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Abstract: Comprehensive knowledge of built-in batteries in waste electrical and electronic equipment
(WEEE) is required for sound and save WEEE management. However, representative sampling
is challenging due to the constantly changing composition of WEEE flows and battery systems.
Necessary knowledge, such as methodologically uniform procedures and recommendations for the
determination of minimum sample sizes (MSS) for representative results, is missing. The direct
consequences are increased sampling efforts, lack of quality-assured data, gaps in the monitoring
of battery losses in complementary flows, and impeded quality control of depollution during
WEEE treatment. In this study, we provide detailed data sets on built-in batteries in WEEE and
propose a non-parametric approach (NPA) to determine MSS. For the pilot dataset, more than 23 Mg
WEEE (6500 devices) were sampled, examined for built-in batteries, and classified according to
product-specific keys (UNUkeys and BATTkeys). The results show that 21% of the devices had
battery compartments, distributed over almost all UNUkeys considered and that only about every
third battery was removed prior to treatment. Moreover, the characterization of battery masses (BM)
and battery mass shares (BMS) using descriptive statistical analysis showed that neither product-
nor battery-specific characteristics are given and that the assumption of (log-)normally distributed
data is not generally applicable. Consequently, parametric approaches (PA) to determine the MSS
for representative sampling are prone to be biased. The presented NPA for MSS using data-driven
simulation (bootstrapping) shows its applicability despite small sample sizes and inconclusive data
distribution. If consistently applied, the method presented can be used to optimize future sampling
and thus reduce sampling costs and efforts while increasing data quality.

Keywords: built-in batteries; WEEE; urban mine; sampling; UNUkeys; minimum sample size;
data-driven simulation; bootstrapping; recycling-oriented characterization

1. Introduction

Electrical and electronic equipment (EEE) is one of the key product value chains of the New
Circular Economy Action Plan [1]. Besides their design and durability, there is a focus upon sound
collection and treatment. One of the challenges of a sound collection and treatment of waste electrical
and electronic equipment (WEEE) are batteries still remaining in the WEEE when being discarded.
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These built-in batteries in WEEE are of increasing interest in recycling as they exist in a large variety with
rapidly changing contents of economically, environmentally, and health-related relevant substances.
Furthermore, safety aspects due to the high energy content of Li-batteries are gaining importance.
To avoid the release of hazardous substances such as Pb and Cd (health, environment) or their entry
into fractions for recycling (contamination decreases the quality of secondary raw materials) and to
reduce the risk of fire from damaged Li-batteries, sound collection and treatment of WEEE containing
batteries is crucial. Both digitalization and the intensified mobile use of EEE sharply boost the number
of portable batteries placed on the market (POM) in recent years [2]. In 2015, 15% of the single charge
(primary) and 80% of the rechargeable (secondary) batteries were embedded in EEE when placed on
the market [3].

At their end-of-life, these batteries must be directed to the dedicated collection, treatment,
and recycling paths in order to produce secondary raw materials (SRM). However, the collection
rate of portable batteries throughout European Union (EU) member states is low and stagnating
between 25 and 45% [3] caused by, among others, hibernation in the ‘urban mine’ [2] and disposal via
complementary waste streams such as residual waste [4–13]. Furthermore, batteries still contained
in WEEE might not be separated prior to or during WEEE treatment [13–20] and will accordingly
not be sent to an adequate battery treatment. In particular, built-in batteries can only be separated
with great effort. Since the collection of built-in batteries within WEEE is permitted in some EU
member states like Germany [21], the separation of batteries during processing is mandatory [22] to
prevent resource loss, contamination of subsequent material streams, and to fulfill legal reporting
and collection obligations [22,23]. Moreover, the specification for depollution [24] prepared by the
European Committee for Electrotechnical Standardization (CENELEC) sets a target value of 1.8 kg
batteries per Mg of small WEEE appliances to be separated.

Nonetheless, batteries often remain in WEEE products when discarded [14] due to the challenging
identification of battery-powered devices in mixed WEEE flows and their impeded removability [14]
as a result of varying size, shape, and assembly type. Consequently, the removal rate of batteries from
WEEE is estimated to be 7% on average, ranging from 1 to 20% for the 19 EU countries investigated [3].
Thus, the knowledge of quantity and composition of WEEE batteries is fundamental to improve
waste management concepts for the identification and separate collection of batteries, as well as
to set up reasonable treatment requirements. One strategy to determine these characteristics of
WEEE batteries involves methods for recycling-oriented characterization of waste flows, products,
components, and materials [25–29].

The basis for the development of waste management concepts is a comprehensive urban mine
knowledge database with harmonized and comparable data with a defined statistical validity
(i.e., robustness [30]), which allows inferring information regarding the entire data population.
To accomplish the generation of such data, representative sampling [31–33] is necessary. Regarding
the latter, no legally binding methodologies exist for the sampling of solid waste, although the Waste
Framework Directive (2008/98/EC, Article 28) does require the development of waste management
plans. Several non-binding guidelines have been developed on the European and regional level.
However, these guidelines focused on domestic residual waste and were not adapted for WEEE and
built-in batteries.

In addition to the extraction of the sample, sampling comprises the determination of an adequate
sampling unit and sample size to achieve representative results with reasonable (economic) effort [31,33].
In general, two approaches for the determination of minimum sample sizes (MSS) are practiced in
waste sampling [34]: (1) a fixed percentage of the population or lot (empirical, non-statistics-based
sampling) [35–38] or (2) statistical sampling [31,34,39,40]. However, determining the MSS through
statistical procedures [33,40–49] is dependent on a priori knowledge and thus, due to lack of
data, not readily transferable for built-in batteries in WEEE. For sampling of domestic residual
waste, the recommended sampling unit is often defined as one collection container, e.g., 1.1 m3

containers [33]. However, WEEE and built-in batteries are more challenging due to their high
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(product) heterogeneity, locally different collection groups, inconsistent nomenclature, unharmonized
classifications, as well as various influencing factors on the composition, such as short innovation
cycles and varying product lifetime.

Therefore, the application of statistical approaches to determine MSS requires the provision of a
priori knowledge in the form of harmonized raw data sets using uniform and consistent as well as
spatially unified classifications for batteries and WEEE. Moreover, the statistical analysis of data sets
regarding distribution patterns is a pre-requisite to apply parametric approaches assuming a normal
distribution. Furthermore, recommendations are required for dealing with unknown or inconclusive
distribution patterns caused by, e.g., data sets that are too small or inappropriate nomenclature.

This article aims to improve representative sampling of built-in batteries in WEEE. For this,
we provide both detailed and harmonized pilot data sets on mass and mass shares of built-in batteries
in WEEE and investigate an alternative approach to determine the MSS. The results will help to
improve both (a) the recycling-oriented product characterization enabling to identify and separate
battery-containing WEEE prior to subsequent treatment as well as (b) the availability of harmonized
data sets for statistical analysis and simulations to derive recommendations on circular economy
measures. For instance, the results can complement previous studies on modeling and assessing the
share of batteries in WEEE and related resource losses in WEEE treatment [19]. Specifically, this study
addresses the following recycling-oriented and methodological objectives on the sampling of built-in
batteries in WEEE:

1. Identification of WEEE with and without battery compartment and determination of the proportion
of remaining batteries.

2. Statistical description and analysis of distribution patterns for WEEE mass, battery mass (BM),
and battery mass share (BMS) of built-in batteries in WEEE.

3. Recommendation for determining MSS in the case of small data sets and unknown or inconclusive
distribution patterns for BMS of built-in batteries in WEEE.

2. Materials and Methods

This study is based on comprehensive empirical data collection and harmonized classification
of built-in batteries in WEEE constituting a pilot data set for further analysis. Firstly, the results
are statistically analyzed and examined for commonly assumed distribution patterns (normal and
lognormal distribution). Secondly, data-driven simulation (bootstrapping) using the original sample
data is performed to obtain more accurate results on WEEE battery characteristics. Finally, both a
parametric approach (PA) and a nonparametric approach (NPA) are employed to approximate the
MSS for quantification of the mass share of built-in batteries in WEEE. The detailed data sets,
as well as the recommendations on MSS, will provide the a priori knowledge necessary for future
sampling campaigns.

For all data analyses, the computational framework R [50] was employed using the packages
“base”, “stats” [50], and ”e1071” [51]. The respective R commands are listed in the Supplementary
Materials Table S2.

2.1. Sampling and Classification

Between 2015 and 2017, seven sampling campaigns were carried out at primary treatment
plants for WEEE in Germany, France, and Belgium. The WEEE originated from private households,
and the samples were taken prior to any treatment, i.e., as collected. In total, 23 Mg WEEE were
sampled, comprising 6457 WEEE devices and 814 built-in batteries. The ‘product count’ procedure
developed in the H2020 project ProSUM [2] with the corresponding sampling template [52] was used
for data collection. Each device was individually weighed, classified according to the UNUkeys,
and subsequently examined for battery compartments (with/without). Built-in batteries were removed,
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weighed and classified according to the BATTkeys (see Table 1). Table S1 in the Supplementary
Materials shows the total mass and number of WEEE and BATT sampled in each sampling campaign.

Table 1. Classification of waste electrical and electronic equipment (WEEE) categories (UNUkey main
structure, the detailed classification can be found in Supplementary Materials Tables S16 and S17) and
battery systems (BATT keys).

UNUkey Description BATTkey Description

0001 Central Heating (CH, household installed) LiPrim Lithium-based batteries, primary
0002 Photovoltaic panels (PV) LiRecharge Lithium-based batteries, rechargeable
010x Large household appliances (LHA) Zn Zinc-based batteries
020x Small household appliances (SHA) NiCd Nickel-cadmium based batteries
030x IT and telecom equipment (ITCE) NiMH Nickel-metal hydride batteries
040x Consumer equipment (CE) Pb Lead-acid batteries
050x Lighting equipment (LE) Other Other batteries (e.g., silver-oxide)
060x Electrical and electronic tools (EET) Unspecified Not specified or identifiable
070x Toys, leisure, and sports equipment (TLS)
080x Medical devices (MD) BATT No distinction of the battery system.
090x Monitoring and control instruments (MCI)
100x Dispensers (D)

A more comprehensive system was used for classification, compared to the official classification
defined in Directive 2012/19/EU [22] for WEEE and Directive 2006/66/EC [23] for batteries, respectively.
For WEEE, the so-called ‘UNU-keys’ and more detailed ‘UNUsubKeys’ (hereinafter referred to as
UNUkeys and subKeys) were employed [53]; for batteries, the so-called BATTkeys [2] were used.
The employed ‘keys’ are hierarchical and harmonized, allowing further data stratification, evaluation
of distribution patterns and data quality, comparisons among studies, and the application to other
scenarios and models.

The ‘UNUkey’ classification system was developed by the United Nations University (UNU) to
enable the linkage of production and composition data as well as life span characteristics for lifetime
distribution modeling [54,55]. The systems consist of three levels with a four-digit identifier on the
most aggregated level. The first two digits reflect the ten categories of Annex I of the WEEE Directive
2012/19/EU [22] (see Table 1). Moreover, the UNUkeys and subKeys can be allocated to the new
six categories (Annex III, WEEE Directive 2012/19/EU), which have been in force since 2018 (see
Supplementary Materials Tables S16 and S17).

For batteries, the ‘BATTkeys’ shown in Table 1 were used. This classification system was defined
in the H2020 Project ProSUM [2] and considers the allocation of battery type-specific materials,
fire hazard (Li) [56], and environmental aspects (Cd, Pb). The term “BATT” was used if no distinction
between the battery keys was possible.

The hierarchical structure of the UNUkeys and subKeys for WEEE, as well as BATT and BATTkey
for batteries, allows the analysis and calculation for different ‘key’ combinations (UNUkey-BATT,
subKey-BATTkey, etc.). We focus on combinations of UNUkey-BATT and UNUkey-BATTkey for
an explanation of the methods and presentation of the results. The corresponding results for other
combinations can be taken from the Supplementary Materials, provided that sufficient data points
are available.

2.2. Statistical Analysis

Data description for all ‘key’-combinations comprised the calculation of mean (x), standard
deviation (SD), and coefficient of variation (VC). Mass and mass share are described in the results
section with x± SD. While these parameters assume a normal distribution, more robust descriptors
were calculated to comply with the requirements set by the European Solid Waste Analysis (SWA)
tool [40]: 95% confidence interval (95% CI), median (̃x), and additionally median absolute deviation
(MAD = median(xi − x̃) ) [57]. Of the different methods for determining the 95% CI, we chose to
calculate the value range between 2.5 and 97.5% quantiles [58].
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Moreover, distribution patterns were analyzed to assess the commonly applied assumption of
normal distribution in sampling and data management. The Shapiro–Wilk (SW) test on normality
was employed, which has the highest test power compared to other tests [58,59] but is sensitive to the
sample size. If the calculated probability value p is below 0.05, the null hypothesis that the data set is
normally distributed is rejected. The weakness of the SW test with small sample sizes is considered by
calculating the shape parameters of the distribution: skewness and kurtosis [60]. Normally distributed
data is symmetrical, i.e., they have a kurtosis and skewness of 0. Negative values for kurtosis and
skewness mean thin-tailed and left-skewed distributions, whereas positive values stand for fat-tailed
and right-skewed [51].

2.3. Data-Driven Simulation: Bootstrapping

Bootstrapping is a statistical method that provides an estimate of the data distribution by
resampling one or more small samples with replacement [30,61–63]. The bootstrap method was used to
simulate sampling distributions and to estimate the properties of the statistic (e.g., x, x̃, SD, VC, MAD)
more accurately [62–67]. Following the central limit theorem, the bootstrap method gives a reasonable
approximation of the real probability curve when the number of bootstrap samples (B) is high
enough [30]. In contrast to other parametric simulations, which assume specific population distributions
(e.g., normal distribution), the non-parametric bootstrapping method requires no assumption regarding
the statistical distribution [65] and uses the original data and resamples from this data set with many
repetitions (number of repetitions = B). For each of the B bootstrap samples (resample), a simple random
sample x = (x1, x2, ..., xn) of size norig with replacement is drawn from the original dataset. For each
bootstrap sample, the resample statistics are calculated [64], indicated by an asterisk (*). The distribution
of a resample statistic is called bootstrap distribution S* = S(x1, x2, ..., xn), which approximates the
characteristics (center, spread, shape) of the population distribution [64]. For example, the approximated
population mean (µ*) is the arithmetic mean of the bootstrap means and can be calculated according
to Equation (1).

µ∗ =
1
B

B∑
i=1

(x∗i ) (1)

In Equation (1), µ∗ is the bootstrap population mean; B is the number of bootstrap samples; and x∗i
is the mean of each bootstrap sample i. Accordingly, the standard deviation (SD) of the bootstrap
distribution approximates the standard error of the mean (SEM) [63], shown as SD*.

In this study, the number of samples taken with replacement was set to the original number of
samples (data points) norig, the number of repetitions is set to B = 5000. Adequate bootstrap simulation
results depend on the minimum number of data points in the original dataset [58]. Guided by [58],
we chose 15 as the minimum number of data points for bootstrap simulations (norig ≥ 15), which
reduces the number of combinations for simulation of batteries and WEEE. Nevertheless, the robustness
of this method is always based on the number of original data and repetitions B. While B is a matter of
computational capacity, the challenge is to collect a sufficient amount of harmonized raw data for the
simulation to increase robustness.

2.4. Determining the Minimum Sample Size (MSS)

The determination of MSS for any sampling campaign is necessary to gain representative
results while limiting the expenditures for sampling. The methods to determine MSS vary in
literature [34,35,37,39,40,42,43,68–72]. Most statistical approaches require the description of the
variation of the targeted characteristics and the assumption of the data distribution to approximate the
MSS. Therefore, statistical parameters such as the VC are calculated based on data from pilot studies.
In this study, the sampling data is used to test two approaches to approximate the MSS: a parametric
approach (PA) with the assumption of an underlying distribution pattern and a non-parametric
approach (NPA), which bases on all single data points and their probability in the pilot data set.
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2.4.1. Parametric Approach (PA): Assumption of Data Distributions

Parametric approaches base on the assumption of distinct data distributions to approximate
the MSS given a calculated uncertainty. The calculation in Equation (2) is referred to in various
references [31,72,73], assuming t-distributed data. The t-distribution is used alternatively for normal
distribution in situations where the sample size is small, and the population standard deviation is
unknown [74]. For a given probability level assuming an error probability of α = 0.05, a two-sided
t-distribution, and an infinite number of degrees of freedom, tα/2 is 1.96 [31]. The coefficient of variation
(VC) is used to express the data uncertainty gained by, e.g., a pilot study. We accept a relative error of
±10% (erel = 0.1) to describe the whole population sufficiently accurate [33].

nmin =

 t α2 ·VC

erel

2 (2)

Keeping tα/2 and erel constant in Equation (2), the number of samples depends solely on the VC of
the samples. The PA is performed for both the original data (VC) and the bootstrap distribution (VC*)
to illustrate the influence of bootstrapping on the variation of the data.

2.4.2. Non-Parametric Approach (NPA): Data-Driven Simulation with Bootstrapping

The NPA represents an alternative for determining the MSS without requiring a specific statistical
distribution or large sample sizes in the original dataset [65]. This method is carried out in three steps
(see Figure 1): (a) estimation of population characteristics and bootstrap confidence interval (CI*),
(b) simulation of sampling with a smaller sample size to test whether the results lie within the 95% CI*,
(c) determination of the MSS if the results are sufficiently covered within 95% CI*.Recycling 2020, 5, 19 7 of 25 
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Figure 1. Non-parametric approach (NPA) to approximate the minimum sample sizes (MSS) with
data-driven simulations. (a) Simulated bootstrap population, (b) sub-sampling from datasets with
increasing sample size and 1000 repetitions, (c) coverage of sub-sample results in percent lying within
the population 95% confidence interval (CI*).

Firstly, we generate the bootstrap distribution for BMS by resampling from the original dataset
with B = 5000 repetitions and calculating the arithmetic mean of each bootstrap sample. The sample
size was set to the original number of data points (ni = norig). The generated probability distribution
approximates the population characteristic and is used to calculate the bootstrap confidence interval
(95% CI*) (Figure 1a). Only combinations of WEEE and batteries (UNUkey-BATT, UNUkey-BATTkey)
with at least 15 data points in the original dataset were used for simulation to ensure reasonable
results [58] (see Supplementary Materials).

Secondly, bootstrapping was used again to resample from the original dataset randomly but with
smaller sample numbers starting from ni = 5 and increasing ni to the original number of samples
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norig. For each subsample of ni, 1000 subsamples (B = 1000) were drawn [60], and the arithmetic mean
(bootstrap mean x∗i ) was calculated (see Figure 1b).

Thirdly, we checked whether each bootstrap mean x∗i lies within the 95% CI* of the simulated
population distribution [58]. The proportion of the 1000 bootstrap means x∗i within the 95% CI* was
defined as ’coverage’. As for the PA, we assume a relative error of 10%, i.e., a coverage of ≥90%,
as sufficient to represent the population at a given ni. Thus, the MSS is approximated at ni = MSS, if
the coverage increases above 90% (see arrow in Figure 1c). In other words, a sample number n with
90% coverage means that in 90% of samples with this sample size, the resulting value is likely to be
within the 95% CI* of the population and consequently representative.

3. Results and Discussion

The results section first shows in which WEEE (expressed as UNUkeys) batteries were found.
In addition, the percentage of devices with battery compartments and the percentage of devices with
remaining batteries is presented. WEEE characteristics are briefly addressed. The battery masses
(BM) and battery mass shares (BMS) of the built-in batteries in WEEE are investigated in detail.
The investigations comprise the description of UNUkey-specific battery types, BM, and BMS, as well as
statistical testing of commonly assumed data distribution patterns. Moreover, bootstrap simulation
is introduced to show the effects on data accuracy in case of unknown or inconclusive distribution
patterns. Finally, recommendations to determine the MSS are given by comparing a parametric
approach and a non-parametric approach using bootstrapping.

Here, only example UNUkeys and BATTkeys with a focus on BMS are shown and discussed.
All detailed results on WEEE mass, BM, and BMS are available in the Supplementary Materials.

3.1. Share of Waste Electrical and Electronic Equipment (WEEE) with and without Battery Compartment

In total, 5967 WEEE products were investigated for battery compartments, of which 4693 (79%)
are not for use with batteries. This corresponds to a total mass of WEEE of 20.9 Mg, of which 18.6 Mg
(89% by mass) are products without a battery compartment (see Supplementary Materials Table S3).
Both results correspond to recently published data, as Friege et al. [14] determined a 79% share of
devices without a battery compartment, and Hobohm et al. [17] reported results between 85% and
92% by mass in sampling campaigns in Germany in 2014 and 2015. Figure 2a shows the proportion
of WEEE devices according to UNUkeys (0106—Household Heating and Ventilation; 0108—Fridges;
0114—Microwaves; 0201—Other Small Household; 0202—Food; 0203—Hot Water; 0204—Vacuum
Cleaners; 0205—Personal Care; 0301—Small IT; 0302—Desktop PCs; 0303—Laptops; 0304—Printers;
0305—Telecom; 0306—Mobile Phones; 0307—Professional IT; 0308—Cathode Ray Tube Monitors;
0309—Flat Display Panel Monitors; 0401—Small Consumer Electronics; 0402—Portable Audio and
Video; 0403—Music Instruments, Radio, Hi-Fi; 0404—Video; 0405—Speakers; 0406—Cameras;
0407—Cathode Ray Tube TVs; 0408—Flat Display Panel TVs; 0501 —Lamps; 0506—Household
Luminaires; 0507—Professional Luminaires; 0601—Household Tools; 0602—Professional Tools;
0701—Toys; 0702—Game Consoles; 0801—Household Medical; 0901—Household Monitoring and
Control; 0902—Professional Monitoring and Control) distinguishing products with or without a
battery compartment. Battery compartments are predominately present in small household appliances
(SHA, 0201–0205), information technology (IT) and telecom equipment (ITCE, 0301–0303, 0305–0308),
consumer equipment (CE, 0401, 0402, 0406), toys, leisure, and sports equipment (TLS, 0701), medical
devices (MD, 0801), and monitoring and control instruments (MCI, 0901). Whereas most devices
within one WEEE category are equipped with as well as without a battery compartment, the devices in
UNUkey 0303, 0306, and 0406 all have a battery compartment. Also, more than 75% of the devices in
UNUkey 0302 have a battery compartment.
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Figure 2. The proportion of WEEE devices (UNUkeys) with and without battery compartment
(a) and the proportion of WEEE with a battery compartment in which batteries remained or were
missing (b). The total number of appliances (N) is shown in white at the bottom. Figure data available
in Supplementary Materials Table S3.

The percentage of batteries missing, i.e., not installed, removed prior to collection, or dropped out
during collection or transport, differs between the WEEE categories and the UNUkeys. On average,
34% of the more than 1200 devices with battery compartments were found without batteries.
In other words, 66% of WEEE with a battery compartment were discarded with the battery still
embedded. For most UNUkeys with a battery compartment, the removal rate of batteries prior to
collection/treatment was below 50% (Figure 2b). In the case of 0204, 0205, 0306, 0601, 0701, and 0901,
batteries were found in over 75% of the devices. Thus, mainly these equipment types contribute to the
contamination of subsequent material flows, if prior identification and separation of the batteries are
not carried out.

The further breakdown of the UNUkeys into subKeys allows a more precise determination of
devices with a high potential of remaining batteries. Within one UNUkey, there are subKeys without
battery compartments as well as devices with exclusively remaining batteries. In this case, the more
detailed product classification can improve the separation efficiency and increase data accuracy and
precision. Detailed data on battery compartments and remaining/missing batteries at UNUkey and
subKey level can be found in the Supplementary Materials Figure S1 (proportion) and Figure S2
(mass share).

As seen in Figure 2, three different variables to which the results can refer become apparent and
must always be distinguished in further data evaluation and interpretation. Accordingly, the following
distinction is made between WEEE: (1) with and without battery compartment, corresponding to all
devices (Figure 2a), (2) with battery compartment and the battery is missing or remained in the device
(Figure 2b), and (3) with battery compartment, and the battery has remained in the device. Therefore,
battery-specific statements on raw material losses by WEEE batteries always require the determination
of the proportion of (1) and (2).
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3.2. WEEE Characteristics

The WEEE characteristics are not the focus of this work but can be relevant for the interpretation
of the battery mass shares. The descriptive statistics for all product weights of WEEE broken down by
UNUkey and subKey can be found in the Supplementary Materials Tables S4 and S5.

3.3. Battery Characteristics

3.3.1. Mass and Mass Share of Built-in Batteries

Figure 3 shows the mass and mass share of all batteries differentiated according to their chemical
system (BATTkey). Figure 3a illustrates that the total mass of batteries in WEEE ranges from a few grams
for lithium primary (LiPrim) to more than five kilograms for Pb batteries. In total, 322 rechargeable
batteries (LiRecharge, NiCd, NiMH, Pb) and 452 primary batteries (LiPrim, Zn) are identified. Sixteen
batteries could not be specified due to missing labels or destroyed sleeve surfaces. These batteries
show a wide mass range and thus could be assigned to all of the battery types.
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Figure 3. Battery mass (a), battery mass share (b), and WEEE mass (c) differentiated according to
their chemical systems (BATTkey). The mass is illustrated with a logarithmic scale. The lower and
upper hinges of the boxplots correspond to the first and third quartiles (the 25th and 75th percentiles).
The median is drawn as a bold horizontal line; the mean is shown as a square. Upper/lower whisker is
the largest/smallest observation less/greater than or equal to upper/lower hinge +/− 1.5 ∗ interquartile
range (IQR). The black dots represent values that lie outside of this range.

LiPrim batteries have the most distinct mass with 3 g as the median value corresponding to the
mass of CR2032 button cells [13] as used on IT mainboards. In contrast, the other primary battery
type based on Zn shows a large mass range varying between 2 g and 150 g with an average value of
38 g and a median of 23 g. Similar to LiPrim, Zn batteries are used in many of the WEEE devices
investigated covering 16 UNUkeys and 29 subKeys (see Table A1). However, in contrast to LiPrim,
they were found in a much higher variety of designs (AAA to D, block format), which causes a higher
mass range (VC 170%, MAD 17).

Comparing the secondary battery systems, NiMH and LiRecharge batteries show a similar mass
range and usually weigh between 10 g and 430 g (95% CI). Even though LiRecharge is gradually
replacing the NiMH system [2], both were found in similar numbers of UNUkeys (16 LiRecharge,
15 NiMH) and subKeys (27 LiRecharge, 24 NiMH) which demonstrates that this technology trend of
recent years is now detectable in the waste stream.

The number of NiCd and Pb batteries found in WEEE was the lowest. These batteries were
installed in fewer types of devices. Besides the required restrictions of the Battery Directive to use
hazardous materials [23], the reasons for this are a high weight with lower energy density compared
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to LiRecharge and NiMH [75]. NiCd batteries weigh between 14 and 1500 g (95% CI), whereas Pb
batteries are the heaviest batteries weighing between 15 g and 4300 g (95% CI). These values are
consistent with the results of Bigum et al. [13] and Terazono et al. [20].

The battery mass share per BATTkey is shown in Figure 3b. The mass share of LiPrim is the lowest
at about 2%. Except for Pb, the battery mass fraction for LiRecharge, NiCd, NiMH, and Zn is about 20%
by mass among all WEEE considered (mean 18–23%, median 15–22%). In contrast, Pb batteries have
higher mass shares of about 45% (see Table A1). Depending on battery mass (Figure 3a) and WEEE
mass (Figure 3c), these values vary highly, showing a coefficient of variation of 40% to 70%. For primary
batteries in particular, WEEE masses vary widely between a few grams to several kilograms (Figure 3c).
The varying composition of WEEE flows thus causes a wide spread of BMS and the BM, complicating
the identification and quantification of built-in batteries.

3.3.2. Product-Specific Battery Characteristics

For improved battery recycling and thus resource management, product-specific characteristics
such as the occurrence of only certain batteries or specific mass/mass share are advantageous. A direct
assignment of battery to product facilitates the selective separation of pollutants or recyclables
prior to further treatment with mixed WEEE. With an increasing proportion of Li batteries, the safe
and non-destructive removal of the batteries is also gaining importance in terms of safety aspects.
Additionally, product-specific BM and BMS improve the estimation of associated raw material losses
of batteries through complementary flows.

Figure 4 illustrates the assignment of UNUkeys and BATTkeys embedded as present in all
790 WEEE with built-in batteries. Some battery types are only present in a few WEEE (NiCd, Pb),
while other battery types are found in almost all types of devices (Zn, LiPrim, LiRecharge). Furthermore,
an accumulation of battery types can be observed in some equipment groups, such as Zn in 0401
or LiPrim in 0302. Moreover, it is noteworthy that many of the device groups contain all or nearly
all battery types. In this context, Pb and NiCd pose a risk of contamination with heavy metals for
subsequent processing steps.
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Figure 4. Occurrence and count of battery types (BATTkeys) in UNUkeys. Total number of devices
considered: 790. Figure data are given in the Supplementary Materials Table S7.

Considering the subKey level (shown in Supplementary Materials Figure S3), it can be observed
that both NiCd and Pb batteries occur together or with NiMH or LiRecharge systems within a subKey.
This indicates that the substitution of batteries containing lead and cadmium by other batteries is still
ongoing and visible in the waste stream and thus requires special attention when sampling and treating
WEEE. An exception from this grouping is 050103 (other lamps for insects or tanning) for NiCd and
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060104 (power supplies and adapters) for Pb batteries, which were both found with exclusively one
battery system embedded.

Figure 5a,b shows the mass and mass share of built-in batteries in WEEE per UNUkey, respectively.
The distribution of all battery data (BATT) is illustrated as a boxplot, whereas all 790 single batteries are
displayed as dot-plots colorized by the respective BATTkey. The subdivision into UNUkeys shows that
the values for BM and BMS within a WEEE category (first two digits of the UNUkey) are considerably
different. The box plots in both figures show that the mean and median values differ from each other,
which indicates skewed, i.e., not normally distributed data. In addition, the values for some UNUkeys
differ, in some cases, very widely (0301, 0303), while other UNUkeys show only minor variations (0306,
0901). A further subdivision into subKeys leads to a reduction of the variance and more precise results
for BM and BMS for the respective key (see Supplementary Materials Figure S4, Table S9, Table S11,
Table S13, and Table S15).
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Figure 5. Mass (a) and mass share (b) of batteries remaining in WEEE classified as UNUkeys and
distinguished by their chemical system (BATTkey). The number of observations (n) is displayed on
top of the graph (a). The lower and upper hinges of the boxplots correspond to the first and third
quartiles (the 25th and 75th percentiles). The median is drawn as a bold horizontal line; the mean is
shown as a square. Upper/lower whisker is the largest/smallest observation less/greater than or equal
to upper/lower hinge +/− 1.5 ∗ IQR. The data of this figure can be found in the Supplementary Materials
Table S7, Table S8, Table S10, Table S12, and Table S14.

Both the BM and the BMS show considerable differences between the UNUkeys regarding the
order of magnitude as well as variation (Figure 5). Some UNUkeys have batteries below 10 g (0302,
0901), whereas other devices have battery weights well above 100 g (0204, 0303, 0601). Devices with
batteries that typically weigh 10 to 100 g are 0201, 0205, 0305, 0306, 0401, 0402, 0406, 0501, 0506,
and 0701.
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Primary batteries can be found in the majority of UNUkeys. In addition to IT and telecommunication
equipment (UNUkey 03xx), LiPrim batteries can be found in almost all UNUkeys shown in Figure 5.
This battery type is predominately used for button cells, like CR2032, which weighs on average 3 g.
In contrast to cylindrical or prismatic cells, button cells are often used as a constant power supply to
store system settings on the mainboard of ITCE devices, not for supplying the device with energy itself.
Increasing WEEE mass is consequently not leading to higher battery mass resulting in small BMS in
heavier WEEE (see Figure 3b,c), which means batteries are difficult to identify, locate, and remove.

The largest group of primary batteries are Zn-based systems (Zn), which also include zinc-carbon
and alkaline manganese systems. Zinc batteries were found in both cylindrical and prismatic (9V
block) design, which were mainly embedded in small consumer electronics, such as remote controls
(040104), portable audio (0402), small IT (0301), and small toys (070101) [76]. The dominant design is
R6 (formerly AA), which weighs about 23 g (corresponding to the median mass for Zn in this study).
Within a device type (subKey), primary and secondary lithium systems, NiMH, and NiCd occur in
addition to Zn systems (see Supplementary Materials Figure S3).

Regarding rechargeable batteries, LiRecharge and NiMH were dominantly present in WEEE.
LiRecharge is characterized by high power and energy density, high voltage, long storage life, and low
self-discharge rate [77,78], which is why they can be found among most UNUkeys (Figure 4). However,
only laptops (0303) and mobile phones (0306) show a predominant use of LiRecharge batteries having
mass shares of 13 ± 5% and 24 ± 7% by mass, respectively. The random occurrence of these batteries in
some device types makes their systematic identification challenging.

NiMH was mainly found in SHA (handheld vacuum cleaners (0204), toothbrushes (0205)),
telephones (0305), and mobile phones (0306). The mass variation is between 7 ± 5 g (0303) and
296 ± 165 g (0204), with a 95% CI between 10 and 490 g. Considering the high variation (VC = 170%),
the indication of median and MAD is advisable. NiMH most frequently weighed about 26 ± 21 g
(median+/−MAD), which corresponds to a mass share of about 18 ± 11% (see Table A1).

Pb and NiCd batteries were rarely present within WEEE, predominately as a result of the ban of
cadmium and lead in portable batteries since 2006 [23]. Pb batteries are by far the heaviest batteries
used in WEEE and were mostly found in portable vacuum cleaners (0204). With 15 to 4300 g (95% CI),
Pb batteries make up 50% of the weight of the device. NiCd batteries have lower energy density
compared to NiMH, causing a decrease of NiCd in WEEE. In total, 44 NiCd were found in the devices,
which were mainly used in personal care and tools. Besides, NiCd batteries often weigh more than
twice as much (300 ± 440 g) and thus constitute a larger share of the equipment mass (23 ± 15%).

In summary, individual hotspots, i.e., a significant accumulation of certain BATTkeys, can be
identified for some UNUkeys and especially subKeys. Devices with only one type of battery were
rarely found except for LiPrim in desktop PC 0302. Thus, no product-specific allocation can be made
for the majority of the devices. Moreover, the technological development of batteries in recent years is
apparent in the occurrence of NiCd and NiMH in tools (0601) as well as NiMH and LiRecharge in
mobile phones (0306). Moreover, most combinations of UNUkey/subKey and BATTkey show high
data variability for BM and BMS, which is why no distinct product-specific characteristics can be
ascertained, leading to increased MSS. Thus, considering the different numbers of samples per UNUkey,
only indicative statements can be made, and more precise statements can only be made by considering
the data distribution pattern, which is derived from a sufficient number of samples.

3.3.3. Distribution Pattern and Bootstrap Simulation

When research results are described with mean value (position parameter) and standard deviation
(shape parameter), a normal distribution is assumed. However, these parameters are not robust for
describing data sets, i.e., they are sensitive to extreme values, outliers, and skewed distributions.
The latter is likely if mean values are low, variances large, values have a lower limit (usually zero
for concentrations), or datasets are “closed” like for mass shares or compositional data (from 0 to
100%) [79,80]. In this case, testing for distribution patterns (e.g., lognormal distribution) to improve the
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data description is recommended [58,79,80]. All data on WEEE mass, battery mass, and battery mass
share were tested for normal and lognormal distribution. Moreover, skewness and kurtosis for these
parameters were calculated. This section focuses on battery mass share to demonstrate a) the influence
of the shape of the distribution and what difference a few data points can make, and b) bootstrapping
as a method to simulate the impact of resampling on data precision and accuracy.

In general, the assumption of a normal distribution is not applicable for BM and BMS data of
the different battery types (see Supplementary Materials Tables S7, S10, S11, S14, and S15). In most
cases, mean values and medians deviate strongly, and the variation (SD, VC) is large, indicating a
skewed and heterogeneous data distribution. Moreover, the analysis of skewness and kurtosis (both
0 for normal distribution), as well as the SW test (p > 0.05 for normal distribution), confirm that
neither normal distribution nor lognormal distribution is present. Thus, without further examination
of distribution patterns or collection of additional data, no distinct distribution patterns are given,
and the data description using mean and SD may be biased.

Figure 6 shows the data distribution of battery mass shares as a histogram and probability density
function (PDF) for the original data (a), the log-transformed data (b), and the bootstrap simulation
(c) using the example of mobile phones (0306). The results for the other UNUkeys and subKeys are
given in the Supplementary Materials Tables S7, S10, S11, S14, and S15. In Figure 5, the range in
which the mass share lies with a probability of 95% is marked as a semi-transparent grey box (95% CI).
The black curve shows the smoothed density estimate of the raw data, whereas the red curve shows
the PDF of the normal distribution for the sample mean and SD. If both curves coincide, there is a
normal distribution of the data, which can be confirmed by the SW test and the results of kurtosis
and skewness.Recycling 2020, 5, 19 14 of 25 
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Figure 6. Histogram and density distribution for the battery mass share (BMS) of LiRecharge and
NiMH for mobile phones (UNUkey 0306). Original data (a,d), log-transformed data (b,e), and bootstrap
sample means with B = 5000 (c,f). The (log-)normal distribution curve for the sample mean and
SD is shown in dark red. The 95% CI* is drawn as a semi-transparent area in the corresponding
BATTkey color.

Figure 6a–c show the results for mobile phones (0306) without differentiation of battery systems
(dark grey bars), whereas Figure 6d–f distinguishes between LiRecharge and NiMH. The example
datasets comprise 93 batteries in mobile phones, of which 69 are LiRecharge batteries and 24 are
NiMH batteries. In Figure 6a, most BMS are between 15 and 30% by mass, with some values up to
50% by mass (Figure 6a). Considering BATTkeys, the result is a more distinct BMS for LiRecharge,
which concentrates around 20% by mass, whereas NiMH accounts for a BMS of 30% by mass (Figure 6f).
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The description of these datasets using mean and SD, however, is not always applicable since
normal distribution must be validated. In the example shown, neither BATT nor LiRecharge are
normally distributed, but the SW confirms normal distribution for NiMH. By inspecting Figure 6b,e,
we can assume that log-transformation for closed data sets like BMS does not improve the data
description, which is confirmed by the results for SW, kurtosis, and skewness. Normal or (log-)normal
distribution could rarely be confirmed when examining the original and log-transformed BMS data
sets on UNUkey-BATT, UNUkey-BATTkey, subKey-BATT, and subKey-BATTkey level. Nevertheless,
given the number of samples, two observations could be made. The proportion of data sets with
lognormal distribution is higher than for normal distribution. This confirms that closed data sets can be
better described by log transformation [79,80]. Furthermore, the specification of subKey and BATTkey
increases the proportion of normal and lognormal distributions. Therefore, the applied classification
improves the description of BMS and provides more accurate results with less variation of the data.

The bootstrap simulation in Figure 6c shows the BMS result of B = 5000 mean values drawn
randomly from the original data set (Figure 6a). The simulated results are product- and battery-specific
estimates for the mean mass fraction and depend on the underlying data. The mean (µ*) and the VC*
of the simulated mean values were calculated for the simulated 5000 bootstrap samples. While the
bootstrap simulation has only a minor influence on the mean value (compare x and µ*), it becomes
apparent that the variation (SD*, VC*) and 95% CI* decrease strongly, providing more precise data on
BMS [64]. Moreover, the bootstrap distribution is symmetric, i.e., not skewed, which allows using SD*
and VC* to describe the data uncertainty. However, this does not imply that bootstrap distributions
are normally distributed. For instance, BATT (Figure 6c) and LiRecharge (Figure 6f) are normally
distributed in 0306, but NiMH (Figure 6f) is not.

The investigation of other UNUkeys showed that only a few of the bootstrap distributions have
an SW p-value of more than 0.05 and are therefore considered normally distributed. The distribution
shape, on the other hand, showed that the data is marginally skewed (skewness near 0), but very
often has a thin-tailed shape (negative kurtosis). Consequently, the description of the bootstrap results
with Gaussian statistics is biased. Therefore, we always recommend a critical review of statistical
assumptions for the original data and the additional use of more robust descriptors, such as median
and MAD or confidence intervals.

3.4. Minimum Sample Size to Determine Battery Mass Shares in WEEE

Investigations on distribution patterns of the BMS for different batteries and WEEE have shown
that, in most cases, no normal distribution can be assumed for the data. The inherent variation of
the original data makes it challenging to define MSS with statistical approaches applicable for future
investigations. Hence, the influence of inaccurately assumed distribution patterns on the calculation
of MSS must be considered to derive recommendations. Therefore, two approaches were compared:
a PA and an NPA. For the PA, a normal distribution is assumed using the coefficient of variation of
the original data set (VC) and the bootstrap distribution (VC*) in Equation (2). The NPA is based on
bootstrapping with an increasing number of samples drawn from the original data set while testing
iteratively whether each bootstrap mean lies within the bootstrap 95% CI*, which was simulated with
the initial number of sample in the data set (compare Figure 6e,f).

The approaches are demonstrated on the example of UNUkeys 0301 (small IT), 0302 (Desktop
PCs), 0306 (mobile phones), and 0401 (small consumer electronics), all of which have at least 15 data
points to generate reasonable simulation results.

Table 2 compares the NPA and the two PA showing the results of the original (VC) and bootstrap
variation coefficient (VC*) for PA. For each UNUkey, the results of the battery mass shares are shown
without consideration (BATT) and with consideration of the BATTkey. BATT shows stronger deviations
resulting in higher MSS. The VC is high for many UNUkeys because the underlying data are not
normally distributed (see the section on product-specific battery characteristics). Consequently,
the highest MSS are calculated for the PA(VC), which is the methodology of the SWA tool [40].
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Table 2 shows that except for 0306 BATT, 0306 LiRecharge, and 0401 BATT and Zn, the sample size was
too small.

Table 2. Comparison of the approaches to determine the MSS with the PA using the original PA(VC)
and bootstrap coefficient of variation PA(VC*) as well as the NPA.

UNUkey n BATTkey
PA(VC) PA(VC*) NPA

VC MSS VC* MSS 95% CI* MSS

0301 51 BATT 1.32 670 0.18 12 [7.2; 15] 40
29 Zn 1.03 420 0.19 14 [6.9; 14] 20

0302 118 BATT 1.84 1300 0.17 11 [0.03; 0.06] 70
116 LiPrim 0.63 150 0.10 4 [0.03; 0.04] 20

0306 93 BATT 0.36 50 0.04 1 [24; 27] 70
24 NiMHND 0.40 60 0.08 2 [26; 35] 20
69 LiRecharge 0.29 30 0.06 1 [22; 25] 60

0401 121 BATT 0.52 100 0.05 1 [17; 20] 90
105 Zn 0.51 100 0.06 2 [17; 21] 80

n: number of samples, VC: coefficient of variation, PA(VC): a parametric approach using the VC of the original
data, PA(VC*): a parametric approach using the VC of the bootstrap samples, NPA: non-parametric approach,
MSS: minimum sample size, ND (superscript): normal distribution of original data. Results are rounded to two
significant digits.

The result of the bootstrap simulation is a more precise data distribution characterized by smaller
VC. If this VC* is used in the PA, the MSS is consequently reduced compared to PA(VC). Besides,
bootstrap simulation with high repetitions (B) can produce very narrow distributions, resulting in very
small MSS. However, the advantages of bootstrapping for improving accuracy and precision often
lead to implausible results when using PA. In these cases, too small VC are calculated, resulting in
sample sizes of one to two devices (see Table 2, column PA(VC*)).

The explanations above have shown that a general assumption of normally distributed data in the
calculation of the MSS is both biased and leads to very high MSS. Regardless of the classification used,
distribution functions can only be validly determined if the sample size is sufficient. Since extensive
sampling in waste management is economically critical and organizationally complex, we have tried
to determine MSS using an alternative approach. This NPA is independent of large data sets or certain
distribution assumptions.

By simulating an iterative sampling with an increasing number of samples (n), we approached
the confidence interval of the population. The results of selected UNUkeys and BATTkeys are shown
in Figure 7. With a sufficient number of samples n the graph should asymptotically approach 100%,
which would correspond to complete coverage of all sub-samples within the 95% CI*. A coverage of
90% means that the MSS is reached for 900 of 1000 sub-samples within the 95% CI*.

Figure 7a–c illustrates the extent to which a specification of the sampling aim and battery type
influences the MSS. Figure 7a shows the NPA results for all devices of one UNUkey, regardless of
whether the device had a battery compartment or a battery. The intersection of the graphs with 90%
coverage, representing the MSS, is noted in Table 2 as NPA. Depending on the proportion of devices
with a battery compartment (see Figure 2), the total number of devices is correspondingly larger than in
Figure 7b. As a result, a high proportion of devices without a battery compartment (BMS is zero) leads
to a higher MSS, as it influences the location and shape of the simulated distribution function and, thus,
the 95% CI*. For example, the difference between the MSS of 0306 in Figure 7a,b is small, whereas 0306
(90% without batteries) and 0401 (70% without batteries) show significant differences. Consequently,
the MSS decreases if devices with a battery compartment are separated beforehand (Figure 7b).
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Figure 7. NPA: Simulation of MSS using bootstrap simulation. The proportion of sub-samples that
lie within the simulated 95% CI* (coverage) is plotted against the number of samples used to draw
the sub-samples. A coverage of 90% is considered acceptable to achieve representable results with
the given sample size (dashed line). The graphs show the three possible combinations using small
information technology (IT) (0301), desktop personal computers (PCs) (0302), mobile phones (0306) and
small consumer electronics (0401) as examples: (a) all WEEE with and without battery compartment,
(b) only WEEE with battery compartment without battery specification (BATT), (c) WEEE with batteries
and BATTkey specification.

As shown in the section on bootstrapping, specifying the battery type increases the accuracy and
precision of the result. For example, simulating the data at BATTkey level for 0306 (see Figure 6) shows
that more distinct distributions are generated (Figure 6f). As a result, the sub-sample means of the
NPA approach are more often within the defined range of the 95% CI*, which increases the coverage
even at low sample numbers and reduces the MSS compared to Figure 7a,b. Furthermore, this example
demonstrates the purpose of considering additional stratification variables (here BATTkey) for sampling.
In this case, the age of WEEE implies the installation of older NiMH or newer LiRecharge batteries.
With the ongoing technology change towards LiRecharge, the density distribution in Figure 6c will
shift to the left and approach the density distribution of LiRecharge (Figure 6f). Without consideration
of relevant stratification variables, a new determination of the MSS is, therefore, inevitable to
avoid biased results. One possibility to identify these stratification variables is a comprehensive
recycling-oriented characterization.

The comparison of all three approaches PA(VC), PA(VC*), and NPA illustrates the challenges in
the determination of MSS using statistical approaches. A fundamental problem for the PA is the use
of VC under the assumption of normal distribution. The heterogeneous composition of devices and
device groups in the waste stream and the changing use of battery systems due to technological change
or substance bans cause constant changes resulting in high variabilities. The consequence of these
rapid changes can be very high or low WEEE and battery masses in the sample, which lead to extreme
values for BMS, increased data variation within a UNUkey, and consequently biased results of PA.
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The example of lithium primary batteries in desktop PCs (0302) shows that both PA(VC*) and
NPA calculate a very small MSS. Bootstrapping increases the precision of the results, but can result in
too small VC* for the application of PA, as it will result in implausible MSS. Consequently, MSS for PA
is smaller for VC* if the acceptable error is kept constant. However, the use of VC is prone to be biased,
since not only the original data, but also the bootstrap data (VC*) is not always normally distributed.
Even with large amounts of data, a normal distribution cannot automatically be assumed. PA(VC*)
is not a preferred method because the variance of the bootstrap simulation is very small for many
repetitions (B = 5000), and the coefficient of variation leads to much too low MSS. This problem is
overcome in most cases with the NPA using 95% CI*.

However, the NPA method also has its limitations. For instance, the example 0302 additionally
shows that a very small and specific BMS results in a very narrow 95% CI* (see Table 2). The consequence
is that the values from the bootstrap simulation are not within the 95% CI*, especially if there are zero
values (Figure 7a) in the original data set. As a result, 0302 is not shown in Figure 7a, as all bootstrap
results are outside the confidence range. This problem can only be overcome by adequate specification,
in this case, by determining LiPrim batteries.

The PA was shown to be highly biased for estimating MSS due to indistinct data distribution
patterns or the wrong assumption of normally distributed data. Bootstrap simulation can help to
generate both more precise and accurate sampling results, which helps to approximate MSS and thus
reduces the economic costs of sampling. If only a few WEEE devices are sampled (at least 15), and the
data distribution pattern is indistinct or unknown, the NPA presented here shows advantages in
comparison to PA. In contrast to PA, extreme values or outliers have less influence on the confidence
interval when using NPA. Since the occurrence probabilities of the original values are decisive in
bootstrap simulation, the most frequent values will have a more considerable influence on the result.
For example, single extreme values caused by, e.g., new technology trends, like the change to LiRecharge
batteries in tools, would not have a significant influence on the variation of the data when NPA is
applied. Nevertheless, the number of data in the pilot data set also determines the validity of the
statements for the NPA, which increases with an increasing number of sample values.

3.5. Sampling Recommendation

The shortcomings of current sampling methods are: (1) the lack of harmonization of the WEEE
and BATT nomenclature at the product level and (2) the aggregated statistical description of the
results, mostly based on normal distribution. Thus, data-driven optimization of sampling results,
e.g., through merging of data from different sources and data-driven simulations, such as bootstrapping
and the NPA, is not achievable. These quasi cost-neutral improvements of sampling results are not
yet used.

Therefore, we recommend the following procedural adjustments for future investigations, which are
not only applicable to the case of built-in batteries in WEEE, but also to other objects of sampling
investigations. Firstly, standardized codes for WEEE (UNUkeys) and batteries (BATTkeys) should be
used, enabling the exchange and comparison of the collected data, e.g., by supplementing existing
guidelines such as the SWA-tool [40]. Secondly, the data should be recorded according to a standardized
sampling protocols [52]. Thirdly, instead of describing the results of large individual samples under the
assumption of normal distribution, several smaller samples should be taken, the results of which should
be described with more robust descriptors (median, MAD, 95% CI). Such harmonized data will provide
the necessary a priori knowledge for future investigations, which should be made publicly available
together with other data about the urban mine [81–83] in an urban mine knowledge database [84].
Fourthly, the raw data obtained by sampling can be combined with data from public sources, such as
statistics, monitoring reports, scientific publications. These combined datasets can be used to calculate
and adjust the MSS of future investigations using the NPA.
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4. Conclusions

Methodically coherent procedures for the determination of battery characteristics in WEEE
products as well as a shared database providing a priori knowledge about product characteristics
are missing or are insufficient, which makes it challenging to derive recommendations on sampling
procedures and MSS.

The applied harmonized nomenclature using UNUkeys for WEEE and batteries proved to extend
the possibilities for data stratification and evaluation. The results show that specific battery types
(BATTkeys) were frequently identified in certain UNUkeys and subKeys. This concentration of
BATTkeys in UNUkeys can simplify battery identification since batteries remain in two-thirds of
WEEE with a battery compartment when discarded. Furthermore, it could be observed that secondary
batteries are usually installed in fewer groups of devices, whereas primary batteries were found in
many different devices with strongly varying mass shares. Product-specific values for mass and mass
share could not be ascertained, which impedes a more precise assessment and leads to increased
sample sizes of built-in batteries in WEEE.

Concerning the statistical description of sampling results, we showed that the assumption of normally
or lognormally distributed data proved to be rarely valid to characterize these samples. Using mean
and SD or VC for the statistical description of the data leads to biased results. In addition, more robust
descriptors like median and MAD or data-driven simulation (bootstrapping) are recommended to
improve the quality and representativeness of sampling results.

With regard to the approximation of the MSS, we conclude that the PA is strongly affected by
the assumed distribution pattern as well as the number of samples. Bootstrapping was shown to
be favorable to generate more accurate results on battery characteristics in the case of unknown or
inconclusive sample distributions and fewer data points. Moreover, bootstrapping in combination
with recycling-oriented product characterization, can be used to perform the NPA, which provides a
more robust approach to approximate the MSS. However, for both approaches, the future availability
of harmonized data is required and defines the validity of the results.

Consequently, recyclers, researchers, and policymakers should focus on a common harmonized
method to generate and collate consistent data, which is crucial for an urban mine knowledge
database. The product count procedure enables to (1) identify (safety) relevant products in WEEE,
(2) set depollution targets as defined by CENELEC [24], (3) lower the labor costs for sampling due
to simulation-based optimization of results and MSS, (4) display trends to plan recycling strategies,
and (5) derive more valid results on waste characteristics to improve resource efficiency in WEEE and
waste battery management.
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Appendix A

Table A1. Battery mass and mass share differentiated by BATTkey.

BATTkey n
LiPrim LiRecharge NiCd NiMH Pb Zn Unspecified

195 135 44 130 13 257 16

Mass
(BM)

m [g] 3.9 74 310 69 1300 38 47
SD [g] 3.2 120 440 110 1400 66 100
VC [-] 0.8 1.6 1.4 1.7 1.1 1.7 2.2
m̃ [g] 3.0 23 67 26 800 23 7.0

MAD [g] 0.074 8.1 71 21 430 17 7.4
95% CI [g; g] [1.9; 8.8] [8.9; 430] [14; 1500] [10; 490] [15; 4300] [2.3; 150] [2; 300]
SW/SWlog [-] 0/0 0/0 0/0 0/0 0/0 0/0 0/0

S/Slog [-] 5.4/1.9 2.2/0.99 2.1/0.28 3.0/0.93 1.3/−1.1 8.4/−0.27 2.7/0.7
K/Klog 42/4.7 3.5/1.2 4.5/−1.5 8.4/0.76 0.59/0.046 92/1.6 6.3/−0.87

Mass
share
(BMS)

x [%] 2.3 20 23 19 46 18 12
SD [%] 4.3 9.0 16 12 19 15 14
VC [-] 1.90 0.46 0.66 0.61 0.42 0.76 1.1
x̃ [%] 0.045 20 22 18 48 15 8.4

MAD [%] 0.031 7.2 14 11 12 11 12
95% CI [%; %] [0.02; 12] [1.9; 43] [0.5; 46] [0.65; 45] [8.8; 74] [2.0; 53] [0.096; 43]

SW/SWlog 0/0 0/0 0/0 0/0 0.28/0 0/0 0/0.12
S/Slog 1.8/0.92 0.83/−4.0 1.6/−2.8 0.72/−2.4 −0.58/−1.5 1.4/−0.69 1.1/−0.76
K/Klog 1.5/−0.87 2.9/21 4.9/8.7 −0.083/8.2 −0.4/1.1 2.2/0.27 0.43/−0.57

Occurrence in
UNUkeys 19 16 11 15 7 16 9
subKeys 23 27 15 24 8 29 10

n: number of observations, m/x: mean, SD: standard deviation, VC: coefficient of variation, m̃/x̃: median, MAD:
median absolute deviation, 95% CI: confidence interval [2.5th quantile, 97.5th quantile], SW: p-value of Shapiro-Wilk
test (normally distributed if p > 0.05, highlighted in bold), S: skewness, K: kurtosis; log(subscripted): respective
values after log-transformation. Results are rounded to two significant digits.
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Table A2. Statistics on battery mass and mass share, differentiated by UNUkey.

UNUkey n
Battery Mass

¯
m [g] SD [g] VC [-] ~

m [g] MAD [g] 95% CI

0201 23 26 28 1.1 23 12 [2; 98]
0202 13 39 35 0.89 46 64 [2.9; 100]
0204 29 360 240 0.67 260 260 [80; 820]
0205 48 26 9.6 0.36 23 6.2 [14; 47]
0301 51 120 690 5.7 12 16 [1.1; 220]
0302 118 3.4 3.2 0.94 3 0 [2.8; 6.5]
0303 29 210 190 0.92 250 300 [2.1; 480]
0305 52 33 54 1.7 22 15 [11; 84]
0306 93 29 18 0.61 21 5.1 [15; 77]
0401 121 22 14 0.66 22 16 [3; 48]
0402 29 73 160 2.2 24 12 [2.9; 440]
0403 7 71 73 1 37 21 [10; 200]
0406 18 36 63 1.8 18 11 [2.7; 200]
0501 16 79 120 1.6 33 39 [3; 380]
0506 15 240 710 3 32 27 [3; 1900]
0601 32 470 560 1.2 340 460 [12; 2000]
0701 42 38 25 0.66 34 24 [3; 90]
0702 5 33 6.2 0.19 35 4.1 [24; 38]
0901 31 10 11 1 7.9 0 [2.6; 46]
all 750 76 270 3.6 21 23 [2.1; 546]

Battery mass share

UNUkey n x [%] SD [%] VC [-] x̃ [%] MAD [%] 95% CI
0201 23 12 12 0.94 8.7 6.5 [1; 38]
0202 13 4.5 6.1 1.4 2.3 3.1 [0.15; 18]
0204 29 26 14 0.54 20 9.4 [11; 54]
0205 48 19 7.8 0.41 18 8.4 [7.9; 38]
0301 51 11 14 1.3 5.2 5 [0.88; 56]
0302 118 0.045 0.082 1.8 0.031 0.009 [0.019; 0.098]
0303 29 8.7 7.6 0.87 13 6.3 [0.061; 20]
0305 52 16 10 0.66 11 7.2 [3; 38]
0306 93 25 9.1 0.36 23 5.4 [14; 47]
0401 121 19 9.7 0.52 17 9.6 [5; 41]
0402 29 17 13 0.78 13 7.7 [2.1; 57]
0403 7 19 24 1.3 3.5 3.1 [1.5; 60]
0406 18 9.9 8.5 0.85 6.9 7.8 [0.27; 28]
0501 16 34 22 0.64 38 19 [2.7; 69]
0506 15 25 16 0.64 23 18 [3.1; 54]
0601 32 26 19 0.74 22 16 [0.14; 79]
0701 42 15 14 0.92 11 9.9 [0.23; 38]
0702 5 19 9.4 0.49 25 1.8 [8.3; 26]
0901 31 11 5.6 0.51 12 0 [0.6; 23]
all 750 16 14 0.89 13 14 [0.02; 48]

n: number of observations, x: mean, SD: standard deviation, VC: coefficient of variation, x̃: median, MAD: median
absolute deviation, 95% CI: confidence interval [2.5th quantile, 97.5th quantile]. Results are rounded to two
significant digits.
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