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1. INTRODUCTION

Research studies in the field of Brain-Computer Interfaces (BCI) mostly take place in controlled lab
environments. To move BCIs into the real world and everyday life situations it is crucial to bring
research out of those controlled environments and into more realistic scenarios.

Recently, various studies have been recorded in classrooms, cars or realistic tugboat simulators
(Blankertz et al., 2010; Brouwer et al., 2017; Ko et al., 2017; Miklody et al., 2017). Mobile BCIs even
allow participants to move freely during the recording (Lotte et al., 2009; Castermans et al., 2011;
De Vos et al., 2014; Wriessnegger et al., 2017; von Lühmann et al., 2019). Other studies have been
carried out with paralyzed, locked-in or completely locked-in users or with participants recovering
from stroke (Neuper et al., 2003; Ang et al., 2011; Leeb et al., 2013; Höhne et al., 2014; Hwang et al.,
2017; Han et al., 2019; Lugo et al., 2020).

However, so far there has not been a BCI study where distractions are investigated systematically.
We have recorded a motor imagery-based BCI study (N = 16) under five types of distractions that
mimic out-of-lab environments and a control task where no distraction was added. The secondary
tasks include watching a flickering video, searching the room for a specific number, listening to
news, closing the eyes and vibro-tactile stimulation.

Many BCI datasets have been published, e.g., in context of the BNCI Horizon 2020 initiative1, 4
BCI competitions have had a big impact on the research community (Sajda et al., 2003; Blankertz
et al., 2004, 2006; Tangermann et al., 2012) and still datasets are made available (Shin et al.,
2016; Cho et al., 2017; Kaya et al., 2018). We want to contribute further by publishing this BCI
dataset with multiple distractor conditions. This report provides a summary of the design and
experimental setup of the study.We also show group-level results on event-related synchronization
and desynchronization, results on a standard classification pipeline and power spectra for all
secondary tasks. Apart from the dataset2, code for the analysis is also publicly available3 and a
more advanced analysis can be found in Brandl et al. (2016).

1https://bnci-horizon-2020.eu/database/data-sets
2https://depositonce.tu-berlin.de/handle/11303/10934.2
3https://github.com/stephaniebrandl/bci-under-distraction
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2. METHODS

2.1. Participants
Sixteen participants (six female, average age 26.3 ± 1.9 years)
volunteered to participate in this study. Three volunteers
had previously participated in another BCI experiment. All
instructions were given in German requiring basic language
skills. Volunteers were reimbursed for their participation in
the study except for three employees of the TU Berlin
Machine Learning Group. All participants were instructed on
the experimental procedures prior to signing an informed
consent. This study was conducted according to the declaration
of Helsinki and was approved by the Ethics Committee
of the Charite-Universitätsmedizin Berlin (approval number:
EA4/012/12).

2.2. Data Acquisition
EEG signals were recorded with a Fast’n Easy Cap (EasyCap
GmbH) with 63 wet Ag/AgCl electrodes which were placed
at symmetrical positions according to the international 10–20
system (Jasper, 1958) referenced to the nose. We used two 32-
channel amplifiers (BrainAmp, BrainProducts) to amplify the
signals, which were sampled at 1,000Hz. Data was recorded in
the period of 15 April–18 July 2014 at TU Berlin and raw data
without any preprocessing was made publicly available1.

2.3. Experimental Setup
During the experiment, the participants were sitting in a
comfortable armchair at a distance of 1m in front of
a 24” computer screen. Auditory instructions were given
via headphones.

Each experimental session lasted about 3 h including
preparation and about 90 min of signal recording. Before the
main experiment, we recorded eight trials in which participants
had to alternately keep their eyes open or closed for 15 s.

The main experiment was divided into seven runs à 10 min
with 72 trials per run. One trial lasted 4.5 s and was defined
by one motor imagery task with an additional secondary task
except for the first run. The first run served as a calibration phase
without feedback and distraction tasks. The subsequent runs
included three blocks à four trials (two left and two right) of each
secondary tasks (72 trials per run). The blocks were presented in
a random order to minimize sequence effects.

2.3.1. Primary Task
At the beginning of each trial, instructions for left or right hand
motor imagination were given over headphones (links and rechts
as the instructions were in German). This was the primary task
in this study. At the end of the trial the participant received a
stop command followed by a break of 2.5 s, after which the next
trial started.

Participants were asked to choose one haptic hand movement.
Several strategies for motor imagery were presented to the
participants to choose from. The majority chose to imagine
squeezing a soft ball—other strategies involved opening a water
tap, piano playing or using a salt shaker.

Auditory online feedback was given in the six runs after the
calibration to keep the motivation up. The online feedback was

trained on the calibration data and based on Laplacian filters of
the C3 and C4 electrodes (McFarland et al., 1997) and regularized
linear discriminant analysis (RLDA, Friedman, 1989). For this,
EEG data was downsampled to 100Hz, Laplacian filters of C3
and C4 were calculated and the data was band-pass filtered in
the ranges 9–13 and 18–26Hz with a Butterworth filter of order
5. Data was then cut into epochs of 750–3,500ms and an RLDA
classifier was trained on the logarithm of variances as features.
During the feedback phase, EEG data was downsampled and
band-pass filtered as before, projected on the Laplacian filters
and the trained classifier applied on the log-variance features.
Furthermore, we applied pooled-mean adaptation to continue
training the classifier during the feedback phase (Vidaurre et al.,
2010). Classification averaged across all participants reached an
accuracy of 57.05%. Auditory feedback was given after the stop
command as decision left (Entscheidung links) or decision right
(Entscheidung rechts) during the 2.5 s break. Online classification
was performed with the BBCI toolbox in MATLAB4.

2.3.2. Secondary Tasks
We simulated a pseudo-realistic environment by adding six
secondary tasks on top of the primary motor imagery task to the
experimental setup. They were selected to cover different types of
distractions in an out-of-lab scenario.

1. Clean
This condition served as a control task where no additional
distraction was added.

2. Eyes-Closed
Participants were asked to close their eyes before the motor
imagery trial started and to keep them closed until the trial
finished. Here, we expected a power increase in the alpha band
(8–12Hz) due to the closed eyes to overlap with themotor task
related mu rhythm (8–13Hz). This task was also the primary
reason for providing all instructions and feedback auditorily
instead of visually.

3. News
Short sequences of a public newscast (Tagesschau) were played
over the headphones with current news (January/February
2014) and news from 1994. Each sequence was only played
once in each experiment. We expected the participants to be
cognitively distracted and the auditory cortex to be activated
during the motor imagery task which might influence the
motor imagery performance.
During the experiment, we did not assess active listening of
the participants.

4. Numbers
For this task, 26 sheets of paper with a randomly mixed letter-
number combination were set up on the wall in front of the
participants and also on the left and right side of the room.
This implies that participants needed to turn their head in
order to see the sheets. For each trial a new window appeared
on the screen asking the participants to search the room for a
particular letter to match with a stated number and to read
it out loud. Each combination was shown 2–3 times to all

4https://github.com/bbci/bbci_public
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FIGURE 1 | Baseline analysis for calibration data and first classification results. Left: Group-average envelopes of C3 (solid) and C4 (dashed) electrodes for right and

left motor imagery trials. Center: Group-average signed r2 values evolving over time within trials as times series for C3 and C4 (upper) and patterns for four different

intervals (lower). Right: Classification results on motor imagery data left vs. right (one dot per participant): comparison offline CSP vs. online Laplacian (upper) and

comparison CSP without distractions vs. CSP with distractions (lower).

participants. We counted how often the letters were found.
Out of 72 trials, 59.7 combinations were successfully found on
average. This task was expected to cause both a high cognitive
distraction and additional muscular artifacts.

5. Flicker
A flickering stimulus with alternating gray shades at a
frequency of 10Hz was presented on the screen. We included
this task to analyze the influence of the steady state visually
evoked potential (SSVEP) (Morgan et al., 1996).

6. Stimulation
We placed two coin vibration motors with a diameter of 3 cm
on the insides of both forearms, one over each wrist and the
other just below the elbows. To investigate the interference of
steady state vibration somatosensory evoked potential (SSVSEP,
Tobimatsu et al., 1999; Brouwer and Van Erp, 2010) on the
motor imagery task, vibrotactile stimulation was carried out
with carrier frequencies of 50 and 100Hz, each modulated at
9, 10, and 11Hz.

2.4. Baseline Analysis
We show group-level results of event-related synchronization
and desynchronization (ERS/ERD, see Figure 1) which can be
observed duringmotor imagination and execution (Pfurtscheller,
1992). Data analysis was also performed with the BBCI toolbox
for MATLAB4.

Data from the calibration session was band-pass filtered
in the frequency band of 9–13Hz with a 3rd order zero-
phase Butterworth filter and cut into epochs for each

participant individually, starting 1,000ms prior to trial
onset until 4,500ms after trial onset. The envelope was
then calculated on the group average based on the Hilbert
transformation with a moving average window of 200ms.
Baseline correction was applied, i.e., the average EEG
amplitude in the interval of 1,000ms prior to trial onset
was subtracted. The resulted smoothed envelope is presented
in Figure 1 for the electrodes C3 and C4. Here, we clearly see
desynchronization effects in C3 for right hand motor imagery
and C4 for left hand motor imagery starting around 500ms after
trial onset.

We further calculated signed biserial correlation coefficients
(r2) on the smoothed group-average envelope to determine which
EEG channels show the most discriminative information for
left and right hand motor imagery. Results can be examined in
Figure 1 where the scalp patterns of both left and right motor
cortex carry relevant class information especially in the beginning
of the trial which matches findings in the literature (Pfurtscheller,
1992). Above the scalp patterns, we show the time course over
an average of all epochs of the r2-values for C3 and C4. Here,
we can see that on average 500–2,000 ms after trial onset the
two channels carry import information to separate right and left
motor imagery as indicated by r2.

We also conducted an offline classification with Common
Spatial Patterns (CSP, Ramoser et al., 2000) in comparison to the
online classification with Laplacian filters. Individual frequency
bands between 8 and 30 Hz and time intervals between 250 and
4,500 ms after stimulus onset were selected for each participant
as described in Blankertz et al. (2007). Data was then band-pass
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FIGURE 2 | Spectral, spatial, and temporal information for all secondary tasks. Left: Normalized power spectrum averaged across participants and channels O1 and

O2, in blue for the respective secondary task and in gray for the clean condition. Center: Spatial distribution of power spectral values averaged across participants for

different frequency bands. Right: Group-average envelopes in 9–13 Hz of C3 (solid) and C4 (dashed) electrodes for right hand motor imagery.

filtered in the selected frequency band with a 3rd order zero-
phase Butterworth filter and cut into epochs. Six CSP filters were
extracted, three per class based on the “ratio-of-median” score
as described in Blankertz et al. (2007). The logarithm of the

variance of the CSP-filtered signal was then used as features and
fed into an RLDA classifier. Overall classification averaged across
all participants reached an accuracy of 61.81%. Classification
results of CSP vs. Laplacian filters are plotted in Figure 1 (61.81
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vs. 57.05%) as well as classification of CSP on clean condition vs.
the five distraction tasks (67.08 vs. 60.76%).

In Figure 2, we show power spectra for all secondary tasks. For
each participant, power spectra were averaged across trials and
normalized channel-wise. We then extracted the power spectra
for the channels O1 and O2, averaged over the two channels and
again across participants. Alpha peaks clearly differ for eyes-closed
and numbers compared to clean. For the eyes-closed task, we see
the expected alpha peak in the range of 8–12Hz (Berger, 1929).
For the numbers task there is no clear alpha peak visible in the
occipital channels which is in line with the expected suppression
of the visual alpha rhythm during visual search. Power spectrum
for the flicker task shows a small sharp peak between 9 and 11Hz
which is very close to the frequency of the flickering video and
another even smaller peak at 20Hz which represents the second
harmonic of the flicker frequency. The news and stimulation task
do not show clear differences compared to clean.

We also show spatial distribution for different frequency
bands in the alpha range based on the peaks in the power
spectrum. For eyes-closed and flicker we see a clear activation over
the occipital and parietal cortex whereas there is no clear pattern
visible for the numbers task. Again, patterns for the news and the
stimulation task look very similar to the pattern of the clean task.

Similar to Figure 1, we show envelopes of channels C3 and
C4 for right hand motor imagery. The modulation of the
sensorimotor rhythm is still visible in all conditions as a stronger
ERD in C3 compared to C4. However, the effect is obscured by
the different artifacts. The disturbences are smallest in the news,
flicker and the stimulation tasks due to the stationary nature of the
artifacts. For the flicker task we still see a clear difference between
both channels, whereas channels are already closer for eyes-closed
and still even closer for the numbers task.

3. CONCLUSION

We recorded a motor imagery-based BCI study with 16
participants where different distraction scenarios are added
as secondary tasks to systematically investigate the influence
of those noise sources on the motor imagery performance.
We have presented group-averages that show typical ERD/ERS
effects especially during the first half of the trial over the
motor cortex, typical phenomena according to the literature. We

further show expected differences in power spectra for occipital
channels and spatial patterns for different frequency bands in
the alpha range for three of the secondary tasks. We also show
classification results of a standard CSP + RLDA classification
pipeline that clearly show that classification accuracy decreases
in the distraction tasks. All the data2 and the code3 is publicly
available and a more advanced analysis has been published in
Brandl et al. (2016).
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