y1,...,y`}

of parameters to each productive monoid element fromM in a consistent way. That is, for a
tree T and a substring w of a path in hp(T) with h′(w) = m, exactly the parameters p(m)
occur in the dependent subtree of w.

4.5 Algorithms
Using the monoidsM and M̂ as well as the monoid morphism ĥ from Lemma 11, we can
compute a consistent parameter setting v̄ for a given formula ϕ(x ; ȳ) and a training set S.
This proves Theorem 6. The presented algorithm is split in three parts, where the first
part is done independent of S in the indexing phase of the algorithm. The remaining two
parts, updating according to S and tracing the parameters, together make up the search
phase of the indexing algorithm. The indexing part is linear in |T |, while the search phase
takes time O((|S| + `) log |T |) where the summands are for the updating and the tracing
algorithm respectively. We assume that the underlying formula ϕ is fixed and therefore
ignore the factors depending only on ϕ but have argued that those can be non-elementary
due to exploding statespaces of the constructed automata.

The indexing algorithm

The indexing algorithm starts by computing the monoid M̂ from ϕ as described in Lemma 11
as well as the heavy path decomposition hp(T). It outputs the set of Simon factorization trees
over M̂ for each Pi from hp(T) computed by the algorithm from [31]. Technically, the order
of the computation of the factorization trees has to be consistent with the dependence relation
<hp as a label au ∈ Σ3 of a node u ∈ V (T) contains the monoid element m̂ ∈ M̂ of the
cut-off subtree at u. As the computation of M̂ only depends on ϕ, the overall computation
is dominated by the computation of the factorization trees in |T | · poly(|M̂|).

The update algorithm

In the update part of the learning algorithm we add the information from S to the set of
Simon factorization trees computed in the indexing part of the algorithm. The updates
are performed bottom-up, that is we change the labels in the leafs each factorization tree
belonging to positions from S and then propagate this information towards the root of T .
The presented algorithm works in two stages: an outer stage that collects all updates for
each heavy path and an inner stage that actually performs the update.

The outer stage orchestrates the update process by computing the set of updates UPi
for

every Pi ∈ hp(T). The set UPi
consists of updates for every u ∈ Pi occurring in S as well as

(possible) updates from paths Pj with Pj <hp Pi due to previous updates. Updates originating
from S change the component {P,N, ?} of Σ3 while updates induced from changes in the
cut-off subtree of u ∈ Pi change the monoid element m̂ in the label of u. By updating the
factorization trees in an order consistent with <hp every heavy path needs up be updated at

E. Grienenberger and M. Ritzert 24:15

most once. The inner algorithm which actually performs the update is taken from Lemma 10.
As every path from a node to the root touches at most logarithmically many heavy paths as
stated in Lemma 7, the total runtime of the update part is in O(|S| log |T |).

The tracing algorithm

The tracing algorithm gets the updated set of factorization trees F = FP1 , . . . , FPn
and

computes a set of parameters v̄ such that Jϕ(x ; ȳ)KT is consistent with S. Let P1 contain the
root of T . The algorithm works in a top down manner, that is it starts in the root of FP1 and
traces the parameters downwards using Lemma 12. We again divide the algorithm into an
inner and an outer algorithm where the inner algorithm traces the parameters similar to [16]
in a single factorization tree and the outer algorithm orchestrates the search within F .

Let m̂r ∈ M̂ be the monoid element reached in the root of FP1 . The tracing starts by
choosing the (initial) local target mr ∈ m̂r ∩F for the root of FP1 . Within each factorization
tree FPi

at a position u with local target mu we select monoid elements m1,m2 from the
children u1, u2 of u such that m1m2 = mu using a brute-force test. The tracing continues for
those ui where p(mi) 6= ∅ with mi as local target at ui until the leaves of FPi

are reached and
outputs pairs (u,mu) ∈ V (T)×M with p(mu) 6= ∅. Then the outer part of the algorithm
decides which of the parameters p(mu) are placed in Pi and which are further traced in cut-off
subtrees with Pj <hp Pi. The algorithm then selects a target monoid element m ∈ M for
the root of FPj and calls the inner tracing algorithm until every parameter is placed in some
heavy path (which happens eventually as T is finite). The choice of the target monoid element
m for the root of FPj

is done by testing at the node u ∈ Pi every possibility of reachable
monoid m in the cut-off subtree while fixing the remaining parameters K = p(mu) \ p(m) at
u. This check is possible since the label of u contains a monoid element m̂u that consists of
all reachable monoid elements in the cut-off subtree of u.

The parameter configuration v̄ found this way is consistent with S as it is computed
in a way that h′(T2[P1]) = mr ∈ F which is accepted. For each parameter yi, the inner
algorithm uses constant time within each factorization tree and is called at most log |S|
times by Lemma 7 stating that every path from a node u to the root ur touches at most
log |S| heavy paths. Together with the indexing and update algorithm this is means that
we can find a consistent parameter setting v̄ for ϕ in indexing time O(|T |) and search time
O(log |T | · |S|).

5 Online learning of MSO formulas

For Theorem 6 we assumed that after an indexing phase the complete training set S is known
and the learning task is to find a hypothesis consistent with S. We now lift this result to an
online setting where we again have a linear indexing phase and then on input of new batch
of examples Si the algorithm updates its hypothesis H such that Hi is consistent with all
examples S =

⋃
i Si it has seen so far. This online setting allows examples to arrive over

time which is natural for many tasks with human interaction. Note that the algorithm can
also handle label updates of the nodes as both types of updates induce a label change in the
tree T . Label changes are a common type of update in a database setting since updating the
attributes of an already present entity can be modeled by an update of the entity’s label.

An online learning algorithm is an algorithm that takes as input a background structure T ,
an index I(T) and a sequence S = (u1, c1), (u2, c2), . . . of training examples and outputs for
every i ≤ |S| a hypothesis Hi = Jϕ(x ; v̄)KT consistent with Si = {(u1, c1), . . . , (xi, ci)}.

ICDT 2019

24:16 Learning Definable Hypotheses on Trees

I Theorem 13. Let q, ` ∈ N. There is an indexing algorithm A that, given a tree T computes
an index A(T) and an online learning algorithm B that, given T, I(T), and an MSO[q, `+ 1]-
realizable sequence S = (u1, c1), . . . for T , maintains a consistent hypothesis Hi = Jϕ(x ; v̄)KT
for every i ∈ N such that A runs in time O(|T |) and B runs in time O(log2(|T |)) per update.

This can be achieved by substituting Simon factorization trees by the conceptually simpler
binary factorization trees in the construction. This implies two main differences. First, we
can update labels arbitrarily often without changing the structure of the factorization tree
(which does not hold for Simon factorization trees due to the idempotent elements). Second,
the height of each factorization tree is logarithmic in its length, i.e. at most logarithmic
in T . Therefore it takes logarithmic time to update each path and since a single update may
involve updating logarithmically many paths this results in a runtime of O(|Si| log2(|T |)) per
update.

6 Conclusion

We considered the setting of learning quantifier-free and MSO formulas on trees. All learning
algorithms provided in this paper search for consistent hypotheses, thus they can be turned
into PAC learning algorithms by providing a large enough training set.

We assumed the background structures to be huge and therefore have been researching
sublinear algorithms which access to the background structures through the local access
oracles. The first result is that even for quantifier free formulas there is no sublinear learning
algorithm. However, there is a sublinear learning algorithm when given access to the largest
common ancestor of two nodes. Our main result is a learning algorithm for unary MSO
formulas which uses a linear indexing phase to build up an auxiliary structure (the index)
and admits a logarithmic learning time with local access to that index.

Further research questions might include lifting the result to higher dimensions where
examples consist of pairs or tuples of nodes instead of single positions in the tree. Another
direction of research could be to extend our results for tree-like structures. For structures
of bounded tree-width the approach could use a similar structure as the one from [12]. A
slightly different research question would be to look for approximate solutions where only a
certain (relative) amount of examples needs to be consistent. Such approaches could also
deal with faulty examples, which occur quite regularly in practice.

References
1 A. Abouzied, D. Angluin, C.H. Papadimitriou, J.M. Hellerstein, and A. Silberschatz. Learning

and verifying quantified boolean queries by example. In R. Hull and W. Fan, editors, Proceedings
of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pages 49–60, 2013.

2 D. Angluin. On the Complexity of Minimum Inference of Regular Sets. Information and
Control, 39(3):337–350, 1978.

3 D. Angluin. Learning Regular Sets from Queries and Counterexamples. Information and
Computation, 75(2):87–106, 1987.

4 D. Angluin. Negative Results for Equivalence Queries. Machine Learning, 5:121–150, 1990.
5 A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental validation of XML documents.

ACM Trans. Database Syst., 29(4):710–751, 2004.
6 A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal of the ACM (JACM), 36:929–965, 1989.
7 M. Bojańczyk. Algorithms for regular languages that use algebra. SIGMOD Record, 41(2):5–14,

2012.

E. Grienenberger and M. Ritzert 24:17

8 A. Bonifati, R. Ciucanu, and S. Staworko. Learning Join Queries from User Examples. ACM
Trans. Database Syst., 40(4):24:1–24:38, 2016.

9 J Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

10 W.W. Cohen and C.D. Page. Polynomial Learnability and Inductive Logic Programming:
Methods and Results. New generation Computing, 13:369–404, 1995.

11 T. Colcombet. Green’s Relations and Their Use in Automata Theory. In Language and
Automata Theory and Applications - 5th International Conference, LATA 2011, Tarragona,
Spain, May 26-31, 2011. Proceedings, volume 6638 of Lecture Notes in Computer Science,
pages 1–21. Springer, 2011.

12 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

13 F. Drewes and J. Högberg. Learning a regular tree language from a teacher. In Developments
in Language Theory, pages 279–291. Springer, 2003.

14 P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using decision trees and
implication counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 499–512, 2016.

15 E.M. Gold. Complexity of Automaton Identification from Given Data. Information and
Control, 37(3):302–320, 1978.

16 M. Grohe, C. Löding, and M. Ritzert. Learning MSO-definable hypotheses on strings. In
International Conference on Algorithmic Learning Theory, ALT 2017, 15-17 October 2017,
Kyoto University, Kyoto, Japan, pages 434–451, 2017.

17 M. Grohe and M. Ritzert. Learning first-order definable concepts over structures of small
degree. In Proceedings of the 32nd ACM-IEEE Symposium on Logic in Computer Science,
2017.

18 M. Grohe and G. Turán. Learnability and definability in trees and similar structures. Theory
of Computing Systems, 37(1):193–220, 2004.

19 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
siam Journal on Computing, 13(2):338–355, 1984.

20 C. Jordan and L. Kaiser. Machine Learning with Guarantees using Descriptive Complexity
and SMT Solvers. ArXiv (CoRR), 1609.02664 [cs.LG], 2016. arXiv:1609.02664.

21 M.J. Kearns and L.G. Valiant. Cryptographic Limitations on Learning Boolean Formulae and
Finite Automata. Journal of the ACM, 41(1):67–95, 1994.

22 J.-U. Kietz and S. Dzeroski. Inductive Logic Programming and Learnability. SIGART Bulletin,
5(1):22–32, 1994.

23 C. Löding, P. Madhusudan, and D. Neider. Abstract Learning Frameworks for Synthesis. In
M. Chechik and J.-F. Raskin, editors, Proceedings of the 22nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 9636 of Lecture
Notes in Computer Science, pages 167–185. Springer Verlag, 2016.

24 S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–318, 1991.
25 S.H. Muggleton, editor. Inductive Logic Programming. Academic Press, 1992.
26 S.H. Muggleton and L. De Raedt. Inductive Logic Programming: Theory and methods. The

Journal of Logic Programming, 19-20:629–679, 1994.
27 J. Oncina and P. García. Identifying regular languages in polynomial time. In Proceedings

of the International Workshop on Structural and Syntactic Pattern Recognition, volume 5 of
Machine Perception and Artificial Intelligence, pages 99—-108. World Scientific, 1992.

28 L. Pitt and M.K. Warmuth. The Minimum Consistent DFA Problem Cannot be Approximated
within any Polynomial. Journal of the ACM, 40(1):95–142, 1993.

29 M.O. Rabin and D.Scott. Finite Automata and Their Decision Problems. IBM Journal of
Research and Development, 3:114–125, 1959.

ICDT 2019

http://arxiv.org/abs/1609.02664

24:18 Learning Definable Hypotheses on Trees

30 R.L. Rivest and R.E. Schapire. Inference of Finite Automata Using Homing Sequences. In
Machine Learning: From Theory to Applications, volume 661 of Lecture Notes in Computer
Science, pages 51–73. Springer, 1993.

31 I. Simon. Factorization Forests of Finite Height. Theoretical Computer Science, 72(1):65–94,
1990.

32 Sławek Staworko and Piotr Wieczorek. Learning twig and path queries. In Proceedings of the
15th International Conference on Database Theory, pages 140–154. ACM, 2012.

33 W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, volume 3, pages 389–456. Springer-Verlag, 1997.

34 L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.
35 V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events

to their probabilities. Theory of Probability and its Applications, 16:264–280, 1971.
36 Y. Weiss and S. Cohen. Reverse Engineering SPJ-Queries from Examples. In Proceedings

of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 151–166. ACM, 2017.

	Introduction
	Our Results
	Related work

	Preliminaries
	Learning Model
	Access Model
	PAC learning

	Quantifier-free formulas
	Extended local access

	Monadic Second-Order Logic
	Decomposing trees into strings
	DFAs simulating DTAs
	Monoids and factorization trees
	Constructing the necessary monoids and monoid morphisms
	Algorithms

	Online learning of MSO formulas
	Conclusion

