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Abstract
Recently, Ketsman et al. started the investigation of the parallel evaluation of recursive queries in the
Massively Parallel Communication (MPC) model. Among other things, it was shown that parallel-
correctness and parallel-boundedness for general Datalog programs is undecidable, by a reduction from
the undecidable containment problem for Datalog. Furthermore, economic policies were introduced
as a means to specify data distribution in a recursive setting. In this paper, we extend the latter
framework to account for more general distributed evaluation strategies in terms of communication
policies. We then show that the undecidability of parallel-correctness runs deeper: it already holds
for fragments of Datalog, e.g., monadic and frontier-guarded Datalog, with a decidable containment
problem, under relatively simple evaluation strategies. These simple evaluation strategies are defined
w.r.t. data-moving distribution constraints. We then investigate restrictions of economic policies
that yield decidability. In particular, we show that parallel-correctness is 2EXPTIME-complete
for monadic and frontier-guarded Datalog under hash-based economic policies. Next, we consider
restrictions of data-moving constraints and show that parallel-correctness and parallel-boundedness
are 2EXPTIME-complete for frontier-guarded Datalog. Interestingly, distributed evaluation no
longer preserves the usual containment relationships between fragments of Datalog. Indeed, not
every monadic Datalog program is equivalent to a frontier-guarded one in the distributed setting. We
illustrate the latter by considering two alternative settings where in one of these parallel-correctness
is decidable for frontier-guarded Datalog but undecidable for monadic Datalog.
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1 Introduction

Modern data management systems like Spark [6, 30] and Hadoop [5] embrace massive
parallelism to speed up query processing over large volumes of data. The latter inspired
an extensive line of research on the foundations of parallel query evaluation which mostly
focused on join queries (e.g., [2, 3, 10, 23, 24]). These investigations can be cast within the
massively parallel communication model [10] (MPC) where query evaluation proceeds in
multiple rounds and where each round consists of a computation and a communication step.
In the computation step, every server operates on its local data in isolation, whereas in the
communication step data is exchanged between the servers. The Hypercube algorithm [3,17]
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14:2 Parallel-Correctness and Parallel-Boundedness for Datalog Programs

which can compute any multiway join in one round was shown to play a fundamental role
in several of the above mentioned papers. Ameloot et al. [4] introduced a framework to
reason about such Hypercube-style single-round algorithms. The authors considered the
problem of parallel-correctness asking whether one can always be sure that the corresponding
single-round algorithm computes the query result correctly, no matter the actual data,
starting from a particular distribution policy. Parallel-correctness and related problems were
studied for conjunctive queries (with and without negation) and under set as well as bag
semantics [4, 18,22].

The relevance of Datalog as a query language for expressing recursive queries has only
gained in importance in the last decade (e.g,[1, 7, 20,28,29]). Ketsman, Albarghouthi, and
Koutris [22] started the investigation of the parallel evaluation of Datalog queries in the
multi-round MPC model. To this end, economic policies were introduced as a means to specify
data reshuffling in a recursive setting where intermediate derived facts can be communicated
between servers. So, in addition to specifying the initial distribution of extensional database
facts, economic policies also determine which servers can produce and consume intensional
database facts during evaluation of a Datalog program. Among other things, the authors
showed that parallel-correctness and parallel-boundedness (the problem that asks whether a
Datalog program can be evaluated in a bounded number of evaluation rounds) for general
Datalog programs is undecidable. For this, a reduction from the undecidable containment
problem for Datalog was used.

In this paper, we revisit the parallel-correctness and parallel-boundedness problem for
Datalog programs. We start by establishing that the undecidability of parallel-correctness
runs deeper than the containment problem. We show that parallel-correctness is already
undecidable under relatively simple distributed evaluation strategies for fragments of Datalog
with a decidable containment problem: monadic and frontier-guarded Datalog. Here, monadic
Datalog is the variant of Datalog where intensional predicates have arity at most one, whereas
in frontier-guarded Datalog every rule should contain an extensional predicate mentioning
all the variables occurring in the head of the rule (c.f., e.g., [8, 9, 13]).

With this undecidability result as a guideline, we focus in this paper on settings for which
the above mentioned decision problems become decidable. We start by presenting a generic
framework for the distributed evaluation of Datalog within the multi-round MPC model.
This framework allows for more general evaluation strategies than the economic policies
of [22]. In brief, for a given Datalog program P , its parallel evaluation is determined by a
policy pair (δ, ρ) consisting of an initial distribution policy δ and a communication policy ρ.
A database instance is first distributed according to δ assigning extensional database facts to
the computation servers. Then the computation proceeds in rounds consisting of two steps:
in the first step each server recursively evaluates the same program P over its local database,
and in the second step all derived intensional database facts are communicated according to
the communication policy ρ. In their most general form, communication policies are triples
of the form (f , k, `) indicating that when a fact f is derived on server k it is sent to server `.

Since in practice, data distribution is typically done using hash-partitioning (e.g.,[10, 25,
31]), we consider hash-based policies as initial distribution policies δ. For communication
policies ρ we consider two approaches: economic hash-based policies and communication
policies defined through data-moving constraints. The former is an instantiation of the
framework of [22] with hash-partitioning while the latter is a declarative approach based on
distribution constraints as introduced in [19], but used here in a much more restricted form
to specify relocation of facts in between rounds of computation.

The contributions of this paper can be summarized as follows:
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1. We introduce in Section 3 a general framework for the specification of distributed
evaluation strategies for Datalog programs.

2. In Section 4 we first show that parallel-correctness for monadic Datalog and frontier-
guarded Datalog is undecidable for communication policies defined by simple data-moving
distribution constraints. We then study decidable cases for parallel-correctness and
show that parallel-correctness is 2ExpTime-complete for monadic Datalog and frontier-
guarded Datalog under hash-based communication policies, and that parallel-correctness
is 2ExpTime-complete for frontier-guarded Datalog under communication policies defined
by a restriction of data-moving distribution constraints.

3. The upper bounds in Section 4 rely on a fine-grained analysis of the complexity of the
containment problem for frontier-guarded Datalog in terms of the number of variables,
the number of rules and the size of the rules (Proposition 11). This analysis is based on
a proof by Bourhis, Krötzsch, and Rudolph [13] and is carried out in Section 5.

4. We show in Section 6 that parallel-boundedness is 2ExpTime-complete for frontier-
guarded Datalog and communication policies defined by the same kind of data-moving
distribution constraints as for parallel-correctness.

5. In Section 7 we show that the results on parallel-correctness do not change if we restrict
each server to derive only facts that it can communicate (similar to [21]), and that there
is a family of communication policies for which parallel-correctness of frontier-guarded
Datalog is decidable whereas parallel-correctness of monadic Datalog is undecidable.

The latter results in Section 7 show that the usual ability to transform programs from
monadic Datalog into frontier-guarded Datalog can break drastically in a distributed setting,
which we find quite surprising.

We are aware that 2ExpTime upper bounds are far from practical tractability. Still, this
is the best we can hope for as containment of a Datalog fragment easily reduces to parallel-
correctness for that fragment and containment for both monadic as well as frontier-guarded
Datalog is complete for 2ExpTime [9, 11,13].

Related work is addressed throughout the paper at the places where it is most relevant.
Due to space limitations, many proofs are delegated to the full version of the paper which
we plan to publish at arXiv by the time of the conference. We are grateful to Gaetano Geck
for inspiring discussions on the subject of this paper.

2 Preliminaries

Datalog. We assume a fixed database schema S throughout the paper. An instance G is a
finite set of facts over S. We use standard notions, including ar(R) for the arity of a relation
name R, R(x̄) for an atom (with variables in x̄), R(t̄) for a fact (with domain elements in t̄)
val(G) for the set of domain elements in G, and I|S for the set of facts in I over S ⊆ S.

A Datalog rule τ is usually written2 as R(x̄)← S1(ȳ1), . . . , Sn(ȳn). By headτ and bodyτ
we refer to its head and body, respectively. By vars(τ) and vars(A), we denote the set of
all variables in τ and in an atom A, respectively. A Datalog program P is a finite set of
Datalog rules. By edb(P ), idb(P ) and out(P ), we denote the extensional, intensional and
output relation names of P , respectively. P is monadic if the arity of every relation in
idb(P ) is at most one. It is frontier-guarded, if every rule τ is frontier-guarded, that is, if
there is an edb-atom in bodyτ that contains all the variables from headτ . We denote the
class of monadic and frontier-guarded Datalog programs with mon-Datalog and fg-Datalog,
respectively. The semantics of Datalog programs is defined in the usual way.

2 We only consider Datalog programs without constant symbols.
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I Example 1. Let Er(x, y) denote red edges and let Es(x, y) denote sea blue edges. The
following monadic program Pmon computes all nodes reachable from a starting node x
(indicated by Start(x)) by a path containing only red and a path containing only sea blue
edges:

R(x)← Start(x) S(x)← Start(x) Out(x)← R(x), S(x)
R(x)← R(y), Er(y, x) S(x)← S(y), Es(y, x)

Let Imon = {Start(1), Er(1, 3), Er(1, 4), Es(1, 2), Es(2, 3)}, then P (Imon)|out(P ) = {Out(1),
Out(3)}.

Networks and Distributed Databases. We model a network of database servers as a finite
set N of servers. A distributed instance D = (G, I) consists of a global instance G over
S and a family I = (Ik)k∈N of local instances over S, one for each server of N such that⋃
k∈N Ik = G. We also denote G by global(D). We write f@k for a fact f in Ik. For two

distributed instances D = (G, I) and D′ = (G′, I′) we write D ⊆ D′, if G ⊆ G′ and Ik ⊆ I ′k
for every k ∈ N . We emphasise that we do not allow facts to be “skipped”. That is, every
global fact should occur somewhere as a local fact.

3 Framework

We adapt the MPC model [10] and define a generic framework that allows us to reason about
Datalog programs in distributed settings. The framework is based on policy pairs (δ, ρ),
consisting of a (partial) specification of the initial data distribution δ and a communication
policy ρ over the same network. Policy pairs allow to specify initial distributions and
communication of facts independently and in different ways (thus extending the framework
of [21]). We then define the hash-based initial distributions that we use and provide several
concrete ways to define communication policies: hash-based and constraint-based. We also
define the parallel-correctness problem.

As mentioned before, we reason about Datalog programs relative to policy pairs (δ, ρ),
where δ is a distribution policy and ρ a communication policy. These terms are defined next.
We require that the distribution of EDB-facts is only described by δ and that communication
policies are restricted to IDB-facts.

In general, a distribution policy δ over a network N is a function mapping global instances
G to distributed instances D = (G, I) over N . A distributed instance D = (G, I) over N
is valid with respect to a distribution policy δ over N if δ(G) ⊆ D. Thus, we allow that D
distributes facts to more servers than required by δ. This is because we do not understand δ
as a specification of a communication round but rather as a constraint that is met at the
beginning of the evaluation of a Datalog program. However, the definition ensures that the
global instance of δ(G) is just G. We define the specific (hash-based) distribution policies
used in this paper below in Section 3.2.

For a network N and a (global) database G, a communicated fact (f , k, `) consists of a fact
f ∈ G and two servers k and ` of N and has the intended meaning that f is communicated
from k to `. A communication policy ρ for a Datalog program P over N is a monotone
mapping that assigns to every distributed instance D = (G, I) over S ∪ idb(P ) and N a set
of communicated facts. Here, monotonicity means that ρ(D) ⊆ ρ(D′) whenever D ⊆ D′.
The communication policies studied in this paper are defined in Section 3.3.
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3.1 Distributed Evaluation of Datalog Programs

A communication policy ρ induces a distributed multi-round evaluation strategy for P over
D = (G, I) as follows.3 Each round consists of a computation and a communication phase.
By Di = (Gi, Ii) we denote the distributed instance after the i-th communication phase. The
initial instance D0 is just D. Then, for i ≥ 1, the following phases are performed:

Computation: Every server computes the local fixpoint of P over its local instance. That
is, D′ = (G′,J) where G′ =

⋃
k∈N Jk and, for each k ∈ N , Jk = P (Ii−1

k ).
Communication: For each (f , k, `) ∈ ρ(D′), f is copied from k to `. That is, for each
` ∈ N , Ii` = J` ∪ {f | (f , k, `) ∈ ρ(D′), f ∈ Jk}. Then, Di = (Gi, Ii) where Gi =

⋃
k∈N I

i
k.

The evaluation terminates when a global fixpoint is reached. We note that this fixpoint always
exists. By [P, ρ](D), we denote the union of all facts found at any server in this fixpoint. By
[P, ρ](D)|out(P ) we denote the output of the query computed by P on D according to ρ.

We note that our setting differs slightly from [21]. We provide more details in Section 7
and show that it does not have any influence on our results for parallel-correctness.

I Example 2. Consider Pmon and Imon from Example 1. Let Dmon = (Imon, I) be defined
over the network N = [1, 4] with four servers and let I1 = {Start(1), Er(1, 3), Er(1, 4)},
I2 = {Start(1), Es(1, 2), Es(2, 3)} and I3 = I4 = ∅. That is, Start-facts are duplicated over
server 1 and 2, while red edges are sent to server 1 and sea blue edges to server 2. Let ρ
be the communication policy that maps a distributed database D′ = (G′, I′) to the set of
triples {(R(i), 1, f(i)) | R(i) ∈ I ′1} ∪ {(S(i), 2, f(i)) | S(i) ∈ I ′2} with f a function mapping
each value i to ((i− 1) mod 4) + 1. So, when server 1 derives a fact R(c), it is sent to server
f(c). A fact S(c) derived on server 2 is also sent to server f(c). The distributed computation
then proceeds as follows. Only newly added IDB facts are shown in each round. Underlined
facts are received through communication.

I1
1 = {R(1), R(3), R(4), S(1)}, I1

2 = {S(1), S(2), S(3)}, I1
3 = {R(3), S(3)}, I1

4 = {R(4)}

I2
1 = {Out(1)}, I2

2 = ∅, I2
3 = {Out(3)}, I2

4 = ∅

I3
1 = ∅, I3

2 = ∅, I3
3 = ∅, I3

4 = ∅

A global fixpoint is reached in the third iteration.

Now we can formally define parallel-correctness for Datalog programs and policy pairs.

I Definition 3 (Parallel-Correctness). Let P be a Datalog program and (δ, ρ) a policy pair,
consisting of a distribution policy δ and a communication policy ρ for P over the same
network. We call P parallel-correct w.r.t. (δ, ρ), if [P, ρ](D)|out(P ) = P (global(D))|out(P ), for
every distributed instance D that is valid with respect to δ. A program P is parallel-correct
w.r.t. a family F of policy pairs if it is parallel-correct w.r.t. every policy pair in F .

For classes P of Datalog programs, and C of families of policy pairs, Para-Correct(P, C)
denotes the decision problem that asks, for a program P ∈ P and a family F ∈ C, whether
P is parallel-correct with respect to F .

Since all our evaluation strategies are sound (i.e., [P, ρ](D)|out(P ) ⊆ P (global(D))|out(P )),
and communication strategies are monotone, parallel-correctness can be decided by testing
parallel-completeness (i.e., P (global(D))|out(P ) ⊆ [P, ρ](D)|out(P )).

3 We recall that we do not view the distribution policy δ as a specification of a communication round.
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3.2 Distribution Policies
As mentioned before, we only consider hash-based distribution policies for the specification
of initial distrbutions.

Let H = (h1, . . . , hp) be a tuple of hash functions over some network N , where, for each
i, hi : Uαi → 2N − {∅}, for some arity αi and with U the set of domain elements. A hash
policy scheme Z is a set of triples (R, i, b̄) such that R is a relation symbol, i is a number
and b̄ ∈ [1, ar(R)]n for some n ≥ 0. We say that Z is consistent if for all triples (R, i, b̄) and
(S, i, c̄) it holds |b̄| = |c̄|. We only consider consistent hash policy schemes. We say that Z is
compatible with H, if |b̄| = αi, for every triple (R, i, b̄).

If Z is consistent and compatible with H, the two induce the distribution policy δZ,H
that maps every fact R(ū) to the set of servers k, for which there is a triple (R, i, b̄) ∈ Z such
that k ∈ hi(v̄), where v̄ = πb̄(ū) is the projection of ū to b̄. Formally, πb̄(ā) is (ab1 , . . . , abαi ).
By F(Z) we denote the family of such distribution policies δZ,H .

We note that δZ,H is fact-based, in the sense that it maps each fact over S to a set of
servers from N , independent of the other facts in G. Like [21] we only consider fact-based
distribution policies for the specification of initial distributions.

I Example 4. Recall Imon as defined in Example 1. Consider the hash policy scheme
Z = {(Start, 1, ()), (Start, 2, ()), (Er, 1, ()), (Es, 2, ())}. Then Z is consistent and is compatible
with any tupleH = (h1, h2) of hash functions where both h1 and h2 are nullary. LetN = [1, 4].
Furthermore, let h1 map the empty tuple to 1 and let h2 map the empty tuple to 2. Then
δZ,H(Imon) = Dmon where Dmon is as defined in Example 2. We refer to Example 5 and 6
below for more involved hash policy schemes.

3.3 Communication Policies
In this paper, we study two ways to specify communication policies. We first consider policies
that are based on hash-based distribution policies and afterwards policies that are specified
with the help of distribution constraints.

In [21] the communication policies that controlled the evaluation of Datalog programs,
were called economic policies. An economic policy ρ is induced by a pair (π, γ) of fact-based
distribution policies. Here, π is referred to as the production policy determining which servers
are allowed to derive IDB-facts whereas γ is the consumption policy determining which
servers can consume which IDB- and EDB-facts. Such a pair defines a communication policy
in which each fact f induces the set {f} × π(f)× γ(f) of communicated facts.

Hash-Based Communication. If Z1, Z2 are hash policy schemes such that Z1 ∪ Z2 is
consistent and compatible with a tuple H of hash functions, they induce a communication
policy ρZ1,Z2,H as ρπ,γ where π = δZ1,H and γ = δZ2,H . So, hash-based communication
policies are an instantiation of economic policies. If Z,Z1, Z2 are hash policy schemes such
that Z ∪ Z1 ∪ Z2 is consistent4, F(Z,Z1, Z2) denotes the set of policy pairs (δZ,H , ρZ1,Z2,H),
where H is any tuple of hash functions with which Z,Z1, Z2 are compatible. We denote
by Hash-Hash the class of families that are defined in this way by triples Z,Z1, Z2 of hash
policy schemes. We note that economic policies and hash-based communication policies
are fact-based in the sense that they map S-facts f to sets of communicated facts (f , k, `),
independent of other facts.

4 Further on, we will simply say that Z,Z1, Z2 are consistent.
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I Example 5. Consider the hash policy scheme Z as described in Example 4. Let Z1 =
{(R, 1, ()), (S, 2, ())} and Z2 = {(R, 3, (1)), (S, 3, (1))}. Then, Z, Z1, Z2 are consistent.
Consider now the tuple H = (h1, h2, h3) of hash functions, where h1 and h2 are as in
Example 4, and h3 is a unary hash function mapping each value i onto ((i− 1) mod 4) + 1.
Clearly, Z, Z1 and Z2 are compatible with H, and ρZ1,Z2,H = ρ, where ρ is as defined in
Example 2. For δZ,H as defined in Example 4, Pmon is parallel-correct w.r.t. (δZ,H , ρZ1,Z2,H).
Furthermore, this holds for every tuple H of hash functions with which Z, Z1, Z2 are
compatible. Or equivalently, Pmon is parallel-correct w.r.t. F(Z,Z1, Z2).

Constraint-Based Communication. We next introduce a constraint-based formalism to
define communication policies. We make use of the formalism of distribution constraints as
introduced in [19]. It is important to note that the distribution constraints in [19] are far more
general and are targeted at specifying classes of distributions (including co-partitionings).
They are in particular based on distributed tuple- and equality-generating dependencies.
Here, we use the formalism of distribution constraints to define the communication of facts
between servers and only consider so-called data-moving distribution constraints. In the
terminology of [19] they are data-collecting and do not refer to the global database.

A distributed atom A@κ consists of an atom A and a server variable κ. A distribution
constraint is a rule of the form σ = A → K for a set of distributed atoms A forming its
body and a distributed atom K forming its head. We denote headσ = K and bodyσ = A,
respectively. We further assume in this paper that bodyσ contains a distributed atom of the
form B@κ when headσ = A@κ, that is, using the same server variable κ as in the head. We
denote by vars(σ) and nvars(σ) the set of data and server variables occurring in σ.

A distribution constraint is data-moving when the atom occurring in the distributed atom
in the head also occurs in a distributed atom in the body.5 That is, when its head equals
A@κ then its body contains a distributed atom of the form A@λ (possibly κ = λ). This will
then imply that the atom A will be sent from server λ to server κ.

A valuation for σ over a distributed instance D with network N , is a mapping V which
maps server variables to servers, and the other variables to domain values. For a distributed
atom A′ = A@κ, we write V (A′) ∈ D if V (A) ∈ IV (κ). Each set Σ of data-moving distribution
constraints over S induces for every network N a communication policy ρΣ,N as follows: for
each distributed instance D over N , (f , k, `) is in ρΣ,N (D) if there is a valuation V and a
constraint σ ∈ Σ such that V (bodyσ) ⊆ D, V (headσ) = f@` and f@k ∈ V (bodyσ).

Let Σ be a set of data-moving distribution constraints and let Z be a hash policy. By
F(Z,Σ) we denote the set of all policy pairs (δZ,H , ρΣ,N ), where H is a tuple of hash functions
over N and Z is compatible with H. By Hash-Constraints we denote the class of families
F(Z,Σ), where Z is a hash policy and Σ is a set of data-moving distribution constraints.

I Example 6. Consider the following set Σ of data-moving distribution constraints:

R(y)@κ,Er(y, x)@λ→ R(y)@λ, S(y)@κ,Es(y, x)@λ→ S(y)@λ.

Intuitively, for an arbitrary networkN , the induced communication policy ρΣ,N communicates
each fact R(y) to every server containing a matching fact Er(y, x). Analogously, S(y) is sent
to every server containing at least one Es(y, x).

5 While data-moving constraints are similar to VWL of [1], it is not the case that WL can express all
distribution constraints: node-generating constraints can not be defined (c.f., [19]).
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Next, consider the hash policy scheme Z = {(Start, 1, (1)), (Er, 1, (2)), (Es, 1, (2))}, and
let Pmon be as in Example 1. Then Pmon is parallel-correct w.r.t. every (δZ,H , ρΣ,N ) where
N is a network and H is a tuple consisting of a single unary hash function h1 over N with
which Z is compatible. In other words, Pmon is parallel-correct w.r.t. F(Z,Σ).

Notice in particular that Σ does not have a constraint enforcing R(c) and S(c) to end up
on the same server, as this already follows from Z and Pmon. Indeed, every derivation of R(c)
is witnessed by either Start(c) or some Er(b, c), and every derivation of S(c) is witnessed by
Start(c) or some Es(b, c). By construction of Z, these facts are always distributed onto the
same set of servers h1(b). As a result, every R(c) and corresponding S(c) are always derived
on the same set of servers h1(c).

4 Parallel-Correctness

In this section, we first show that for the fragments mon-Datalog and fg-Datalog with a
decidable containment problem, parallel-correctness is undecidable for relatively simple
distribution policies. Then we study settings where deciding parallel-correctness becomes
decidable for mon-Datalog and fg-Datalog.

The following result sharpens the undecidability result for parallel-correctness for Datalog
in [22], since it states undecidability for fragments of Datalog for which the containment
problem is decidable.

I Theorem 7. Para-Correct(fg-Datalog, Hash-Constraints) and
Para-Correct(mon-Datalog, Hash-Constraints) are undecidable.

The proof is by reduction from the halting problem of deterministic Minsky machines
that is well-known to be undecidable (cf., e.g., [27]). The reduction yields a monadic and
frontier-guarded Datalog program and therefore serves for both stated results.

We now turn to restrictions with decidable parallel-correctness. All our upper bounds
rely on the fact that to decide parallel-correctness for all allowed distributed instances and
communication policies it suffices to study distributed instances (and communication policies)
that distribute facts in a maximally scattered way.

We first make this notion of scatteredness more precise and then present our results on
parallel-correctness for Hash-Hash and Hash-MConstraints (a fragment of Hash-Constraints to
be defined below) in the two subsequent subsections.

We say that a tuple H = (h1, . . . , hp) of hash functions scatters a global instance G if,
hi(ā) ∩ hj(b̄) = ∅, for all i 6= j and all tuples ā ∈ val(G)αi , b̄ ∈ val(G)αj , and
hi(ā) ∩ hi(b̄) = ∅, for all tuples ā, b̄ ∈ val(G)αi with ā 6= b̄.

A distribution policy δZ,H scatters G if H scatters G. Thus, if δZ,H scatters G then two
facts R(ā) and R′(ā′) meet at some server, if and only if there is some i and triples (R, i, b̄)
and (R′, i, b̄′) such that πb̄(ā) = πb̄′(ā′). Similarly, a pair (δZ,H , ρZ1,Z2,H) scatters G if H
scatters G. For a global instance G and a hash policy scheme Z, we define the canonical
scattered instance δZ,H(G) where for each i ≤ p and ā ∈ val(G)αi , hi(ā) = {(i, ā)}.

4.1 Parallel-Correctness for Hash-Hash
The main result of this section is the following:

I Theorem 8. Para-Correct(fg-Datalog, Hash-Hash) and
Para-Correct(mon-Datalog, Hash-Hash) are 2ExpTime-complete.
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The lower bound is, in both cases, by a reduction from the containment problem for
monadic Datalog, which is known to be 2ExpTime-hard [11].

Towards the upper bound, the following lemma shows that it suffices to restrict attention
to scattering policies to establish parallel-correctness.

I Lemma 9. Let P be a Datalog program and Z,Z1, Z2 consistent hash policy schemes. Then
P is parallel-correct w.r.t. F(Z,Z1, Z2) if and only if for all (δ, ρ) ∈ F(Z,Z1, Z2) and all
global instances G that are scattered by (δ, ρ), it holds that [P, ρ](δ(G))|out(P ) = P (G)|out(P ).

Next we show that over scattered instances the distributed evaluation of mon-Datalog
and fg-Datalog programs can be simulated by fg-Datalog programs over the global instance.

I Lemma 10. For every frontier-guarded or monadic Datalog program P and family
F(Z,Z1, Z2) of hash-based policy pairs, a frontier-guarded datalog program P ′ can be con-
structed such that for every pair (δ, ρ) from F and for every global instance G, for which (δ, ρ)
scatters G, it holds P ′(G)|idb(P ) = [P, ρ](δ(G))|idb(P ). Furthermore, the number of variables
and the length of the rules in P ′ is polynomial in the size of P , Z, Z1 and Z2 and the number
of rules of P ′ is at most exponential.

Proof. We first construct a Datalog program P ′′ that has the claimed equivalence property
and afterwards we “guard” it. The program P ′′ uses one relation symbol Ri of arity αi+ar(R)
for every relation symbol R from P and every i ≤ p occurring in the hash policy schemes.
Furthermore it has four kinds of rules:

For every triple (R, i, b̄) in Z, P1 has a rule Ri(v̄; x̄) ← R(x̄), where x̄ is a tuple of
mutually different variables, and v̄ = πb̄(x̄) is the projection of x̄ to b̄.
For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P there is an indexed version Ri(v̄; x̄) ←
S1
i (v̄; ȳ1), . . . , Sni (v̄; ȳn), where v̄ is a tuple of pairwise distinct variables.

For every triple (R, i, b̄) in Z1 and every triple (R, j, c̄) in Z2 there is a rule Ri(v̄; x̄)←
Rj(w̄; x̄), where x̄ is a tuple of mutually different variables, v̄ is the projection of x̄ to b̄,
and w̄ is the projection of x̄ to c̄.
Finally, for each IDB-relation of P and every i, there is a rule R(x̄)← Ri(v̄; x̄), where v̄
and x̄ are (disjoint) tuples of mutually different variables.

Let (δ, ρ) and G be as in the statement of the lemma. We argue that P ′′(G)|idb(P ) =
[P, ρ](δ(G))|idb(P ). First of all, the rules of the first kind basically define δ(G), where a fact
Ri(c̄, ā) corresponds to R(ā) being at server (i, c̄). The second set of rules mimics the local
evaluation of Datalog rules at each such server. The third set of rules accounts for the
communication of IDB-facts according to ρ. Finally, the last set of rules produces the output
tuples. We show in the full paper how P ′′ can be guarded. J

The two lemmas show that testing for parallel-correctness reduces to testing of equivalence
of fg-Datalog programs over global databases. Notice that we need both reductions in the
previous lemma, as we show in Section 7 that monadic Datalog can not always be rewritten
into an equivalent frontier-guarded Datalog program in the distributed setting.

As a final step, we need the following result, which already follows from the construction
in [13, Theorem 7] but has a refined statement about the complexity with respect to the
number of program rules. A proof sketch can be found in Section 5.

I Proposition 11 ([13]). The containment problem for Datalog programs (on the left-hand
side) and frontier-guarded Datalog programs (on the right-hand side) is decidable in time

doubly exponential in the number of variables in P and P ′,
doubly exponential in the maximal size of a rule of P and P ′, and
singly exponential in the number of rules of P and P ′.
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Now we are ready to give a proof sketch for the upper bound in Theorem 8. The proof of
the lower bound is given in the full version of this paper.

Proof of Theorem 8, upper bound. Let P be a mon-Datalog or fg-Datalog program and
Z,Z1, Z2 consistent hash policy schemes. Let P ′ be the fg-Datalog program that can be
constructed thanks to Lemma 10. By combing Lemma 10 with Lemma 9 it follows that P is
parallel-correct for F(Z,Z1, Z2) if and only if P and P ′ are equivalent.

The containment problem (and therefore the equivalence problem) for frontier-guarded
Datalog is known to be in 2ExpTime [13]. Since the size of P ′ is at most exponential in
the size of P , Z, and Σ, and both programs are frontier-guarded, a triply exponential upper
bound follows. However, only the number of rules of P ′ might be non-polynomial in P ,
Z,Z1, Z2, but the number of variables and the size of each rule is polynomial. Therefore, by
Proposition 11 the desired 2ExpTime upper bound follows. J

4.2 Parallel-Correctness for Hash-MConstraints
Given the undecidability of Para-Correct(fg-Datalog, Hash-Constraints), we study in this
subsection a restriction of distribution constraints that yields decidable parallel-correctness
for fg-Datalog with the same complexity as Para-Correct(fg-Datalog, Hash-Hash).

The restriction has two ingredients. First, we require that to test whether a fact f should
be communicated from a server to some other server, no other data values than those in f
need to be communicated. In particular, for constraints, in which the body has only two
node variables λ and κ, for the sending and the receiving server, we want to enable λ and
κ to test “their” atoms independently, only communicating f . To this end, we say that
a data-moving distribution constraint σ has guarded communication if whenever its body
contains atoms A1@κ1 and A2@κ2, with κ1 6= κ2, then vars(A1) ∩ vars(A2) ⊆ vars(headσ).
The second ingredient of our restriction is a kind of linearity condition for the proof trees
that result from computations. A set Σ of data-moving distribution constraints is modest if
all its constraints have guarded communication and for every σ ∈ Σ, there is exactly6 one
atom in the body with a relation symbol that occurs in the head of some constraint of Σ. By
Hash-MConstraints we denote the class of families F(Z,Σ), where Z is a hash policy and Σ
is a modest set of data-moving distribution constraints. The main result of this subsection is
the following theorem.

I Theorem 12. Para-Correct(fg-Datalog, Hash-MConstraints) is 2ExpTime-complete.

The lower bound is by a reduction from the containment problem for frontier-guarded Datalog,
which is known to be 2ExpTime-hard (cf. [9, 13]).

The approach for the upper bound is very similar to that for Theorem 8. Let P be a
Datalog program, D = (G, I) be a distributed database over network N , and Σ a set of
data-moving distribution constraints. We use proof trees for facts that are produced in a
distributed evaluation in the straightforward way by combining proof trees for Datalog facts
with proof trees for communicated facts, whose communication is specified by some tgd. For
a tree t, we denote its set of nodes by nodes(t), its root by root(t), and its set of leaves by
fringe(t). We denote the set of children of a node v by childrent(v). Moreover, for a set F of
facts and a server k, we denote by F@k the set {f@k | f ∈ F}.

6 Clearly, this is the atom A@λ required by the definition of data-moving.
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I Definition 13. A proof tree t for a distributed fact f@k with respect to a Datalog program
P and a set Σ of data-moving constraints is a tree, in which every node v is labelled by a
distributed fact7 factt(v), and which has the following properties:

factt(root(t)) = f@k;
for every inner node v labelled g@`, there is either

a rule τ ∈ P and a valuation V for τ such that V (headτ ) = g and V (bodyτ )@` =
{factt(w) | w ∈ childrent(v)}, or (computed facts)
a constraint σ ∈ Σ and a valuation V for σ such that V (headσ) = g@` and V (bodyσ) =
{factt(w) | w ∈ childrent(v)}. (communicated facts)

We call such a proof tree computation-free, if all its inner nodes are witnessed by constraints
from Σ.

I Definition 14. A class P of Datalog programs and a class C of distribution constraints have
the polynomial communication property if there is a polynomial q such that the following
holds, for each program P ∈ P and each finite set Σ ⊆ C: if a distributed fact has a
computation-free proof tree with respect to P and Σ, and with a set F of leaf facts, then there
is such a proof tree of size at most q(|P |, |Σ|) (with leaf facts from F).

I Lemma 15. The class of Datalog programs and the class of modest distribution constraints
have the polynomial communication property.

The following lemma shows that it suffices to restrict attention to scattering policies to
establish parallel-correctness.

I Lemma 16. Let P be a Datalog program, Z be a hash policy scheme, and Σ be a set of
data-moving distribution constraints. Then P is parallel-correct w.r.t. F(Z,Σ) if and only
if for all (δ, ρ) ∈ F(Z,Σ) and all global instances G that are scattered by δ, it holds that
[P, ρ](δ(G))|out(P ) = P (G)|out(P ).

The last step in the upper bound proof is the following lemma, similar to Lemma 10,
showing that over scattered instances, a fg-Datalog program over the global instance can
simulate distributed evaluation. As before, parallel-correctness can thus be reduced to testing
equivalence of fg-Datalog programs.

I Lemma 17. For every frontier-guarded Datalog program P , hash policy scheme Z, and set
Σ of data-moving distribution constraints, which has the polynomial communication property,
a frontier-guarded Datalog program P ′ can be constructed such that for every (δ, ρ) ∈ F(Z,Σ)
and every global instance G that is scattered by δ, it holds [P, ρ](δ(G))|out(P ) = P ′(G)|out(P ).
Furthermore, the number of variables and the length of the rules in P ′ is polynomial in the
size of P , Z, and Σ and the number of rules of P ′ is at most exponential.

Proof sketch. Similarly as in the proof of Lemma 10, we first construct an intermediate
program P ′′ which is actually a sub-program of the one constructed there. However, P ′′
does not have any rules for the communication phases, therefore the second step takes care
of communication and guarding.

As in the proof of Lemma 10, the program P ′′ uses one relation symbol Ri of arity
αi + ar(R), for every relation symbol R from P and every i ≤ p occurring in the hash policy
scheme Z. Furthermore, it has frontier-guarded versions of three kinds of rules:

7 We omit the subscript t, if it is clear from the context.
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For every triple (R, i, b̄) in Z, P1 has a rule Ri(v̄; x̄) ← R(x̄), where x̄ is a tuple of
mutually different variables, and v̄ is the projection of x̄ to b̄.
For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P , there is an indexed version Ri(v̄, x̄) ←
S1
i (v̄, ȳ1), . . . , Sni (v̄, ȳn), where v̄ is a tuple of pairwise distinct variables.

For each rule R(x̄) ← S1(ȳ1), . . . , Sn(ȳn) of P , there is a second version R(x̄) ←
S1
i (v̄, ȳ1), . . . , Sni (v̄, ȳn).

As before, the rules of the first kind basically define the canonical scattered instance of G
with respect to Z, where a fact Ri(c̄, ā) corresponds to R(ā) being at server (i, c̄), and the
second set of rules mimics the local evaluation of Datalog rules at each such server. The rules
of the third kind are responsible for the production of output facts. They can be guarded
similarly as in Lemma 10.

However, these rules do not account yet for the redistribution of facts during the com-
munication phases. In a nutshell, we replace IDB-atoms by sets of leaf (IDB- and EDB-)
atoms of computation-free subtrees of a proof tree. Thanks to the polynomial communication
property these sets only have polynomial size. The rules of P ′ result from P ′′ by replacing,
in all possible ways, some IDB-atoms in bodies by such (polynomial-size) sets of atoms
accounting for communication. J

5 The Containment Problem for Frontier-Guarded Datalog

In this section we prove Proposition 11 which states an upper bound for the complexity
of the containment problem for frontier-guarded Datalog. In principle, it was shown in
[13, Theorem 7], but we need that the upper bound is at most singly exponential in the
number of rules of the two programs.

Each Datalog program P induces a (possibly infinite) set C(P ) of conjunctive queries
(CQs) in a natural way by finite “unravellings” of P . It is well-known that for two Datalog
programs P, P ′ it holds P ⊆ P ′ if and only if8 each CQ from C(P ) is contained in some CQ
from C(P ′) [26], which in turn is equivalent to the existence of a homomorphism from every
CQ in C(P ′) to some CQ from C(P ) [14]. The idea in [13], going back to [16], is to use tree
automata to test the existence of such homomorphisms. This approach requires to encode
CQs by trees over a finite alphabet, even though the number of variables in CQs from C(P )
and C(P ′) can be unlimited. The idea is to encode CQs by symbolic trees in which different,
unconnected occurrences of the same variable can represent different variables in a CQ.

The main step of the proof constructs from two fg-Datalog programs P, P ′ an alternating
two-way tree automaton APvP ′ for the set TPvP ′ of symbolic proof trees representing CQs
resulting from P that are contained in CQs resulting from P ′. In the following, we define
symbolic proof trees and, afterwards, we give a high-level description of APvP ′ in terms of a
2-player game on symbolic proof trees t (for P ) and consider its size.

I Definition 18. A symbolic proof tree for a Datalog program P is a tree in which every
node v is labelled by a rule instantiation headv ← bodyv of a rule of P induced by a variable
substitution s : vars ⇀ vars, and which has the following properties.9

For every node v of t, bodyv |idb(P ) = {headw | w ∈ childrent(v)} where bodyv |idb(P ) is the
set of all the IDB-atoms in bodyv.
All variables that occur in bodyv but not in headv, do not occur in the label of the parent
of v.

We note that, in particular, for every leaf v of t, bodyv only contains EDB-atoms.

8 The result is only stated for finite unions in [26] but the proof is just the same for countable unions.
9 This definition does not yet yield a finite alphabet, but this issue will be addressed below.
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With each symbolic proof tree t we associate a CQ q[t] which is the CQ obtained from t in
the obvious way, but replacing variable x in t in each x-connected component by a different
fresh variable. With a set T of symbolic proof trees we associate a (possibly infinite) set q[T ]
of CQs via q[T ] = {q[t] | t ∈ T}. Thanks to [15] we can assume that in every symbolic proof
tree t of every Datalog program P with n variables only variables among x1, . . . , x2n occur.
For a Datalog program P we denote by TP the set of symbolic proof trees t for P over set
{x1, . . . , x2n} of variables (which we fix for each program P ). TP is a tree language over a
(finite) alphabet. More precisely, the alphabet size is at most polynomial in the number of
rules of P and exponential in the number of variables occurring in P (i.e. the number of
substitutions).

To test containment of P in P ′ it now suffices to test whether TP ⊆ TPvP ′ , where the
tree language TPvP ′ is defined as

TPvP ′ = {t ∈ TP | there is a tree t′ ∈ TP ′ s.t. q[t] ⊆ q[t′]}.

We show the following result, which is a slight refinement of a result in [13] in which the
complexity in terms of the number of rules in P is better suited for our purposes.

I Proposition 19. For each Datalog program P and frontier-guarded Datalog program P ′

one can construct a two-way alternating tree automaton APvP ′ for TPvP ′ of size
exponential in the number of variables in P and P ′,
exponential in the maximal size of a rule of P and P ′, and
polynomial in the number of rules of P and P ′.

To decide containment of P in P ′ one can construct a non-deterministic automaton for
the complement of TPvP ′ from APvP ′ in size exponential in the size of APvP ′ . Then P is
contained in P ′ if and only if the intersection (of the language) of the resulting automaton
with an automaton for TP is empty. Altogether this proves Proposition 11.

Our proof of Proposition 19 uses a direct construction of the automatonAPvP ′ constructed
in [13] for fg-Datalog, avoiding some technical complications in [13] caused by the more
general Guarded Queries. However, we describe APvP ′ only in terms of a 2-player game on
symbolic proof trees t for P . The players are Arthur and Morgana. Morgana’s task is to
show that t is in TPvP ′ and if she succeeds, she wins. Arthur’s task is to challenge her proof.
We only need to consider the game for trees from TP since other trees are not relevant for
the further processing. For that purpose, Morgana builds up a tree t′ ∈ TP ′ and a (partial)
homomorphism. During the game, both players can traverse the tree t in a two-way fashion
but t′ is only “traversed” top-down along a single path.

After each round, there is a current node v and a pair (h,M) where h is a partial
mapping h : var(τ ′)→ {x1, . . . , x2|var(P )|} and M ⊆ bodyτ ′ , for some rule instantiation τ ′ of
P ′. Intuitively, M consists of the atoms of q[t′], induced by τ ′, that still have to be mapped
into q[t] and h is a partial homomorphism that has to be extended by Morgana to do so.

In the first round, Morgana chooses a rule τ ′ of P ′ and a (partial) mapping h which maps
the head of τ ′ to the head of roott (i.e. the head of q[t]). Thus, M = bodyτ ′ . In all further
rounds, there are three possible cases.

Case 1 |M | > 1: If there is a subset M ′ (M such that var(M ′) ∩ var(M −M ′) ⊆ dom(h),
i.e. if h is defined for all variables occurring in M ′ and its complement, Arthur chooses
M ′ or M −M ′ and the new state is (h′,M ′) or (h′,M −M ′) where h′ is the restriction
to var(M ′) or var(M −M ′), respectively. Otherwise, Morgana has to extend the mapping
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h to another variable x in M as follows. Morgana has to choose a (possibly new) current
node v′ of the input tree t such that all nodes on the path from v to v′ contain all
variables10 of h(M). Then she has to choose a variable appearing at v′ for h(x).

Case 2 |M | = 1 and var(M) 6⊆ dom(h): Morgana needs to extend the mapping h to all
variables in the remaining atom B ∈M . To this end, she has to choose a node v′ such
that all nodes on the path from v to v′ contain all variables of h(B). Then she has to
extend h such that it maps all remaining variables of M to variables at v′.

Case 3 |M | = 1 and var(M) ⊆ dom(h): Morgana chooses a node v′ such that all nodes on
the path from v to v′ contain all variables of h(B) where B is the remaining atom in M .
Case 3.1 B is extensional: Morgana wins if the image h(B) is in the label of v′, otherwise

she loses.
Case 3.2 B is intensional: Morgana has to choose a rule instantiation τ ′ ∈ P ′ whose

head equals B and a guard atom C of τ ′. Then she extends, if necessary, h to all
variables occurring in C (but not in B). If h(C) is not at v′, Morgana loses. Otherwise,
the game continues at v′ with the homomorphism h′ that is the restriction of h to C
and the atom set bodyτ ′ .

Due to lack of space we omit the formal definition of APvP ′ and even the formal definition
of alternating two-way tree automata. However, it should be clear that the game can be
translated into such an automaton whose states basically consist of pairs (h,M) where M ⊆
bodyτ ′ for a rule instantiation τ ′ of P ′ and a partial mapping h : var(τ ′)→ {x1, . . . , x2|var(P )|}.
In particular, the number of states is at most exponential in the number of variables of P
and P ′ (i.e. the number of partial mappings h), exponential in the size of the rules in P ′,
and polynomial in the number of rules of P ′ (choices for M).

6 Parallel-Boundedness

In this section, we study parallel boundedness of Datalog programs in our distributed setting.

I Definition 20 (Parallel-Boundedness). A Datalog program P is parallel-bounded w.r.t. a
family F of policy pairs if there is an r ∈ N such that for all policy pairs (δ, ρ) ∈ F and all
distributed instances D valid w.r.t. δ, no new output facts are computed on any server after
r rounds in the distributed evaluation of P on D w.r.t. ρ.

We note that our definition of parallel-boundedness is more generous than the one in [21],
since there the requirement is that no facts whatsoever are produced any more. Of course,
complexity upper bounds for our notion translate to the notion of [21].

For classes P of Datalog programs, and C of families of policy pairs, Para-Bound(P, C)
denotes the decision problem that asks, for a program P ∈ P and a family F ∈ C, whether P
is parallel-bounded and parallel-correct with respect to F . Parallel-boundedness for programs
that are not parallel-correct does not seem meaningful.

Our objective in this section is to decide parallel-boundedness for frontier-guarded Datalog
programs and families of policy pairs in Hash-MConstraints.

I Theorem 21. Para-Bound(fg-Datalog,Hash-MConstraints) is 2ExpTime-complete.

Similarly to the lower bound proof for parallel-correctness (cf. Theorem 12), the lower bound
is by a reduction from the containment problem for monadic Datalog, which is known to be
2ExpTime-hard [11].

10Recall that non-connected occurrences of a variable in t correspond to different variables in q[t].
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Towards the upper bound, let in the following P be a fg-Datalog program, Z a hash policy
scheme and Σ a set of data-moving distribution constraints, such that P and Σ have the
polynomial communication property. The starting point for the upper bound is the rewriting
of P,Z,Σ into a fg-Datalog program P ′ from Lemma 17 which simulates the distributed
evaluation of P on scattered instances. We show first that the consideration of scattered
instances suffices also for parallel-boundedness.

I Lemma 22. Let P be a Datalog program, Z a hash policy scheme, and Σ be a set of
data-moving distribution constraints such that P is parallel-correct w.r.t. F(Z,Σ). Then P
is parallel-bounded w.r.t. F(Z,Σ) if and only if there is an r ∈ N such that for all policy
pairs (δS, ρS) ∈ F and all distributed instances DS scattered by δS, no new output facts are
computed on any server after r rounds in the distributed evaluation of P on DS w.r.t. ρS.

The program P ′ has two kinds of rules: communication-prone rules that incorporate
communication steps and communication-free rules. The body of each communication-prone
rule consists of the leaves of some partial proof tree. With each body atom A, the number of
communication steps in which A is sent in this proof tree can be computed when the rule
is generated and symbolic proof trees corresponding to P ′ can be extended to carry these
numbers as weights.

Then P is parallel-bounded w.r.t. F(Z,Σ) if and only if there is some constant r such
that for each symbolic proof tree t ∈ TP , there is a tree t′ ∈ TP ′ such that q[t] ⊆ q[t′] and
along each (root-to-leaf) path of t′ the sum of the communication weights is at most r.
Thus, testing parallel-boundedness asks for an extension of the approach of Section 5 which
constructed an alternating automaton APvP ′ for the set of trees t ∈ TP that are “captured”
by trees t′ ∈ TP ′ . Now we are asking for a tree t′ that respects the path bound. Since r is
not known in advance, the “communication count” can not be incorporated into the states
of APvP ′ . However, there is an extension of tree automata that was invented for exactly
this kind of situation: cost automata. For our purposes, we need a cost automaton that has
one counter which can be incremented but neither be decremented nor reset to zero. A cost
automaton A is limited if there is some number s such that in each run of A the counter
stays below s.

I Proposition 23. For each frontier-guarded Datalog program P , hash policy scheme Z, and
set Σ of modest distribution constraints such that P is parallel-correct w.r.t. F(Z,Σ), one
can construct an alternating two-way tree cost automaton A that uses only a single counter,
which is never reset, such that A is limited if and only if P is parallel-bounded w.r.t. F(Z,Σ).
Furthermore, A has size (and can be constructed in time) exponential in P .

The final step is then to decide whether A is limited which is decidable in exponential
time thanks to the following result by [12]. In particular, Propositions 23 and 24 imply the
upper bound of Theorem 21.

I Proposition 24 ([12]). The limitedness problem for alternating two-way tree cost automata
with a single counter that is never reset, is decidable in exponential time.

Proof idea for Proposition 23. Let P ′ be the program constructed in Lemma 17 for P , Z,
and Σ. Similarly as in Section 5, we describe the cost automaton A in terms of a 2-player
game on symbolic proof trees t for P ′.

The rules of the game are almost exactly as in the game underlying AP ′vP ′ . We assign a
value to each play, which is the sum of the weights of the IDB-atoms of communication-prone
rules in t′ that are visited in that play.11 Morgana’s task is to minimize the value of the

11We recall that a play can move arbitrarily in t but evolves along a path of t′.
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play, while Arthur’s task is to maximize it. Correspondingly, in the semantics of A the value
for t is maximized over Arthur’s moves and minimized over Morgana’s moves. There is one
difference to the rules for AP ′vP ′ : in situations where Morgana would lose immediately,
Arthur is allowed to increment the counter arbitrarily. Altogether, the constructed cost
automaton A is limited if and only if P is parallel-bounded.

The size of A is the same as for APvP ′ , i.e. polynomial in the number of rules of P ′ and
at most exponential in the number of variables of P ′ and the maximal length of a rule in P ′.
Thus, it has size exponential in the original program P (cf. Lemma 17). J

7 Variants of the Framework

The precise formalisation of our framework leaves a lot of freedom and it is a fair question
how “stable” our results are. To shed some light on this question, we consider in this section
two slightly different settings for distributed evaluation strategies for Datalog. The answers
that we get are not entirely unambiguous.

We call the first alternative the locally restrained setting. It was actually used in [21].
It requires that during each local fixpoint computation, every server only derives facts that
it can communicate to other servers according to the communication policy.12 It turns out
that our results on parallel-correctness are not affected by this difference in the setting.

I Proposition 25.
(a) In the locally restrained setting, Para-Correct(fg-Datalog, Hash-Hash) and

Para-Correct(mon-Datalog, Hash-Hash) are in 2ExpTime.
(b) In the locally restrained setting, Para-Correct(fg-Datalog, Hash-MConstraints) is in

2ExpTime.

The second variant attempts to restrict communication by disallowing servers to send
facts that they did not derive themselves through a local computation. We refer to this
variant as the non-transitive communication setting.

Interestingly, although this variant does not alter our result for frontier-guarded Datalog,
it has a huge effect on parallel-correctness for monadic Datalog.

I Proposition 26.
(a) In the non-transitive communication setting

Para-Correct(fg-Datalog, Hash-Constraints) is in 2ExpTime.
(b) In the non-transitive communication setting

Para-Correct(mon-Datalog, Hash-Constraints) is undecidable.

In a nutshell, the difference between frontier-guarded Datalog and monadic Datalog in the
non-transitive communication setting can be explained as follows. The reduction in the proof
of Proposition 26b (stemming from the proof of Theorem 7) simulates a Minsky machine
by repeated redistribution of facts. Although non-transitive communication only allows to
send facts that were derived locally, for mon-Datalog this can be overcome by copy rules.
Although copy rules are also allowed in fg-Datalog, they need to be guarded by EDB-atoms
there, and this might change the semantics in a distributed setting.

In particular this setting shows that in a parallel setting it can happen that the usual
“semantical inclusion” of monadic Datalog in frontier-guarded Datalog by rewriting programs

12Although it might seem useless to restrict local computation, this setting allows a more fine-grained
control over the workload for each server if for example all servers start with the complete database.
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of the former kind into programs of the latter kind fails to hold and monadic Datalog can
indeed behave worse than frontier-guarded Datalog. The next example illustrates why this
rewriting does not always work in a distributed setting.

I Example 27. Every monadic Datalog program can be rewritten into an equivalent (w.r.t.
evaluation over a global database) frontier-guarded one by adding suitable guards [13].
Consider the program Pmon from Example 1. Then the rule Out(x) ← R(x), S(x) is not
frontier-guarded but can be replaced by the following set of frontier-guarded rules:

Out(x)← R(x), S(x),Start(x) Out(x)← R(x), S(x), Es(x, y)
Out(x)← R(x), S(x), Er(x, y) Out(x)← R(x), S(x), Es(y, x)
Out(x)← R(x), S(x), Er(y, x)

We denote the such obtained program by P ′mon. Then for every global database G, Pmon(G) =
P ′mon(G), but [Pmon, ρ](Dmon) 6= [P ′mon, ρ](Dmon) for Dmon and ρ as defined in Example 2.
Indeed, I3 can never output Out(3) as that server contains none of the required EDB-facts.
The difference between the global and distributed evaluation is that in the former all guards
are present in the global database while this does not necessarily hold true for all servers in
the distributed evaluation.

8 Conclusion

While most effort has been devoted to study correctness properties in the simpler setting
of the single-round MPC model (e.g., [4, 18,22]), to date only Ketsman, Albarghouthi, and
Koutris [21] considered correctness w.r.t. the multi-round MPC model (for Datalog). We
continue in their footsteps by presenting a more general framework in terms of communication
policies for the distributed evaluation of Datalog. We provide decidable instances for the
parallel-correctness and parallel-boundedness problem for Datalog. Even though the obtained
complexities are far from tractable, we do feel that they contribute to not only the study of
reasoning for parallel Datalog but also for parallel queries in the multi-round MPC model
in general. Indeed, while a most natural direction for future work is to investigate more
tractable settings for Datalog, we are eager to explore communication policies to study the
evaluation of non-recursive queries, like join queries, in the multi-round setting. In addition,
we plan to investigate data-moving distribution constraints further, trying to characterize
the class of distributed evaluations that extensions and restrictions of those can define. We
also would like to explore how they can be efficiently evaluated, which is not obvious as such
constraints can refer to multiple servers.

An important insight resulting from our investigations is the central role scattered
instances play w.r.t. parallel-correctness and parallel-boundedness, and how they can be
encoded into Datalog programs if they are defined through hash partitioning. It allowed to
translate our reasoning problems for the distributed setting to static analysis problems for
traditional Datalog, a topic that has received quite some attention in the literature.
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