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Abstract
Duplicates in data management are common and problematic. In this work, we present a translation
of Datalog under bag semantics into a well-behaved extension of Datalog, the so-called warded
Datalog±, under set semantics. From a theoretical point of view, this allows us to reason on bag
semantics by making use of the well-established theoretical foundations of set semantics. From a
practical point of view, this allows us to handle the bag semantics of Datalog by powerful, existing
query engines for the required extension of Datalog. This use of Datalog± is extended to give
a set semantics to duplicates in Datalog± itself. We investigate the properties of the resulting
Datalog± programs, the problem of deciding multiplicities, and expressibility of some bag operations.
Moreover, the proposed translation has the potential for interesting applications such as to Multiset
Relational Algebra and the semantic web query language SPARQL with bag semantics.
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1 Introduction

Duplicates are a common feature in data management. They appear, for instance, in the
result of SQL queries over relational databases or when a SPARQL query is posed over RDF
data. However, the semantics of data operations and queries in the presence of duplicates is
not always clear, because duplicates are handled by bags or multisets, but common logic-based
semantics in data management are set-theoretical, making it difficult to tell apart duplicates
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through the use of sets alone. To address this problem, a bag semantics for Datalog programs
was proposed in [21], what we refer to as the derivation-tree bag semantics (DTB semantics).
Intuitively, two duplicates of the same tuple in an intentional predicate are accepted as such
if they have syntactically different derivation trees. The DTB semantics was used in [2] to
provide a bag semantics for SPARQL.

The DTB semantics follows a proof-theoretic approach, which requires external, meta-level
reasoning over the set of all derivation trees rather than allowing for a query language that
inherently collects those duplicates. The main goal of this paper is to identify a syntactic
class of extended Datalog programs, such that: (a) it extends classical Datalog with stratified
negation and has a classical model-based semantics, (b) for every program in the class with
a bag semantics, another program in the same class can be built that has a set-semantics
and fully captures the bag semantics of the initial program, (c) it can be used in particular
to give a set-semantics for classical Datalog with stratified negation with bag semantics.

To this end, we show that the DTB semantics of a Datalog program can be represented
by means of its transformation into a Datalog± program [8, 10], in such a way that the
intended model of the former, including duplicates, can be characterized as the result of
the duplicate-free chase instance for the latter. The crucial idea of our translation from
bag semantics into set semantics (of Datalog±) is the introduction of tuple ids (tids) via
existentially quantified variables in the rule heads. Different tids of the same tuple will allow
us to identify usual duplicates when falling back to a bag semantics for the original Datalog
program. We establish the correspondence between the DTB semantics and ours. This
correspondence is then extended to Datalog with stratified negation. We thus recover full
relational algebra (including set difference) with bag semantics in terms of a well-behaved
query language under set semantics.

The programs we use for this task belong to warded Datalog± [17]. This is a particularly
well-behaved class of programs in that it properly extends Datalog, has a tractable conjunctive
query answering (CQA) problem, and has recently been implemented in a powerful query
engine, namely the VADALOG System [6, 7]. None of the other well-known classes of
Datalog± share these properties: for instance, guarded [8], sticky and weakly-sticky [11]
Datalog± only allow restricted forms of joins and, hence, do not cover Datalog. On the
other hand, more expressive languages, such as weakly frontier guarded Datalog± [5], lose
tractability of CQA. Warded Datalog± has been successfully applied to represent a core
fragment of SPARQL under certain OWL 2 QL entailment regimes [16], with set semantics
though [17] (see also [3, 4]), and it looks promising as a general language for specifying
different data management tasks [6]. We then go one step further and also express the bag
semantics of Datalog± by means of the set semantics of Datalog±.

Structure and main results. In Section 2, we recall some basic notions. In Section 7, we
conclude and discuss some future extensions. Our main results are detailed in Sections 3 – 6:

Our translation of Datalog with bag semantics into warded Datalog± with set semantics,
which will be referred to as program-based bag (PBB ) semantics, is presented in Section
3. We also show how this translation can be extended to Datalog with stratified negation.
In Section 4, we study the transformation from bag semantics into set semantics for
Datalog± itself. We thus carry over both the DTB semantics and the PBB semantics to
Datalog± with a form of stratified negation, and establish the equivalence of these two
semantics also for this extended query language. Moreover, we verify that the Datalog±
programs resulting from our transformation are warded whenever the programs to start
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with belong to this class.
In Section 5, we study crucial decision problems related to multiplicities. Above all, we
are interested in the question if a given tuple has finite or infinite multiplicity. Moreover,
in case of finiteness, we want to compute the precise multiplicity. We show that these
tasks can be accomplished in polynomial time (data complexity).
In Section 6, we apply our results on Datalog with bag semantics to Multiset Relational
Algebra (MRA). We also discuss alternative semantics for multiset-intersection and
multiset-difference, and the difficulties to capture them with our Datalog± approach.

2 Preliminaries

We assume familiarity with the relational data model, conjunctive queries (CQs), in particular
Boolean conjunctive queries (BCQs); classical Datalog with minimal-model semantics, and
Datalog with stratified negation with standard-model semantics, denoted Datalog¬s (see [1]
for an introduction). An n-ary relational predicate P has positions: P [1], . . . , P [n]. With
Pos(P ) we denote the set of positions of predicate P ; and with Pos(Π) the set of positions of
(predicates in) a program Π.

2.1 Derivation-Tree Bag (DTB) Semantics for Datalog and Datalog¬s

We follow [21], where tuples are colored to tell apart duplicates of a same element in the
extensional database (EDB), via an infinite, ordered list C of colors c1, c2, . . .. For a multiset
M , e ∈ M if mult(e,M) > 0 holds, where mult(e,M) denotes the multiplicity of e in M .
In this case, the n copies of e are denoted by e:1, . . . , e:n, indicating that they are colored
with c1, . . . , cn, respectively. So, col(e) := {e:1, . . . , e:n} becomes a set. A multiset M1 is
(multi)contained in multiset M2, when mult(e,M1) ≤ mult(e,M2) for every e ∈ M1. For a
multiset M , col(M) :=

⋃
e∈M col(e), which is a set. For a “colored” set S, col−1(S) produces

a multiset by stripping tuples from their colors.

I Example 1. For M = {a, a, a, b, b, c}, col(a) = {a:1, a:2, a:3}, and col(M) = S = {a:1, a:2, a:
3, b:1, b:2, c:1}. The inverse operation, the decoloration, gives, for instance: col−1(a:2) := a;
and col−1(S) := {a, a, a, b, b, c}, a multiset.

We consider Datalog programs Π with multiset predicates and multiset EDBs D. A
derivation tree (DT) for Π wrt. D is a tree with labeled nodes and edges, as follows:
1. For an EDB predicate P and h ∈ col(P (D)), a DT for col−1(h) contains a single node

with label h.
2. For each rule of the form ρ : H ← A1, A2, . . . , Ak; with k > 0, and each tuple
〈T1, . . . , Tk〉 of DTs for the atoms 〈d1, . . . , dk〉 that unify with 〈A1, A2, . . . , Ak〉 with mgu
θ, generate a DT for Hθ with Hθ as the root label, 〈T1, . . . , Tk〉 as the children, and ρ as
the label for the edges from the root to the children. We assume that these children are
arranged in the order of the corresponding body atoms in rule ρ.

For a DT T , we define Atoms(T ) as col−1 of the root when T is a single-node tree, and the
root-label of T , otherwise. For a set of DTs T: Atoms(T) :=

⊎
{Atoms(T ) | T ∈ T}, which is

a multiset containing D. Here, we write
⊎

to denote the multi-union of (multi)sets that keeps
all duplicates. If DT(Π, col(D)) is the set of (syntactically different) DTs, the derivation-tree
bag (DTB) semantics for Π is the multiset DTBS(Π, D) := Atoms(DT(Π, col(D))) (cf. [18]
for an equivalent, provenance-based bag semantics for Datalog.)

I Example 2. Consider the program Π = {ρ1, ρ2, ρ3} and multiset EDB D = {Q(1, 2, 3),
Q(1, 2, 5), Q(2, 3, 4), Q(2, 3, 4), T (4, 1, 2), T (4, 1, 2)}, where ρ1, ρ2, ρ3 are defined as follows:

ICDT 2019
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P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 3) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :1

P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 5) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :1

P (1, 2)
e
e
ee

%
%

%%
ρ1

R(1, 2)

ρ2

Q(1, 2, 3) :1

ρ1

S(1, 2)

ρ3

T (4, 1, 2) :2

Figure 1 Three (out of four) derivation-trees for P (1, 2) in Example 2.

ρ1 : P (x, y)← R(x, y), S(x, y); ρ2 : R(x, y)← Q(x, y, z); ρ3 : S(x, y)← T (z, x, y).
Here, col(D) = {Q(1, 2, 3):1, Q(1, 2, 5):1, Q(2, 3, 4):1, Q(2, 3, 4):2, T (4, 1, 2):1, T (4, 1, 2):2}.
In total, we have 16 DTs: (a) 6 single-node trees with labels in col(D) (b) 6 depth-two,
linear trees (root to the left, i.e. rotated in −90◦): R(1, 2)− ρ2 −Q(1, 2, 3):1. R(1, 2)− ρ2 −
Q(1, 2, 5):1. R(2, 3)− ρ2 −Q(2, 3, 4):1. R(2, 3)− ρ2 −Q(2, 3, 4):2. S(1, 2)− ρ3 − T (4, 1, 2):1.
S(1, 2)− ρ3 − T (4, 1, 2):2. (c) 4 depth-three trees for P (1, 2), three of which are displayed in
Figure 1. The 16 different DTs in DT(Π, col(D)) give rise to DTBS(Π, D) = D ∪ {R(1, 2),
R(1, 2), R(2, 3), R(2, 3), S(1, 2), S(1, 2), P (1, 2), P (1, 2), P (1, 2), P (1, 2)}.

In [22], a bag semantics for Datalog¬s was introduced via derivation-trees (DTs), extending
the DTB semantics in [21] for (positive) Datalog. This extension applies to Datalog programs
with stratified negation that are range-restricted and safe, i.e. a variable in a rule head or in
a negative literal must appear in a positive literal in the body of the same rule. If Π is a
Datalog¬s program with multiset predicates and multiset EDB D, a derivation tree for Π
wrt. D is as for Datalog programs, but with condition 2. modified as follows:
2’. Now let ρ be a rule of the form ρ : H ← A1, A2, . . . , Ak,¬B1, . . .¬B`; with k > 0 and

` ≥ 0. Let the predicate of H be of some stratum i and let the predicates of B1, . . . , B`
be of some stratum < i. Assume that we have already computed all derivation trees for
(atoms with) predicates up to stratum i− 1. Then, for each tuple 〈T1, . . . , Tk〉 of DTs for
the atoms 〈d1, . . . , dk〉 that unify with 〈A1, A2, . . . , Ak〉 with mgu θ, such that there is no
DT for any of the atoms B1θ, . . . , B`θ, generate a DT for Hθ with Hθ as the root label
and 〈T1, . . . , Tk,¬B1θ, . . . ,¬B`θ〉 as the children, in this order. Furthermore, all edges
from the root to its children are labelled with ρ.

Analogously to the positive case, now for a range-restricted and safe program Π in Datalog¬s
and multiset EDB D, we write DTBS(Π, D) to denote the derivation-tree based bag semantics.

I Example 3 (ex. 2 cont.). Consider now the EDB D′ = {Q(1, 2, 3), Q(1, 2, 5), Q(2, 3, 4),
Q(2, 3, 4), T (4, 1, 2)} (with one duplicate of T (4, 1, 2) removed from D), and modify Π to
Π′ = {ρ′1, ρ2, ρ3} with ρ′1 : P (x, y) ← R(x, y),¬S(x, y) (i.e., ρ′1 now encodes multiset
difference). Then, predicates Q,R, S, T are on stratum 0 and P is on stratum 1. The DTs
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for atoms with predicates from stratum 0 are as in Example 2 with two exceptions: there is
now only one single-node DT for T (4, 1, 2) and only one DT for S(1, 2).

For ground atoms with predicate P , we now only get two DTs producing P (2, 3) – derived
via two copies of R(2, 3), which in turn stem from the two copies of Q(2, 3, 4) in the EDB. In
contrast, P (1, 2) cannot be derived from either of the copies of R(1, 2) obtained from either
Q(1, 2, 3) or Q(1, 2, 5) in the EDB because S(1, 2) has a DT.

In total, we have 12 different DTs in DT(Π′, col(D′)) with DTBS(Π′, D′) = D′ ∪ {R(1, 2),
R(1, 2), R(2, 3), R(2, 3), S(1, 2), P (2, 3), P (2, 3)}. Notice that the DT semantics interprets
the difference in rule ρ′1 as “all or nothing”: when computing P (x, y), a single DT for S(x, y)
“kills” all the DTs for R(x, y) (cf. Section 6). For example, P (1, 2) is not derived despite the
fact that we have two copies of R(1, 2) and only one of S(1, 2).

2.2 Warded Datalog±

Datalog± was introduced in [9] as an extension of Datalog, where the “+” stands for the
new ingredients, namely: tuple-generating dependencies (tgds), written as existential rules of
the form ∃z̄P (x̄′, z̄) ← P1(x̄1), . . . , Pn(x̄n), with x̄′ ⊆

⋃
i x̄i, and z̄ ∩

⋃
i x̄i = ∅; as well as

equality-generating dependencies (egds) and negative constraints. In this work we ignore
egds and constraints. The “−“ in Datalog± stands for syntactic restrictions on rules to
ensure decidability of CQ answering.

We consider three sets of term symbols: C, B, and V containing constants, labelled nulls
(also known as blank nodes in the semantic web context), and variables, respectively. Let
T denote an atom or a set of atoms. We write var(T ) and nulls(T ) to denote the set of
variables and nulls, respectively, occurring in T . In a DB, typically an EDB D, all terms are
from C. In an instance, we also allow terms to be from B. For a rule ρ, body(ρ) denotes the
set of atoms in its body, and head(ρ), the atom in its head. A homomorphism h from a set
X of atoms to a set X ′ of atoms is a partial function h : C ∪B ∪V→ C ∪B ∪V such that
h(c) = c for all c ∈ C and P (h(t1), . . . , h(tk)) ∈ X ′ for every atom P (t1, . . . , tk) ∈ X.

We say that a rule ρ ∈ Π is applicable to an instance I if there exists a homomorphism
h from body(ρ) to I. In this case, the result of applying ρ to I is an instance I ′ = I ∪
{h′(head(ρ))}, where h′ coincides with h on var(body(ρ)) and h′ maps each existential
variable in the head of ρ to a fresh labelled null not occurring in I. For such an application
of ρ to I, we write I〈ρ, h〉I ′. Such an application of ρ to I is called a chase step. The chase
is an important tool in the presence of existential rules. A chase sequence for a DB D and a
Datalog± program Π is a sequence of chase steps Ii〈ρi, hi〉Ii+1 with i ≥ 0, such that I0 = D

and ρi ∈ Π for every i (also denoted Ii  ρi,hi Ii+1). For the sake of readability, we sometimes
only write the newly generated atoms of each chase step without repeating the old atoms.
Also the subscript ρi, hi is omitted if it is clear from the context. A chase sequence then
reads I0  A1  A2  A3  . . . with Ii+1 \ Ii = {Ai+1}.

The final atoms of all possible chase sequences for DB D and Π form an instance referred
to as Chase(D,Π), which can be infinite. We denote the result of all chase sequences up to
length d for some d ≥ 0 as Chased(D,Π). The chase variant assumed here is the so-called
oblivious chase [8, 19], i.e., if a rule ρ ∈ Π ever becomes applicable with some homomorphism
h, then Chase(D,Π) contains exactly one atom of the form h′(head(ρ)) such that h′ extends
h to the existential variables in the head of ρ. Intuitively, each rule is applied exactly once
for every applicable homomorphism.

Consider a DB D and a Datalog± program Π (the former the EDB for the latter). As
a logical theory, Π ∪D may have multiple models, but the model M = Chase(D,Π) turns
out to be a correct representative for the class of models: for every BCQ Q, Π ∪D |= Q

ICDT 2019
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iff M |= Q [14]. There are classes of Datalog± that, even with an infinite chase, allow for
decidable or even tractable CQA in the size of the EDB. Much effort has been made in
identifying and characterizing interesting syntactic classes of programs with this property
(see [8] for an overview). In this direction, warded Datalog± was introduced in [3, 4, 17], as
a particularly well-behaved fragment of Datalog±, for which CQA is tractable. We briefly
recall and illustrate it here, for which we need some preliminary notions.

A position p in Datalog± program Π is affected if: (a) an existential variable appears in
p, or (b) there is ρ ∈ Π such that a variable x appears in p in head(ρ) and all occurrences
of x in body(ρ) are in affected positions. Aff(Π) and NonAff(Π) denote the sets of affected,
resp. non-affected, positions of Π. Intuitively, Aff(Π) contains all positions where the chase
may possibly introduce a null.

I Example 4. Consider the following program:

∃z1 R(y1, z1) ← P (x1, y1) (1)
∃z2 P (x2, z2) ← S(u2, x2, x2), R(u2, y2) (2)

∃z3 S(x3, y3, z3) ← P (x3, y3), U(x3). (3)

By the first case, R[2], P [2], S[3] are affected. By the second case, R[1], S[2] are affected.
Now that S[2], S[3] are affected, also P [1] is. We thus have Aff(Π) = {P [1], P [2], R[1], R[2],
S[2], S[3]} and NonAff(Π) = {S[1], U [1]}.

For a rule ρ ∈ Π, and a variable x: (a) x ∈ body(ρ) is harmless if it appears at least once
in body(ρ) at a position in NonAff(Π). Harmless(ρ) denotes the set of harmless variables
in ρ. Otherwise, a variable is called harmful. Intuitively, harmless variables will always be
instantiated to constants in any chase step, whereas harmful variables may be instantiated
to nulls. (b) x ∈ body(ρ) is dangerous if x /∈ Harmless(ρ) and x ∈ head(ρ). Dang(ρ) denotes
the set of dangerous variables in ρ. These are the variables which may propagate nulls into
the atom created by a chase step.

I Example 5 (ex. 4 cont.). x1 and y1 are both harmful but only y1 is dangerous for (1); u2
is harmless, x2 is dangerous, y2 is harmful but not dangerous for (2); x3 is harmless and y3
is dangerous for (3).

Now, a rule ρ ∈ Π is warded if either Dang(ρ) = ∅ or there exists an atom A ∈ body(ρ), the
ward, such that (1) Dang(ρ) ⊆ var(A) and (2) var(A) ∩ var(body(ρ) \ {A}) ⊆ Harmless(ρ).
A program Π is warded if every rule ρ ∈ Π is warded.

I Example 6 (ex. 5 cont.). Rule (1) is trivially warded with the single body atom as the
ward. Rule (2) is warded by S(u2, x2, x2): variable x2 is the only dangerous variable and
u2 (the only variable shared by the ward with the rest of the body) is harmless. Actually,
the other body atom R(u2, y2) contains the harmful variable y2; but it is not dangerous and
not shared with the ward. Finally, rule (3) is warded by P (x3, y3); the other atom U(x3)
contains no affected variable. Since all rules are warded, the program Π is warded.

Datalog± can be extended with safe, stratified negation in the usual way, similarly as
stratified Datalog [1]. The resulting Datalog±,¬s can also be given a chase-based semantics [10].
The notions of affected/non-affected positions and harmless/harmful/dangerous variables
carry over to a Datalog±,¬s program Π by considering only the program Πpos obtained from
Π by deleting all negated body atoms. For warded Datalog±, only a restricted form of
stratified negation is allowed – so-called stratified ground negation. This means that we
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require for every rule ρ ∈ Π: if ρ contains a negated atom P (t1, . . . , tn), then every ti must
be either a constant (i.e, ti ∈ C) or a harmless variable. Hence, negated atoms can never
contain a null in the chase. We write Datalog±,¬sg for programs in this language.

The class of warded Datalog±,¬sg programs extends the class of Datalog¬s programs.
Warded Datalog±,¬sg is expressive enough to capture query answering of a core fragment of
SPARQL under certain OWL 2 QL entailment regimes [16], and this task can actually be
accomplished in polynomial time (data complexity) [3, 4]. Hence, Datalog±,¬sg constitutes a
very good compromise between expressive power and complexity. Recently, a powerful query
engine for warded Datalog±,¬sg has been presented [6, 7], namely the VADALOG system.

3 Datalog±-Based Bag Semantics for Datalog¬s

We now provide a set-semantics that represents the bag semantics for a Datalog program
Π with a multiset EDB D via the transformation into a Datalog± program Π+ over a set
EDB D+ obtained from D. For this, we assume w.l.o.g., that the set of nulls, B, for a
Datalog± program is partitioned into two infinite ordered sets I = {ι1, ι2, . . .}, for unique,
global tuple identifiers (tids), and N = {η1, η2, . . .}, for usual nulls in Datalog± programs.
Given a multiset EDB D and a program Π, instead of using colors and syntactically different
derivation trees, we will use elements of I to identify both the elements of the EDB and the
tuples resulting from applications of the chase.

For every predicate P (. . .), we introduce a new version P (. ; . . .) with an extra, first
argument (its 0-th position) to accommodate a tid, which is a null from I. If an atom P (ā)
appears in D as n duplicates, we create the tuples P (ι′1; ā), . . . , P (ι′n; ā), with the ι′i pairwise
different nulls from I as tids, and not used to identify any other element of D. We obtain a
set EDB D+ from the multiset EDB D. Given a rule in Π, we introduce tid-variables (i.e.
appearing in the 0-th positions of predicates) and existential quantifiers in the rule head, to
formally generate fresh tids when the rule applies. More precisely, a rule in Π of the form
ρ : H(x̄) ← A1(x̄1), A2(x̄2), . . . , Ak(x̄k), with k > 0, x̄ ⊆ ∪ix̄i, becomes the Datalog±
rule ρ+ : ∃z H(z; x̄)← A1(z1; x̄1), A2(z2; x̄2), . . . , Ak(zk; x̄k), with fresh, different variables
z, z1, . . . , zk. The resulting Datalog± program Π+ can be evaluated according to the usual
set semantics on the set EDB D+ via the chase: when the instantiated body A1(ι′1; ā1),
A2(ι′2; ā2), . . . , Ak(ι′k; āk) of rule ρ+ becomes true, then the new tuple H(ι; ā) is created, with
ι the first (new) null from I that has not been used yet, i.e., the tid of the new atom.

I Example 7 (ex. 2 cont.). The EDB D from Example 2 becomes

D+ = {Q(ι1; 1, 2, 3), Q(ι2; 1, 2, 5), Q(ι3; 2, 3, 4), Q(ι4; 2, 3, 4), T (ι5; 4, 1, 2), T (ι6; 4, 1, 2)};1

and program Π becomes Π+ = {ρ+
1 , ρ

+
2 , ρ

+
3 } with ρ

+
1 : ∃uP (u;x, y)← R(u1;x, y), S(u2;x, y);

ρ+
2 : ∃uR(u;x, y)← Q(u1;x, y, z); ρ+

3 : ∃uS(u;x, y)← T (u1; z, x, y).

The following is a 3-step chase sequence of D+ and Π+: {Q(ι1; 1, 2, 3), T (ι4; 4, 1, 2)}  ρ+
2

R(ι7; 1, 2)  ρ+
3
S(ι11; 1, 2)  ρ+

1
P (ι13; 1, 2).

Analogously to the depth-two and depth-three trees in Example 2, the chase produces
10 new atoms. In total, we get: Chase(Π+, D+) = D+ ∪ {R(ι7; 1, 2), R(ι8; 1, 2), R(ι9; 2, 3),
R(ι10; 2, 3), S(ι11; 1, 2), S(ι12; 1, 2), P (ι13; 1, 2), P (ι14; 1, 2), P (ι15; 1, 2), P (ι16; 1, 2)}.

1 Notice that this set version of D can also be created by means of Datalog± rules. For example, with
the rule ∃zQ(z; x, y, v)← Q(x, y, v) for the EDB predicate Q.
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In order to extend the PBB Semantics to Datalog¬s, we have to extend our transformation
of programs Π into Π+ to rules with negated atoms. Consider a rule ρ of the form:

ρ : H(x̄) ← A1(x̄1), . . . , Ak(x̄k),¬B1(x̄k+1), . . . ,¬B`(x̄k+`), (4)

with, x̄k+1, . . . , x̄k+` ⊆
⋃k
i=1 x̄i; we transform it into the following two rules:

ρ+ : ∃zH(z; x̄) ← A1(z1; x̄1), . . . , Ak(zk; x̄k),¬Auxρ1(x̄k+1), . . . ,¬Auxρ` (x̄k+`),
Auxρi (x̄k+i) ← Bi(zi; x̄k+i), i = 1, . . . , `. (5)

The introduction of auxiliary predicates Auxi is crucial since adding fresh variables directly
to the negated atoms would yield negated atoms of the form ¬Bi(zk+i; x̄k+i) in the rule
body, which make the rule unsafe. The resulting Datalog±,¬s program is from the desired
class Datalog±,¬sg:

I Theorem 8. Let Π be a Datalog¬s program and let Π+ be the transformation of Π into a
Datalog±,¬s program. Then, Π+ is a warded Datalog±,¬sg program.

Operation col−1 of Section 2 inspires de-identification and multiset merging operations.
Sometimes we use double braces, {{. . .}}, to emphasize that the operation produces a multiset.

I Definition 9. For a set D of tuples with tids, DI(D) and SP(D), for de-identification and
set-projection, respectively, are: (a) DI(D) := {{P (c̄) | P (t; c̄) ∈ D for some t}}, a multiset;
and (b) SP(D) := {P (c̄) | P (t; c̄) ∈ D for some t}, a set.

I Definition 10. Given a Datalog¬s program Π and a multiset EDB D, the program-based
bag semantics (PBB semantics) assigns to Π ∪D the multiset:

PBBS(Π, D) := DI(Chase(Π+, D+)) = {{P (ā) | P (t; ā) ∈ Chase(Π+, D+)}}.

The main results in this section are the correspondence of PBB semantics and DTB
semantics and the relationship of both with classical set semantics of Datalog:

I Theorem 11. For a Datalog¬s program Π with a multiset EDB D, DTBS(Π, D) =
PBBS(Π, D) holds.

Proof Idea. The theorem is proved by establishing a one-to-one correspondence between
DTs in DT(Π, col(D)) with a fixed root atom P (c̄) and (minimal) chase-derivations of P (c̄)
from D+ via Π+. This proof proceeds by induction on the depth of the DTs and length of
the chase sequences. J

I Corollary 12. Given a Datalog (resp. Datalog¬s) program Π and a multiset EDB D, the set
SP(Chase(Π+, D+)) is the minimal model (resp. the standard model) of the program Π ∪
SP(D).

4 Bag Semantics for Datalog±,¬sg

In the previous section, we have seen that warded Datalog± (possibly extended with stratified
ground negation) is well suited to capture the bag semantics of Datalog in terms of classical set
semantics. We now want to go one step further and study the bag semantics for Datalog±,¬sg
itself. Note that this question makes a lot of sense given the results from [4], where it is
shown that warded Datalog±,¬sg captures a core fragment of SPARQL under certain OWL2
QL entailment regimes and the official W3C semantics of SPARQL is a bag semantics.
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4.1 Extension of the DTB Semantics to Datalog±,¬sg

The definition of a DT-based bag semantics for Datalog±,¬sg is not as straightforward as
for Datalog¬s, since atoms in a model of D ∪Π for a (multiset) EDB D and Datalog±,¬sg
program Π may have labelled nulls as arguments, which correspond to existentially quantified
variables and may be arbitrarily chosen. Hence, when counting duplicates, it is not clear
whether two atoms differing only in their choice of nulls should be treated as copies of each
other or not. We therefore treat multiplicities of atoms analogously to multiple answers to
single-atom queries, i.e., the multiplicity of an atom P (t1, . . . , tk) wrt. EDB D and program
Π corresponds to the multiplicity of answer (t1, . . . , tk) to the query Q = P (x1, . . . , xk) over
the database D and program Π. In other words, we ask for all instantiations (t1, . . . , tk) of
(x1, . . . , xk) such that P (t1, . . . , tk) is true in every model of D ∪ Π. It is well known that
only ground instantiations (on C) can have this property (see e.g. [14]). Hence, below, we
restrict ourselves to considering duplicates of ground atoms containing constants from C only
(in this section we are not using tid-positions 0). In the rest of this section, unless otherwise
stated, “ground atom” means instantiated on C; and programs belong to Datalog±,¬sg.

In order to define the multiplicity of a ground atom P (t1, . . . , tk) wrt. a (multiset) EDB
D and a warded Datalog±,¬sg program Π, we adopt the notion of proof tree used in [4, 11],
which generalizes the notion of derivation tree to Datalog±,¬sg. We consider first positive
Datalog± programs. A proof tree (PT) for an atom A (possibly with nulls) wrt. (a set)
EDB D and Datalog± program Π is a node- and edge-labelled tree with labelling function
λ, such that: (1) The nodes are labelled by atoms over C ∪B. (2) The edges are labelled
by rules from Π. (3) The root is labelled by A. (4) The leaf nodes are labelled by atoms
from D. (5) The edges from a node N to its child nodes N1, . . . , Nk are all labelled with
the same rule ρ. (6) The atom labelling N corresponds to the result of a chase step where
body(ρ) is instantiated to {λ(N1), . . . , λ(Nk)} and head(ρ) becomes λ(N) when instantiating
the existential variables of head(ρ) with fresh nulls. (7) If M ′ (resp. N ′) is the parent node
of M (resp. N) such that nulls(λ(M ′))\nulls(λ(M)) and nulls(λ(N ′))\nulls(λ(N)) share at
least one null, then the entire subtrees rooted at M ′ and at N ′ must be isomorphic (i.e., the
same tree structure and the same labels). (8) If, for two nodes M and N , λ(M) and λ(N)
share a null v, then there exist ancestors M ′ of M and N ′ of N such that M ′ and N ′ are
siblings corresponding to two body atoms A and B of rule ρ with x ∈ var(A) and x ∈ var(B)
for some variable x and ρ is applied with some substitution γ which sets γ(x) = v; moreover,
v occurs in the labels of the entire paths from M ′ to M and from N ′ to N . A proof tree
for Example 13 below is shown in Figure 2, left. As with derivation trees, we assume that
siblings in the proof tree are arranged in the order of the corresponding body atoms in the
rule ρ labelling the edge to the parent node (cf. Section 2.1).

Intuitively, a PT is a tree-representation of the derivation of an atom by the chase. The
parent/child relationship in a PT corresponds to the head/body of a rule application in
the chase. Condition (7) above refers to the case that a non-ground atom is used in two
different rule applications within the chase sequence. In this case, the two occurrences of this
atom must have identical proof sub-trees. A PT can be obtained from a chase-derivation by
reversing the edges and unfolding the chase graph into a tree by copying some of the nodes [4].
By definition of the chase in Section 2.2, it can never happen that the same null is created by
two different chase steps. Note that the nulls in nulls(λ(M ′)) \ nulls(λ(M)) (and, likewise in
nulls(λ(N ′)) \ nulls((λ(N))) are precisely the newly created ones. Hence, if λ(M ′) and λ(N ′)
share such a null, then λ(M ′) and λ(N ′) are the same atom and the subtrees rooted at these
nodes are obtained by unfolding the same subgraph of the chase graph. Condition (8) makes
sure that we use the same null v in a PT only if this is required by a join condition of some
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Figure 2 Proof tree (left) and witness (right) for atom Q(a, c) in Examples 13 and 20.

rule ρ; otherwise nulls are renamed apart.

I Example 13. Let Π = {ρ1, . . . , ρ5} be the Datalog± program with ρ1 : Q(x,w)← R(x, y),
S(y, z), T (x,w); ρ2 : ∃z R(x, z) ← P (x, y); ρ3 : ∃z S(x, z) ← R(w, x), T (w, y); ρ4 :
T (x, y)← P (x, y); ρ5 : T (x, y)← P (x, z), T (z, y). This program belongs to Datalog±,¬sg,
and – although not necessary to build a proof tree for it – we notice that it is also warded:
Aff(Π) = {R[2], S[2], S[1]}; and all other positions are not affected. Rule ρ3 is warded with
ward R(w, x) (where x is the only dangerous variable in this rule). All other rules are trivially
warded because they have no dangerous variables.

Now let D = {P (a, b), P (b, c), P (a, d), P (d, c)}. A possible proof tree for Q(a, c) is shown
in Figure 2 on the left. It is important to note that nodes N2 and N6 introducing labelled
null u are labelled with the same atom and give rise to identical subtrees. Of course, R(a, u)
could also result from a chase step applying ρ2 to P (a, d). However, this would generate
a null different from u and, subsequently, the nulls in R(a,_) and S(_, v) (in N2 and N3)
would be different, and rule ρ1 could not be applied anymore. In contrast, the nodes N4
and N7 with label T (a, c) span different subtrees. This is desired: there are two possible
derivations for each occurrence of atom T (a, c) in the PT.

Here we deviate slightly from the definition of PTs in [4], in that we allow the same ground
atom to have different derivations. This is needed to detect duplicates and to make sure
that PTs in fact constitute a generalization of the derivation trees in Section 2.1. Moreover,
condition (8) is needed to avoid non-isomorphic PTs by “unforced” repetition of nulls (i.e.,
identical nulls that are not required by a join condition further up in the tree). Analogous
to the generalization in Section 2.1 of DTs for Datalog to DTs for Datalog¬s, it is easy to
generalize proof trees to Datalog±,¬sg. Here it is important that we only allow stratified
ground negation. Hence, analogously to DTs for Datalog¬s, we allow negated ground atoms
¬A to occur as node labels of leaf nodes in a PT, provided that the positive atom A has no
PT. Moreover, it is no problem to allow also multiset EDBs since, as in Section 2.1, we can
keep duplicates apart by means of a coloring function col.

Finally, we can define proof trees T and T ′ as equivalent, denoted T ≡ T ′, if one is
obtained from the other by renaming of nulls. We can thus normalize PTs by assuming that
nulls in node labels are from some fixed set {u1, u2 . . . } and that these nulls are introduced
in the labels of the PT by some fixed-order traversal (e.g., top-down, left-to-right).

For a PT T , we define Atoms(T ) as col−1 of the root when T is a single-node tree, and
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the root-label of T , otherwise. For a set of PTs T: Atoms(T) :=
⊎
{Atoms(T ) | T ∈ T},

which is a multiset that multi-contains D. If PT(Π, col(D)) is the set of normalized,
non-equivalent PTs, the proof-tree bag (PTB) semantics for Π is the multiset PTBS(Π, D) :=
Atoms(PT(Π, col(D))). For a ground atom A, mult(A,PTBS(Π, D)) denotes the multiplicity
of A in the multiset PTBS(Π, D).

I Example 14 (ex. 13 cont.). To compute PTBS(Π, D) for Π and D from Example 13, we
have to determine all proof trees of all ground atoms derivable from Π and D. In Figure 2,
we have already seen one proof tree for Q(a, c); and we have observed that the sub-proof
tree of R(a, u) rooted at nodes N2 and N6 could be replaced by a child node with label
P (a, d) (either both subtrees or none has to be changed). In total, the ground atom Q(a, c)
has 8 different proof trees wrt. Π and D (multiplying the 2 possible derivations of atom
R(a, u) with 4 derivations for the two occurrences of the atom T (a, c) in nodes N4 and
N7). The other ground atoms derivable from Π and D are T (a, c) (with 2 possible PTs
as discussed in Example 13) and the atoms T (i, j) for each P (i, j) in D. Hence, we have
PTBS(Π, D) = D ∪ {T (a, b), T (b, c), T (a, d), T (d, a), T (a, c), T (a, c), Q(a, c), . . . , Q(a, c)}.

Clearly, every Datalog¬s program is a special case of a warded Datalog±,¬sg program. It
is easy to verify that the PTB semantics indeed generalizes the DTB semantics:

I Proposition 15. Let Π be a Datalog¬s program and D an EDB (possibly with duplicates).
Then DTBS(Π, D) = PTBS(Π, D) holds.

4.2 Extension of the PBB Semantics to Datalog±,¬sg

We now extend also the PBB semantics to Datalog±,¬sg programs Π. First, in all pre-
dicates of Π, we add position 0 to carry tid-variables. Then every rule ρ ∈ Π of the
form ρ : ∃ȳH(ȳ, x̄) ← A1(x̄1), A2(x̄2), . . . , Ak(x̄k), with k > 0, x̄ ⊆ ∪ix̄i, becomes
the rule ρ+ : ∃z∃ȳ H(z; ȳ, x̄) ← A1(z1; x̄1), A2(z2; x̄2), . . . , Ak(zk; x̄k), with fresh, dif-
ferent variables z, z1, . . . , zk. Now consider a rule ρ ∈ Π of the form ρ : ∃ȳH(ȳx̄) ←
A1(x̄1), . . . , Ak(x̄k),¬B1(x̄k+1), . . . ,¬B`(x̄k+`), with x̄k+1, . . . , x̄k+` ⊆

⋃k
i=1 x̄i; we trans-

form it into the following two rules:

ρ′ : ∃z∃ȳH(z; ȳ, x̄) ← A1(z1; x̄1), . . . , Ak(zk; x̄k),¬Auxρ1(x̄k+1), . . . ,¬Auxρ` (x̄k+`), (6)
Auxρi (x̄k+i) ← Bi(zi; x̄k+i), i = 1, . . . , `.

Analogously to Theorem 8, the resulting program also belongs to Datalog±,¬sg. Finally,
as in Section 3, the ground atoms in the multiset EDB D are extended in D+ by nulls
from I = {ι1, ι2, . . . } as tids in position 0 to keep apart duplicates. For an instance I,
we write I↓ to denote the set of atoms in I such that all positions except for position 0
(the tid) carry a ground term (from C). Analogously to Definition 10, we then define the
program-based bag semantics (PBB semantics) of a Datalog±,¬sg program Π and multiset
EDB D as PBBS(Π, D) := DI(Chase(Π+, D+)↓) = {{P (ā) | P (ā) is ground and P (t; ā) ∈
Chase(Π+, D+)}}. For a ground atom A (here, without nulls or tids), mult(A,PBBS(Π, D))
denotes the multiplicity of A in the multiset PBBS(Π, D).

I Example 16 (ex. 13 and 14 cont.). The transformations of Datalog±,¬sg program Π and
multiset EDBD from Example 13 areD+ = {P (ι1, a, b), P (ι2, b, c), P (ι3, a, d), P (ι4, d, c)} and
Π+ = {ρ+

1 , ρ
+
2 , ρ

+
3 , ρ

+
4 , ρ

+
5 } with: ρ+

1 : (∃u)Q(u, x, w) ← R(v1, r, y), S(v2, y, z), T (v3, x, w);
ρ+

2 : (∃u, z)R(u, x, z) ← P (v, x, y); ρ+
3 : (∃u, z)S(u, x, z) ← R(v1, w, x), T (v2, w, y); ρ+

4 :
(∃u)T (u, x, y)← P (v, x, y); ρ+

5 : (∃u)T (u, x, y)← P (v1, x, z), T (v2, z, y).
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Applying program Π+ to instance D+ gives, for example, the following chase sequence
for deriving the atoms T (ι5, d, c), T (ι7, a, c), T (ι8, b, c), Q(ι11, a, c), which correspond to the
ground atoms in the proof tree in Figure 2, left: D+  ρ+

4
T (ι5, d, c)  ρ+

2
R(ι6, a, u)  ρ+

5
T (ι7, a, c)  ρ+

4
T (ι8, b, c)  ρ+

3
S(ι9, u, v)  ρ+

5
T (ι10, a, c)  ρ+

1
Q(ι11, a, c). Implicitly, we

thus also turn the PTs rooted at N4, N7, and N9 into chase sequences. In total, we get in
PBBS(Π, D) precisely the atoms and multiplicities as in PTBS(Π, D) for Example 14.

In principle, the above transformation Π+ and the PBB semantics are applicable to any
program Π in Datalog±,¬sg. However, in the first place, we are interested in warded programs
Π. It is easy to verify that wardedness of Π carries over to Π+:

I Proposition 17. If Π is a warded Datalog±,¬sg program, then so is Π+.

Proof Idea. The key observation is that the only additional affected positions in Π+ are the
tids at position 0. However, the variables at these positions occur only once in each rule and
are never propagated from the body to the head. Hence, they do not destroy wardedness. J

We conclude this section with the analogous result of Theorem 11:

I Theorem 18. For ground atoms A, mult(A,PTBS(Π, D)) = mult(A,PBBS(Π, D)). Hence,
for a warded Datalog±,¬sg program Π and multiset EDB D, PTBS(Π, D) = PBBS(Π, D).

5 Decidability and Complexity of Multiplicity

For Datalog¬s programs, the following problems related to duplicates have been investigated:
FFE: Given a program Π, a database D, and a predicate P , decide if every derivable
ground P -atom has a finite number of DTs.
FEE: Given a program Π and a predicate P , decide if every derivable ground P -atom
has a finite number of DTs for every database D.

It has been shown in [22] that FFE is decidable (even in PTIME data complexity), whereas
FEE is undecidable. We extend this study by considering warded Datalog±,¬sg instead of
Datalog¬s, and by computing the concrete multiplicities in case of finiteness. We thus study
the following problems:

FINITENESS: For fixed warded Datalog±,¬sg program Π: Given a multiset database D
and a ground atom A, does A have finite multiplicity, i.e., is mult(A,PBBS(Π, D)) finite?
MULTIPLICITY: For fixed warded Datalog±,¬sg program Π: Given a multiset database
D and a ground atom A, compute the multiplicity of A, i.e. mult(A,PBBS(Π, D)).

We will show that both problems defined above can be solved in polynomial time (data
complexity). In case of the FINITENESS problem, we thus generalize the result of [22] for
the FFE problem from Datalog¬s to Datalog±,¬sg. In case of the MULTIPLICITY problem,
no analogous result for Datalog or Datalog¬s has existed before. The following example
illustrates that, even if Π is a Datalog program with a single rule, we may have exponential
multiplicities. Hence, simply computing all DTs or (in case of Datalog±) all PTs is not a
viable option if we aim at polynomial time complexity.

I Example 19. Let D = {E(a0, a1), E(a1, a2), . . . , E(an−1, an)} ∪ {P (a0, a1), C(b0), C(b1)}
for n ≥ 1 and let Π = {ρ} with ρ : P (x, y) ← P (x, z), E(z, y), C(w). Intuitively, E can be
considered as an edge relation and P is the corresponding path relation for paths starting at
a0. The C-atom in the rule body (together with the two C-atoms in D) has the effect that
there are always 2 possible derivations to extend a path. It can be verified by induction over
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i, that atom P (a0, ai) has 2i−1 possible derivations from D via Π. In particular, P (a0, an)
has multiplicity 2n−1.

Note that, if we add atom E(a1, a1) to D (i.e., a self-loop, so to speak), then every
atom P (a0, ai) with i ≥ 1 has infinite multiplicity. Intuitively, the infinitely many different
derivation trees correspond to the arbitrary number of cycles through the self-loop E(a1, a1)
for a path from a0 to ai.

Our PTIME-membership results will be obtained by appropriately adapting the tractab-
ility proof of CQA for warded Datalog± in [4], which is based on the algorithm ProofTree for
deciding if D ∪Π |= P (c̄) holds for database D, warded Datalog± program Π, and ground
atom P (c̄). That algorithm works in ALOGSPACE (data complexity), i.e., alternating
logspace, which coincides with PTIME [12]. It assumes Π to be normalized in such a way
that each rule in Π is either head-grounded (i.e., each term in the head is a constant or a
harmless variable) or semi-body-grounded (i.e., there exists at most one body atom with
harmful variables). Algorithm ProofTree starts with ground atom P (c̄) and applies resolution
steps until the database D is reached. It thus proceeds as follows:

If P (c̄) ∈ D, then accept. Otherwise, guess a head-grounded rule ρ ∈ Π whose head can
be matched to P (c̄) (denoted as ρB P (c̄)). Guess an instantiation γ on the variables in
the body of ρ so that γ(head(ρ)) = P (c̄). Let S = γ(body(ρ)).
Partition S into {S1, . . . ,Sn}, such that each null occurring in S occurs in exactly one
Si, and each set Si is chosen subset-minimal with this property. The purpose of these
sets Si of atoms is to keep together, in the parallel universal computations of ProofTree,
the nulls in S until the atom in which they are created is known.
Universally select each set S ′ ∈ {S1, . . . ,Sn} and “prove” it: If S ′ consists of a single
ground atom P ′(c̄′), then call ProofTree recursively for D, Π, P ′(c̄′). Otherwise, do the
following:
(1) For each atom A ∈ S ′, guess rule ρA with ρA BA and guess variable instantiation γA
on the variables in the body of ρA such that A = γA(head(ρA)).
(2) The set

⋃
A∈S′ γA(body(ρA)) is partitioned as above and each component of this

partition is proved in a parallel universal computation.

The key to the ALOGSPACE complexity of algorithm ProofTree is that the data structure
propagated by this algorithm fits into logarithmic space. This data structure is given by a
pair (S,RS), where S is a set of atoms (such that |S| is bounded by the maximum number
of body atoms of the rules in Π) and RS is a set of pairs (z, x), where z is a null occurring
in S and x is either an atom A (meaning that null z was created when the application of
some rule ρ generated the atom A containing this null z) or the symbol ε (meaning that we
have not yet found such an atom A). A witness for a successful computation of ProofTree
is then given by a tree with existential and universal nodes, with an existential node N
consisting of a pair (S,RS); a universal node N indicates the guessed rule ρA together with
the instantiation γA for each atom A ∈ S at the (existential) parent node of N . The child
nodes of each universal node N are obtained by partitioning

⋃
A∈S γA(body(A)) as described

above and computing the corresponding set RS . At the root, we thus have an existential
node labelled (S,RS) = ({P (c̄)}, ∅). Each leaf node is a universal node labelled with (B, ∅)
for some ground atom B ∈ D. Hence, such a node corresponds to an accept-state.

I Example 20. Recall Π and D from Example 13. A proof tree of ground atom Q(a, c) is
shown in Figure 2 on the left. On the right, we display the witness of the corresponding
successful computation of ProofTree. Note that witnesses have a strict alternation of
existential and universal nodes. In the witness in Figure 2, we have merged each existential
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node and its unique universal child node to make the correspondence between a PT and a
witness yet more visible. In particular, on each depth level of the trees, we have exactly the
same set of atoms (with the only difference, that in the witness these atoms are grouped
together to sets S by null-occurrences). In this simple example, only node M23 contains such
a group of atoms, namely the atoms from the nodes N2 and N3 in the PT.

In order not to overburden the figure, we have left out the setsRS carrying the information
on the introduction of nulls. In this simple example, the only node with a non-empty set
RS is M6, with RS = {(u,R(a, u)}, i.e. we have to pass on the information that the null
u in node M23 was introduced by applying some rule (namely ρ2) which generated the
atom R(a, u). We thus ensure (when proceeding from node M6 to node M10) that null u is
introduced in the same way as before.

The information from the universal node below each existential node is displayed in
the second line of each node: here we have pairs consisting of the guessed rule ρ plus the
guessed instantiation γ for each atom in the corresponding set S (as mentioned above, S is a
singleton in all nodes except for M23). For instance, γ1 in node M1 denotes the substitution
γ1 = {x ← a, y ← u, z ← v, w ← c}. Only in node M23, we have 2 pairs (ρ2, γ2), (ρ3, γ3)
with γ2 = {x ← a, y ← b} and γ3 = {w ← a, x ← u, y ← c}. Note that the subscripts i of
the γi’s in Figure 2 are to be understood local to the node. For instance, the two different
applications of rule ρ4 in nodes M9 and M12 are with the instantiations γ4 = {x← b, y ← c}
(in M9) and γ4 = {x← d, y ← c} (in M12), respectively.

The above example illustrates the close relationship between PTs T and witnesses W of
the ProofTree algorithm. However, our goal is a one-to-one correspondence, which requires
further measures: for witness trees, we thus assume from now on (as in Example 20) that each
existential node is merged with its unique universal child node and that nulls are renamed
apart: that is, whenever nulls are introduced by a resolution step of ProofTree, then all nulls
in nulls(γ(body(ρ))) \ nulls(γ(head(ρ))) must be fresh (that is, they must not occur elsewhere
in W). Moreover, we eliminate redundant information from PTs and witnesses by pruning
repeated subtrees: let N be a node in a PT T such that some null is introduced via atom A

in λ(N), and let N be closest to the root with this property, then prune all other subtrees
below all nodes M 6= N with λ(M) = A. Likewise, if a node in a witness W contains an
atom A and the pair (z,A) in RS , then we omit the resolution step for A. We refer to the
reduced PT of T as T ∗ and to the reduced witness of W as W∗. For instance, in the PT in
Figure 2, we delete the node N10 because the information on how to derive atom R(a, u) is
already contained in the subtree rooted at node N2. Likewise, in the witness in Figure 2,
we omit the resolution step for atom R(a, u) in node M6, because, in this node, we have
RS = {(u,R(a, u)}. Hence, it is known from some resolution step “above” that u must be
introduced via this atom and its derivation is checked elsewhere. We thus delete M10.

It is straightforward to construct a reduced witness W∗ from a given reduced PT T ∗, and
vice versa. We refer to these constructions as T 2W and W2T , respectively: Given T ∗, we
obtain W∗ by a top-down traversal of T ∗ and merging siblings if they share a null. Moreover,
if the label at a child node in T ∗ was created by applying rule ρ with substitution γ, then we
add (ρ, γ) to the node label in W∗. Finally, if such a rule application generates a new null z,
then we add (z, γ(head(ρ)) to RS of every child node which still contains null z. Conversely,
we obtain T ∗ from a reduced witness W∗ by a bottom-up traversal of W∗, where we turn
every node labelled with k atoms into k siblings, each labelled with one of these atoms. The
edge labels ρ in T ∗ are obtained from the corresponding (ρ, γ) labels in the node in W∗. In
summary, we have:
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I Lemma 21. There is a one-to-one correspondence between reduced proof trees T ∗ for a
ground atom P (c̄) and reduced witnesses W∗ for its successful ProofTree computations. More
precisely, given T ∗, we get a reduced witness as T 2W(T ∗); given W∗, we get a reduced PT
as W2T (W∗) with W2T (T 2W(T ∗)) = T ∗ and T 2W(W2T (W∗)) =W∗.

So far, we have only considered warded Datalog±, without negation. However, this
restriction is inessential. Indeed, by the definition of warded Datalog±,¬sg, negated atoms can
never contain a null in the chase. Hence, one can easily get rid of negation (in polynomial time
data complexity) by computing for one stratum after the other the answer Q(Π, D) to query
Q with Q ≡ P (x1, . . . , xn), i.e., all ground atoms P (a1, . . . , an) with Π ∪D |= P (a1, . . . , an).
We can then replace all occurrences of ¬P (t1, . . . , tn) in any rule of Π by the positive atom
P ′(t1, . . . , tn) (for a new predicate symbol P ′) and add to the instance all ground atoms
P ′(a1, . . . , an) with (a1, . . . , an) 6∈ Q(D,Π). Hence, all our results proved in this section for
warded Datalog± also hold for warded Datalog±,¬sg.

Clearly, there is a one-to-one correspondence between proof trees PT T and their reduced
forms T ∗. Hence, together with Lemma 21, we can compute the multiplicities by computing
(reduced) witness trees. This allows us to obtain the results below:

I Theorem 22. Let Π be a warded Datalog±,¬sg program and D a database (possibly with
duplicates). Then there exists a bound K which is polynomial in D, s.t. for every ground
atom A:
1. A has finite multiplicity if and only if all reduced witness trees of A have depth ≤ K.
2. If A has infinite multiplicity, then there exists at least one reduced witness tree of A whose

depth is in [K + 1, 2K].

Proof Idea. Recall that the data structure propagated by the ProofTree algorithm consists
of pairs (S,RS). We call pairs (S,RS) and (S ′,RS′) equivalent if one can be obtained from
the other by renaming of nulls. The bound K corresponds to the maximum number of
non-equivalent pairs (S,RS) over the given signature and domain of D. By the logspace
bound on this data structure, there can only be polynomially many (w.r.t. D) such pairs.
For the first claim of the theorem, suppose that a (reduced) witness tree W∗ has depth
greater than K; then there must be a branch with two nodes N and N ′ with equivalent pairs
(S,RS) and (S ′,RS′). We get infinitely many witness trees by arbitrarily often iterating the
path between N and N ′. J

In principle, Theorem 22 suffices to prove decidability of FINITENESS and design an
algorithm for the MULTIPLICITY: just chase database D with the transformed warded
Datalog program Π+ up to depth 2K. If the desired ground atom A extended by some
tid is generated at a depth greater than K, then conclude that A has infinite multiplicity.
Otherwise, the multiplicity of A is equal to the number of atoms of the form (ι;A) in the
chase result. However, this chase of depth 2K may produce an exponential number of atoms
and hence take exponential time. Below we show that we can in fact do significantly better:

I Theorem 23. For warded Datalog±,¬sg programs, both the FINITENESS problem and the
MULTIPLICITY problem can be solved in polynomial time.

Proof Idea. A decision procedure for the FINITENESS problem can be obtained by modi-
fying the ALOGSPACE algorithm ProofTree from [4] in such a way that we additionally
“guess” a branch in the witness tree with equivalent labels. The additional information thus
needed also fits into logspace.
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The MULTIPLICITY problem can be solved in polynomial time by a tabling approach to
the ProofTree algorithm. We thus store for each (non-equivalent) value of (S,RS) how many
(reduced) witness trees it has and propagate this information upwards for each resolution
step encoded in the (reduced) witness tree. J

6 Multiset Relational Algebra (MRA)

Following [20, 21], we consider multisets (or bags)M and elements e (from some domain) with
non-negative integer multiplicities, mult(e,M) (recall from Section 2.1 that, by definition,
e ∈ M iff mult(e,M) ≥ 1). Now consider multiset relations R,S. Unless stated otherwise,
we assume that R,S contain tuples of the same arity, say n. We define the following multiset
operations of MRA: the multiset union, ], is defined by R ] S := T , with mult(e, T ) :=
mult(e,R) + mult(e, S). Multiset selection, σm

C (R), with a condition C, is defined as the
multiset T containing all tuples in R that satisfy C with the same multiplicities as in R.
For multiset projection πm

k̄
(R), we get the multiplicities mult(e, πm

k̄
(R)) by summing up the

multiplicities of all tuples in R that, when projected to the positions k̄ = 〈i1, . . . , ik〉, produce
e. For the multiset (natural) join R onmS, the multiplicity of each tuple t is obtained as the
product of multiplicities of tuples from R and of tuples from S that join to t.

For the multiset difference, two definitions are conceivable: Majority-based, or “monus”
difference (see e.g. [15]), given by R 	 S := T , with mult(e, T ) := max{mult(e,R) −
mult(e, S), 0}. There is also the “all-or-nothing” difference: R⊗ S := T , with mult(e, T ) :=
mult(e,R) if e /∈ S and mult(e, T ) := 0, otherwise. Following [22], we have only considered
⊗ so far (implicitly, starting with Datalog¬s, in Section 2.1). The multiset intersection
∩m is not treated or used in any of [2, 20, 21, 22]. Extending the DTB semantics from
[21] to ∩m would treat it as a special case of the join, which may be counter-intuitive,
e.g., {a, a, b} ∩m {a, a, a, c} := {a, a, a, a, a, a}. Alternatively, we could define “minority-
based” intersection R ∩mb S, which returns each element with its minimum multiplicity, e.g.,
{a, a, b} ∩mb {a, a, a, c} := {a, a}.

We consider MRA with the following basic multiset operations: multiset union ], multiset
projection πm

k̄
, multiset selection σm

C , with C a condition, multiset (natural) join onm, and
(all-or-nothing) multiset difference ⊗. We can also include duplicate elimination in MRA,
which becomes operation DI of Definition 9 when using tids. Being just a projection in
the latter case, it can be represented in Datalog. For the moment, we consider multiset-
intersection as a special case of multiset (natural) join onm. It is well known that the basic,
set-oriented relational algebra operations can all be captured by means of (non-recursive)
Datalog¬s programs (cf. [1]). Likewise, one can capture MRA by means of (non-recursive)
Datalog¬s programs with multiset semantics (see e.g. [2]). Together with our transformation
into set semantics of Datalog±,¬sg, we thus obtain:

I Theorem 24. The Multiset Relational Algebra (MRA) can be represented by warded
Datalog±,¬sg with set semantics.

As a consequence, the MRA operations can still be performed in polynomial-time (data
complexity) via Datalog±,¬sg. This result tells us that MRA – applied at the level of an
EDB with duplicates – can be represented in warded Datalog, and uniformly integrated
under the same logical semantics with an ontology represented in warded Datalog.

We now retake multiset-intersection (and later also multiset-difference), which appears as
∩m and ∩mb. The former does not offer any problem for our representation in Datalog± as
above, because it is a special case of multiset join. In contrast, the minority-based intersection,
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∩mb, is more problematic.2 First, the DTB semantics does not give an account of it in terms
of Datalog that we can use to build upon. Secondly, our Datalog±-based formulation of
duplicate management with MRA operations is set-theoretic. Accordingly, to investigate the
representation of the bag-based operation ∩mb by means of the latter, we have to agree on a
set-based reformulation ∩mb. We propose for it a tid-based (set) representation, because tid
creation becomes crucial to make it a deterministic operation. Accordingly, for multi-relations
P and R with the same arity n (plus 1 for tids), we define:

P ∩mb Q := {(i; ā) | (i; ā) ∈
{
P if |π0(σ1..n=ā(P ))| ≤ |π0(σ1..n=ā(Q))|
Q otherwise }. (7)

Here, we only assume that tids are local to a predicate, i.e. they act as values for a surrogate
key. Intuitively, we keep for each tuple in the result the duplicates that appear in the relation
that contains the minimum number of them. Here, π0 denotes the projection on the 0-th
attribute (for tids), and σ1..n=ā is the selection of those tuples which coincide with ā on
the next n attributes. This operation may be non-commutative when equality holds in
the first case of (7) (e.g. {〈1; a〉} ∩mb {〈2; a〉} = {〈1; a〉} 6= {〈2; a〉} = {〈2; a〉} ∩mb {〈1; a〉}).
Most importantly, it is non-monotonic: if any of the extensions of P or Q grows, the result
may not contain the previous result,3 e.g. {〈1; a〉} ∩mb {〈2; a〉} = {〈1; a〉} 6⊇ {〈2; a〉} =
({〈1; a〉} ∪ {〈3; a〉}) ∩mb {〈2; a〉}. (It is still non-monotonic under the DTB semantics.) We
get the following inexpressibility results:

I Proposition 25. The minority-based intersection with duplicates ∩mb as in (7) cannot be
represented in Datalog, (positive) Datalog±, or FO predicate logic (FOL). The same applies
to the majority-based (monus) difference, 	.

Proof Idea. By the non-monotonicity of ∩mb, it is clear for Datalog and (positive) Datalog±.
For the inexpressibility in FOL, the key idea is that with the help of ∩mb or 	 we could
express the majority quantifier, which is known to be undefinable in FOL [24, 25]. J

I Proposition 26. The minority-based intersection with duplicates ∩mb as in (7) cannot be
represented in Datalog¬s. The same applies to the majority-based difference, 	.

Proof Idea. It can be shown that if a logic is powerful enough to express any of ∩mb or 	,
then we could express in this logic – for sets A and B – that |A| = |B rA| holds. However,
the latter property cannot even be expressed in the logic Lω∞ω under finite structures [13,
sec. 8.4.2] and this logic extends Datalog¬s. J

7 Conclusions and Future Work

We have proposed the specification of the bag semantics of Datalog in terms of warded
Datalog± with set semantics and we have also extended this specification to the bag semantics
of warded Datalog±,¬sg itself. Our work underlines that warded Datalog± is indeed a well-
chosen fragment of Datalog±: it provides a mild extension of Datalog by the restricted use
of existentially quantified variables in the rule heads, which suffices to capture certain forms
of ontological reasoning [3, 17] and, as we have seen here, the bag semantics of Datalog.

2 The majority-based union operation on bags, that returns, e.g. {{a, a, b, c}} ∪mab {{a, b, b}} :=
{{a, a, b, b, c}} should be equally problematic.

3 We could redefine (7) by introducing new tids, i.e. tuples (f(i), ā), for each tuple (i, ā) in the condition
in (7), with some function f of tids. The f(i) could be the next tid values after the last one used so far
in a list of them. The operation defined in this would still be non-monotonic.

ICDT 2019



16:18 Datalog: Bag Semantics via Set Semantics

Further extensions of this system, above all to SPARQL with bag semantics based on
previous Datalog rewritings [2, 23] are under way. Another interesting direction for future
work is to investigate further inexpressibility issues such as, e.g., whether warded Datalog±,¬sg
is expressive enough to capture ∩mb and 	. This work will also include the development of
tools to address (in)expressibility results in Datalog±, with or without negation.
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