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Abstract

Catalytic fixed-bed reactors with a low tube-to-particle diameter ratio are widely

used in industrial applications. The heterogeneous packing morphology in this reactor

type causes local flow phenomena that significantly affect the reactor performance.

Particle-resolved computational fluid dynamics has become a predictive numerical

method to analyze the flow, temperature, and species field, as well as local reaction

rates spatially and may, therefore, be used as a design tool to develop new improved

catalyst shapes. Most validation studies which have been presented in the past were

limited to simple particle shapes. More complex catalyst shapes are supposed to

increase the reactor performance. A workflow for the simulation of fixed-bed reac-

tors filled with various industrially relevant complex particle shapes is presented and

validated against experimental data in terms of bed voidage and pressure drop. Indus-

trially relevant loading strategies are numerically replicated and their impact on parti-

cle orientation and bed voidage is investigated.

K E YWORD S

bed voidage, fixed-bed reactor, numerical modeling, particle orientation, pressure drop

1 | INTRODUCTION

Syngas is feedstock for many important chemical processes like meth-

anol and ammonia synthesis, the production of aldehydes by oxo syn-

thesis, and the generation of hydrocarbons by the Fischer-Tropsch

process. Common routes for syngas production are heterogeneous

catalytic reforming processes, for example, steam and dry reforming

of methane.1 Because of the highly endothermic or exothermic nature

of these reactions, tubular reactors consisting of numerous fixed-beds

with a low tube-to-particle diameter ratio N are widely used. They are

characterized by an intensified radial heat transfer and a low pressure

drop. However, in this reactor type the assumption of a homogeneous

radial void fraction distribution is not valid and local flow phenomena

play an important role. This leads to a strong interplay between bed

morphology, fluid dynamics, heat and mass transfer, and therefore,

the reactor performance itself.

When it comes to process intensification, the probably most obvi-

ous way to improve the overall process is the testing of different cata-

lyst shapes. The ideal particle shape has to satisfy multiple objectives:

a high active catalytic surface, low pressure drop, low axial dispersion,

and a good radial heat transfer characteristic. Several authors investi-

gated the effect of the particle shape on reactor performance and life

expectation theoretically and experimentally. Bruno et al2 compared

multi-hole cylinders with Raschig rings theoretically and found for
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multi-hole cylinders a two times longer maintenance interval until the

catalyst needs to be replaced and a significantly increased life expec-

tation for the reactor tubes. In their comprehensive review paper Sie

and Krishna3 discuss several aspects regarding the impact of particle

shape on reactor performance and found that the right choice of par-

ticle shape is a multi-objective optimization problem to solve the com-

plex trade-off between low pressure drop, high surface-to-volume

ratio, high specific reaction rate, low manufacturing cost, and high par-

ticle strength. Afandizadeh and Foumeny4 give in their work special

attention to the impact of particle shape on bed morphology. They

compare spheres, cylinders, Raschig rings, Lessing rings, and cross

web cylinders regarding their active surface per unit volume while

particle aspect ratio and inner-to-outer diameter ratio is varied. For

cylinders they suggest an aspect ratio of (h/dp) = 1, while for Raschig

rings, Lessing rings, and cross web cylinders an optimum design range

of 0.75 ≤ (h/dp) < 1.50 and 0.4 < (dp, i/dp, o) < 0.8 was identified. This

leads to 20–30% extra surface area for Raschig rings compared to cyl-

inders. Compared to the equivalent Raschig rings an increase in sur-

face area of 10–27% can be seen for Lessing rings. This can be further

increased by 16% if cross web cylinders are used. For steam reforming

Kagyrmanova et al5 found in their theoretical optimization study that

catalyst height and diameter have an opposed effect on conversion

when holed cylinders are used. They propose particles with a high

aspect ratio ((h/dp) ≈ 1.5) and a low diameter by considering the

resulting pressure drop as limiting factor. Hartmann et al6 promote in

their experimental work the use of perforated porous spherical parti-

cles and justify this with a significantly reduced pressure drop by only

slightly reducing the conversion of methane steam reforming in com-

parison to 7-hole cylinders. The latter particle shape used for steam

reforming was also investigated by Franczyk et al.7 They studied the

influence of aspect ratio, hole diameter and tube-to-particle diameter

ratio on relative activity, relative gas load, pressure drop, and wall

temperature theoretically. The authors propose an aspect ratio of one,

a tube-to-particle diameter ratio N ≥ 5, and a hole-to-cylinder cross-

section area ratio of 0.30–0.37. Karthik and Buwa8 used particle-

resolved computational fluid dynamics (CFD) to investigate the impact

of different particle shapes on the reactor performance for four indus-

trially important solid-catalyzed gas-phase reactions. They found that,

with increasing particle surface area, pressure drop increases while

intra-particle temperature and concentration gradients decrease. The

authors show that particle shape significantly impacts reactor perfor-

mance. However, the overall efficiency depends on several factors as

mass transfer limitation and reaction equilibrium. Therefore, the opti-

mal particle shape was found to be dependent on the chemical reac-

tion that is considered.

The relatively low number of experimental work in that field is

explainable by the high costs and required time that is needed to con-

duct the experiments. Furthermore, the knowledge gain by experi-

mental results is limited, since they are most often based on inlet–

outlet measurements only. Therefore, in the last twenty years many

researchers developed and used particle-resolved CFD simulations to

get a better understanding of fluid dynamics and transport processes

inside fixed-bed reactors. Particle-resolved CFD is an almost first-

principle modeling approach where the whole reactor including the

interstices and if needed also the particles are spatially discretized and

conservation equations are solved. Comprehensive reviews of this

method can be found in Dixon et al9 and Jurtz et al.10

For simple particle shapes like spheres, cylinders, and Raschig

rings many authors validated the particle-resolved CFD method

against experimental results or correlations in terms of bed

voidage,11-15 pressure drop,14,16-18 and temperature and species pro-

files.19-21 However, for more complex particle shapes only few publi-

cations exists. Caulkin et al generated packings of 4-hole cylinders,22

pall rings,13 and trilobes23 numerically and compared the radial void

fraction distribution with experimental data. For 4-hole cylinders and

trilobes the numerical results were in good agreement with experi-

mental data. For pall rings the void fraction was underestimated and

only a fair agreement was found. Boccardo et al16 investigated a small

sample of a trilobe packing and were able to find good agreement for

the calculated pressure drop in comparison to Ergun's equation for

low Reynolds numbers (Rep < 100). However, increasing deviations

were observed for higher Reynolds numbers.

In order to make particle-resolved CFD a design tool for new par-

ticle shapes the currently existing lack of experimental validation

needs to be fixed. In this work, packings of different complex particle

shapes with inner voids and outer surface structure are numerically

generated using DEM and the pressure drop is calculated by CFD sim-

ulations. It is shown that a precise representation of the bed morphol-

ogy is basis for a predictive CFD simulation. Therefore, special

emphasis is given to the aspect of numerical packing generation and a

method is presented that improves the match between experimentally

and numerically generated packings by calibrating the static friction

coefficient.24 In industrial applications, very often special loading

devices are used when the reactor is filled with particles. For the first

time the impact of a special loading device, which is often used in

industry, is considered and its impact on particle orientation and bed

voidage is investigated.

2 | MATERIAL AND METHODS

2.1 | Experimental measurements

Experimental measurements were conducted in cylindrical reactor tubes

with an inner diameter of D = 101.6 mm and D = 152.4 mm. Four differ-

ent particle shapes were investigated. The shapes and their dimensions

are depicted in Figure 1 and Table 1. Besides Raschig rings (RR) with

almost equilateral dimensions, three more complex shapes were studied:

two different types of 10-hole cylinders low pressure drop particle

(LDP) with different aspect ratios ((h/dp) ≈ 0.62 and (h/dp) ≈ 0.81) and a

10-hole cylinder with an outer floral-type surface structure floral design

(FD). The fronts of LDP and FD are completed by a small dome.

A loading procedure that is often applied in industrial applica-

tions was used: as depicted in Figure 2a a CATCADE™ reformer

loading device by Cat Tech® is used for filling. The device is placed

in central position inside the reactor tube, as shown in Figure 2b,
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and particles are poured from the top into the reactor until half of

the tube is filled. Afterwards, the bed is densified by hammering

against the reactor wall for 30 s as shown in Figure 2c. This proce-

dure is repeated once. During the loading process the CATCADE™

device is moved upwards to prevent that it immerses into the bed.

The loading device is used to reduce particle velocities and to pre-

vent them from damage during the filling process. Furthermore, it

is designed to reduce the variance in packing morphology, and

therefore, variance in pressure drop between different reformer

tubes. The overall aim is a reduced turnaround time for the filling

process in industrial applications. The bed voidage is determined

by counting the particles that are needed to reach a specified bed

height:

ε= 1−

P
i
Vp,i

π
4D

2
i H

ð1Þ

The pressure drop measurements were conducted by blowing air

at ambient conditions through the fixed-bed from top to bottom. The

inlet flow rate is set by using a needle valve and controlled by

(a) (b) (c) (d)

F IGURE 1 Investigated particle shapes and its DEM composite-particle representation: (a) Raschig ring (RR), (b) 10-hole cylinder 19 × 12
(LDP 19 × 12), (c) 10-hole cylinder 19 × 16 (LDP 19 × 16), and (d) 8-hole cylinder with floral design (FD). DEM, discrete element method [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Dimensions of the investigated particle shapes

RR LDP 19 × 12 LDP 19 × 16 FD

Outer diameter (mm) 16.55 20.66 19.71 20.46

Particle height (mm) 16.15 12.71 15.90 16.04

Abbreviation: RR, Raschig rings.

(a) (b) (c)F IGURE 2 Experimental loading
strategy. (a) CATCADE™ reformer
loading device by Cat Tech®.
(b) Loading device inside the reactor
tube during filling process.
(c) Hammering for artificial bed
densification [Color figure can be
viewed at wileyonlinelibrary.com]

JURTZ ET AL. 3 of 13

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


measuring the pressure difference before and after an orifice plate

using HD750 differential pressure manometer by Extech Instruments.

The pressure drop across the sample bed is measured using HHP-

2081 digital manometer by Omega Engineering with a maximum uncer-

tainty of ≈30 Pa. The pressure drop was measured between inlet and

front of a perforated plate, which is where the particles rest on. For

each particle shape and inlet velocity the pressure drop measurements

were repeated two times, whereby the bed was newly generated

each time.

2.2 | Numerical methods

In the past years, several workflows have been proposed by different

authors to conduct particle-resolved CFD simulations of fixed-bed

reactors, as recently reviewed by Jurtz et al.10 What all workflows

have in common is that they are based on the following four sequen-

tial steps: packing generation, CAD creation, meshing, and the actual

CFD simulations. In this recent study, we use the approach developed

by Eppinger et al.14,15 Here the bed is created by using DEM. After-

wards, position and orientation vectors of all particles are extracted

and stored in a csv file. Based on this data, a CAD description of the

packed bed is generated by placing CAD parts of the respective parti-

cle shape using JAVA macro functionality. As a final step the geome-

try is meshed. To avoid bad cells near particle-particle and particle-

wall contacts, the local “caps” strategy is used14: during the meshing

process an algorithm checks if CAD faces are in proximity to each

other. If a certain distance is exceeded, the algorithm projects vertices

along their connecting line and a small gap is introduced in the vicinity

of the contact. The gap is filled with high quality volume cells. All

numerical simulations are conducted with the commercial CFD tool

Simcenter STAR-CCM+ provided by Siemens PLM Software.

2.2.1 | Numerical packing generation

For numerical packing generation the discrete element method (DEM)

established by Cundall and Strack25 is used. This approach allows par-

ticles to overlap to a certain degree to calculate restitution and

damping forces based on the overlap. The linear momentum equation

for each particle is given by Newton's law of motion:

mp
dυp
dt

= Fs + Fb: ð2Þ

Here mp and υp are particle mass and velocity, t is time and Fs and

Fb are the sum of surface and body forces that act on the particle.

For the filling process only the gravitational force and the contact

forces are considered. The overall contact force is the sum of particle-

particle and particle-wall contact forces acting on a particle, whereas

each contact force can be decomposed in a tangential (Fn,i ) and a nor-

mal (Ft,i) acting component:

Fc =
Xcontacts

i=0

Fn,i + Ft,ið Þ: ð3Þ

The force in normal direction is defined by:

Fn = −Kndn−Nnυn: ð4Þ

Here Kn is the normal spring stiffness, dn the overlap in normal

direction, Nn the normal damping and vn the normal velocity compo-

nent of the relative sphere surface velocity at the contact point. The

force in tangential direction is defined as:

Ft = −Ktdt−Ntυt for −Ktdtj j< KndnCfsj j að Þ
Kndnj jCfsdt

dtj j for −Ktdtj j≥ KndnCfsj j bð Þ:

8<
: ð5Þ

where Kt is the tangential spring stiffness, dt the overlap in tangential

direction, Nt the tangential damping, vt the tangential velocity compo-

nent of the relative sphere surface velocity at the contact point and

Cfs the static friction coefficient.

In this study the non-linear Hertz-Mindlin contact model is used.

This leads to:

Kn =
4
3
Eeq

ffiffiffiffiffiffiffiffiffiffiffiffi
dnReq

p
ð6Þ

Kt = 8Geq

ffiffiffiffiffiffiffiffiffiffiffiffi
dnReq

p
ð7Þ

Nn =Nn,damp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5KnMeq

p
ð8Þ

Nt =Nt,damp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5KtMeq

p
: ð9Þ

where Nn,damp and Nt,damp are the normal and tangential damping

coefficients that are calculated from the normal and tangential restitu-

tion coefficient Cn,rest and Ct,rest as follows:

Nn,damp =
− ln Cn,restð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 + ln Cn,restð Þ2

q ð10Þ

Nt,damp =
− ln Ct,restð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 + ln Ct,restð Þ2

q : ð11Þ

Meq, Req, Eeq, and Geq are the equivalent values of mass, radius,

Young's modulus, and shear modulus of particles A and B during the

collision process:

Meq =
1

1
MA

+ 1
MB

ð12Þ

Req =
1

1
RA

+ 1
RB

ð13Þ
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Eeq =
1

1−υ2
A

EA
+

1−υ2
B

EB

ð14Þ

Geq =
1

2 2−υAð Þ 1+ υAð Þ
GA

+ 2 2−υBð Þ 1+ υBð Þ
GB

: ð15Þ

where υ is the Poisson ratio.

Besides the linear, the angular momentum of each particle is con-

served as well by:

Ip
dωp

dt
=

Xcontacts

i=0

rc × Fc,i +Mc,ið Þ: ð16Þ

where Ip is the particle moment of inertia, ωp the angular velocity, rp

the position vector from particles center of gravity to the contact

point and Mc the acting moment due to rolling resistance:

Mc = −Cfr rcj j Fcj j ωp

ωpj j : ð17Þ

Here Cfr is the rolling friction coefficient.

In its original form DEM is only applicable for the simulation of

spherical particles. An approach to overcome this limitation is the use

of composite (or glued) particles. By using the composite particle

method, particles with complex shapes are approximated by an

arrangement of spheres that are rigidly glued together. The composite

particle representations of the particle shapes used in this study can

be seen in Figure 1. A number of one-hundred spherical particles is

used to approximate the real catalyst shape.

The particles inner voids are neglected for the filling simulation

since it can be assumed that their impact on the particle dynamics is

low. This is justified because of the small inner hole diameter which

ensures that other particles cannot slide into them, and the axisym-

metric nature of the investigated particle shape. Therefore, the center

of mass of the pellet is not changed by neglecting the inner holes.

Nevertheless, the particle mass is slightly increased if the inner holes

are neglected. While particle sedimentation velocity is unaffected by

particle mass, it has an impact on the calculated restitution forces dur-

ing collision events. While the impact of frictional forces on bed

voidage is widely accepted, only little data exists on the impact of par-

ticle mass or its density. Pottbäcker and Hinrichsen26 studied experi-

mentally the impact of different material properties on bed voidage

and suspected that the coefficient of restitution and the particle den-

sity might affect the bed voidage. However, not all data fit to their

hypothesis, for example, for spheres of rusty steel and poly-

oxymethylene the resulting bed voidage is equal, although, particle

density is more than five times higher for steel, and static friction

coefficients are similar. This indicates that the impact of particle den-

sity on bed voidage might be lower than expected. Hoffmann and

Finkers27 consolidated experimental data and derived a correlation for

bed voidage as a function of sphericity, particle diameter, and particle

density. However, the important frictional forces were not considered,

and their data still shows scattering. Therefore, no clear conclusions

can be drawn. To understand the impact of particle density on bed

voidage two additional DEM filling simulations were conducted. Five

hundred cylindrical particles (h = dp = 16.5 mm) are poured into a

cylindrical container with a diameter of 101.6 mm. Randomly distrib-

uted injection points were placed at a height of 470 mm where parti-

cles enter the domain. Only gravitational and particle-particle and

particle-wall contact forces were considered. Since in this case ideally

cylindrical particles are considered the sophisticated contact detection

method of Feng et al28 in combination with the Linear Spring Contact

Model was used. All boundary conditions and material properties

except for the particle density are equal. As reference case a particle

density of 2,200 kg/m3 was used. For the second simulation this value

was reduced to 1,100 kg/m3. This is comparable to simulating parti-

cles with 50% inner voids but neglecting the additional voidage in the

DEM simulation. The result of this preliminary study is given in

Figure 3. For better visibility the highest and lowest particle position

of the last particle layer are marked for both cases. Almost no differ-

ence can be observed, which shows that impact of particle density on

bed voidage can be neglected. However, it needs to be mentioned

that this statement cannot be generalized and is only true, if hole

diameters are small. For shapes with large voids, as thin-walled rings,

neglecting the inner void during DEM simulation can lead to signifi-

cant deviations regarding particle orientation and radial void fraction

distribution as recently shown.29

The bed voidage between the experimental and numerical pack-

ing has to be in good agreement for an accurate prediction of pressure

drop. However, very often not all important aspects concerning the

F IGURE 3 Impact of particle density on bed height for cylinders
in a bed with a tube-to-particle diameter ratio of N = 5.4 [Color figure
can be viewed at wileyonlinelibrary.com]
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filling process are known. The surface characteristics of the particle

(esp. the static friction coefficient) is mostly unknown and vibrations

or artificial densification (e.g., hammering) has a huge impact on the

bed voidage as well. Ookawara et al17 found that the static friction

coefficient can be used to fine-tune the packing density to the desired

experimental value. Recently, Jurtz et al24 have proposed correlations

to predict bed voidage as a function of tube-to-particle diameter ratio

and static friction coefficient for spheres, cylinders, and Raschig rings.

These equations can be used to pre-calculate the friction coefficient

to achieve a certain bed voidage. It should be noted that other param-

eters, such as filling speed, may also impact the final bed voidage, as

recently shown by Fernengel et al.30

Within the scope of this work the static friction coefficient is first

manually adapted using trial-and-error method until the numerical and

experimental bed voidage is in acceptable agreement. The loading

device is neglected in that simulations. Subsequently, the pressure

drop is calculated and compared with experimental results. In the sec-

ond part of this study, it is investigated if, in analogy to the work of

Jurtz et al,24 it is possible to obtain a correlation for more complex

catalyst shapes with a set of DEM simulations and just one filling

experiment. To ensure that the correlation only accounts for frictional

and vibration effects the loading device will be considered in these

simulations.

To include the CATCADE™ loading device in the filling simulation,

as depicted in Figure 4a, the overset mesh approach is used. This

method often called chimera grid method was first introduced by

Steger et al31 and Benek et al.32,33 It allows the spatial discretization

of the numerical domain by two or even more intersecting mesh

topologies. The main topology, often called the background domain,

encloses the static region and includes only the outer boundaries of

the domain. In the present case the background mesh is represented

by the cylindrical reactor tube. The second region is often called the

overset domain and includes movable boundaries, here the loading

device, plus an outer boundary that is named the overset interface.

After each time step the hole-cutting process is started and

based on the position of the overset interface holes are cut in the

background mesh. Along the overset interface, a layer of cells is

identified that forms the donor cell layer. The cells of the back-

ground mesh next to the donor cell layer become acceptor cells.

They have to form a watertight boundary around the overset region.

Cells of the background mesh that are completely covered by the

overset region cells inside this closed boundary become deactivated.

For each acceptor cell a donor cell must be found to couple the

overset and background mesh. The cell status for overset and back-

ground mesh as well as a visualization of the final mesh can be seen

in Figure 4b.

The movement of the loading device is implemented as a

translational motion in vertical direction as visualized in

Figure 4c. To check the current bed height during the DEM simula-

tion a threshold is created that includes all particles that have a

minimum number of three adjacent particles they are in contact

with. The maximum vertical coordinate of the threshold is evalu-

ated as current bed height. If the distance between bottom of the

loading device and the bed surface falls below a value of 5 cm the

device is moved upwards with a constant velocity of 0.15 m/s.

Particles are injected with a randomly distributed initial orientation

at a height of 2.5 m.

2.2.2 | Computational fluid dynamics

For the flow simulations mass and momentum conservation equation

is solved using the Finite Volume Method (FVM):

∂ρ

∂t
+r� ρυð Þ=0 ð18Þ

∂ ρυð Þ
∂t

+r� ρυυð Þ=rT ð19Þ

F IGURE 4 Inclusion of the loading device. (a) CAD description. (b) Visualization of overset mesh (left), background mesh (middle) and final
mesh (right). Cells of overset and background mesh are colored by their cell status (magenta: inactive cells, black: donor and acceptor cells,
orange: active cells). (c) Still of the filling process (an animation is provided in the Video S1) [Color figure can be viewed at wileyonlinelibrary.com]
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Here ρ is mass density of the fluid, v fluid velocity, and T the

stress tensor:

T = − p+
2
3
μr�υ

� �
I+2μD, ð20Þ

where p is pressure, μ dynamic viscosity, I the unit tensor, and D the

deformation tensor:

D=
1
2

rυ+ rυð ÞT
h i

: ð21Þ

Turbulent effects are considered by using the Realizable k-ε tur-

bulence model which has already successfully been used in previous

studies.14,15,18 The steady-state solution is solved by using an incom-

pressible segregated solver approach. The SIMPLE-algorithm is used

to solve for the pressure–velocity coupling.

The numerical domain is spatially discretized using polyhedral

cells as depicted in Figure 5. In order to avoid insufficient mesh quality

at particle contacts, the caps method introduced by Eppinger et al14

was applied, which creates small gaps between touching particles. The

approach is fully automatized and can be applied to any type of parti-

cle shape without additional modification.10 In comparison to other

contact modification methods (e.g., bridging particle contacts) it can

directly be applied for heat transfer simulations without having to

specify an additional thermal resistance at the contacts.19 A detailed

mesh refinement study was recently published by Minhua et al.34

Two prism layers are used to resolve velocity gradients at the particle

surface and reactor wall. In order to minimize the influence of the

boundary conditions at the inlet and outlet, the volume mesh is

extended by extruding the inlet and outlet. The total cell count was

9.1 million for Raschig rings and around 11.5 million for LDP and FD

shape. The overall mesh quality is reasonably good for such complex

geometries. A maximum of one out of ten thousand cells have a least

square cell quality below 0.001. This metric is an indicator of the qual-

ity of a cell, using the physical location of a cell centroid relative to

the cell centroid locations of its face-neighbors.35

3 | RESULTS

3.1 | Pressure drop

The pressure drop of packed beds with a bed height of

H = 445.0 mm and a diameter of D = 101.6 mm were investigated

numerically and experimentally for Raschig rings, LDP 19 × 16 and

FD particle shape. Since pressure drop is very sensitive to bed

voidage, it is essential that the difference in bed voidage is as low as

possible between the numerical packing and its experimental coun-

terpart. Therefore, the static friction coefficient was adapted using

trial-and-error to a value of Cfs = 0.02 in the DEM simulation to meet

the experimental bed voidage. A comparison between the experi-

mental and numerical values in terms of particle count and bed

voidage can be found in Table 2, whereby inner particle voids were

considered to calculate the bed voidage. A very good agreement

with the experimentally determined particle count can be observed

for all three particle shapes. A maximum error of 1.4% can be found

for Raschig rings.

In Figure 6 the experimental and numerical packing are visually

compared. It can be seen that at the reactor wall the particle orienta-

tion is qualitatively in a good agreement. The majority of particles are

either aligned orthogonally or in parallel to the reactor wall. There is

also a trend of building stacked structures, which is something that

Zhang et al36 already noticed in their packing experiments with equi-

lateral cylinders.

For each of the packings, several flow simulations with varying

inlet velocities (1.1, 1.7, 2.9, and 4.3 m/s) were conducted. This corre-

sponds to a range of investigated particle Reynolds numbers of

Rep = (vin � dp � ρ)/μ ≈ 1300-5800. A constant fluid density of

ρ = 1.19 kg/m3 and a fluid dynamic viscosity of μ = 1.8326 × 10−5 Pa

s was used for these simulations. The comparison between experi-

mentally determined specific pressure drop plus its standard deviation

and simulation results is given in Figure 7a. The same trend is

predicted by experiments and numerical simulations: the largest pres-

sure drop can be observed for Raschig rings followed by the LDP

19 × 16 and the FD particle shape. For the same superficial inlet

velocity the pressure drop can be cut in half by using the FD particle

shape. The parity plot in Figure 7b shows the accuracy of calculated

pressure drop in comparison to the experimental values. For almost all

configurations the deviation is below 15% which is within the accu-

racy that Eppinger et al14 reported for spherical particles. However,

for the lowest inlet velocity the pressure drop is slightly

F IGURE 5 Projection of the polyhedral mesh on a cross-sectional
plane for LDP shape [Color figure can be viewed at
wileyonlinelibrary.com]
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underestimated, leading to deviations between 20% for FD shape and

23% for Raschig rings.

3.2 | Impact of loading device on bed voidage and
particle orientation

In the previous simulations, the loading device was not used, neither

in the experiment nor in the simulation. Since it is usually used during

the experimental filling procedure, the question is raised, if this is a

valid assumption or if the device should be considered when it is used.

To answer this question several loading simulations of LDP 19 × 12

particles were performed and the impact of the loading device on par-

ticle orientation was investigated by conducting simulations with and

without the loading device. The static friction coefficient was varied

from Cfs = 0.001-0.8 to investigate the impact of the loading device

for different packing densities. With increasing friction coefficient the

generated packing becomes more loose. The orientation of each

TABLE 2 Comparison of particle count and void fraction for experimentally and numerically generated packings

RR LDP 19 × 16 FD

DEM Exp. DEM Exp. DEM Exp.

Particle count (−) 660 668 505 502 457 454

Bed voidage (−) 0.489 0.482 0.542 0.545 0.623 0.627

Abbreviations: DEM, discrete element method; RR, Raschig rings.

F IGURE 6 Comparison between experimental (left) and numerical (right) bed structure: (a) Raschig ring, (b) LDP 19 × 16, and (c) FD shape
[Color figure can be viewed at wileyonlinelibrary.com]
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particle is evaluated with respect to the angle between its symmetry

axis and the normal vector on the horizontal plane.

The results given in Figure 8 show that for almost all packings the

majority of particles have an orientation with respect to the horizontal

plane of 80–90�. This is in good agreement with the experimental

results of Caulkin et al22 who also found that cylindrical particles tend

to arrange orthogonally to the horizontal plane. A good agreement

can be found between the simulation results and the experimental

data of Caulkin et al22 for static friction coefficients in the range

Cfs = 0.4-0.8. With decreasing friction coefficient (denser beds) the

amount of orthogonally and horizontally aligned particles increase sig-

nificantly when the loading device is used. The number of particles

with an orientation of 30–70� are reduced. For dense beds, about

50% of the particles are either horizontally or vertically aligned when

the loading device is used.

Without the loading device the change in particle orientation is

less continuous and an abrupt reduction of orthogonally aligned parti-

cles can be recognized if the friction coefficient is set to a value of

Cfs ≥ 0.4. The trend of a reduced number of diagonal particle align-

ment is less pronounced in comparison to the results where the load-

ing device was included. In the case of very dense beds only about

40% of the particles are horizontally or vertically aligned.

A direct comparison of particle orientation with and without the

loading device for different friction coefficients can be seen in

Figure 9. For very dense and loose bed configurations an impact of

the loading device on particle orientation can be observed. For very

low friction coefficients of Cfs ≤ 0.1 the number of particles that have

an orientation angle of 90� is increased by up to 20%. Increasing the

static friction coefficient to values Cfs ≥ 0.6 causes the opposite

effect: the number of orthogonally aligned particles is reduced by up

to 25%. It cannot be seen that the change in orthogonally aligned par-

ticles leads to any different preferred orientation angle. Regardless of

whether the loading device is used or not, with increasing friction

coefficients the particle orientation distribution gets more uniform,

although, particles with an orientation angle below 30� are always

underrepresented.

Besides particle orientation also bed voidage is affected by the

loading device as it can be seen in Figure 10. For different values of

static friction coefficient the bed voidage is given and compared with

the correlation of Dixon37 and Foumeny and Benyahia.38 Here, inner

particle voids are not considered to calculate the bed voidage to

ensure a better comparability with the presented correlations. It can

be seen that the use of the loading device leads to a significantly

increased bed voidage for friction coefficients Cfs > 0.05. Below this

value only slight differences in void fraction can be observed and the

calculated values agree well with those predicted by the correlation of

Foumeny and Benyahia38 for dense beds. For friction coefficients in

the range of Cfs = 0.4-0.8 which is in the order of magnitude of most

catalyst supports as alumina or silicon carbide39 the results of the sim-

ulation without the loading device are in good agreement with the

predicted values of the correlation of Dixon37 for non-densified beds.

However, it can be seen that the use of the loading device leads to a

significant increase in bed voidage of up to 10%. This effect can

mainly be attributed to a reduction of dropping height or reduced

impact velocity caused by the loading device. Li40 investigated the

impact of dropping height on bed voidage for ellipsoids and found for

particles with moderate aspect ratios of 0.5–2.0 a comparable

increase in bed voidage if dropping height is reduced under a certain

limit. With increasing aspect ratio, the effect gets less pronounced

due to the increasing amount of kinetic energy that is dissipated by

particle-particle friction. Overall, the results show that whenever load-

ing devices are used they should also be considered in the numerical

filling simulation since they strongly affect particle orientation and

bed voidage.
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F IGURE 8 Impact of static friction coefficient on particle orientation for LDP 19 × 12 shape: (a) With loading device and (b) without loading
device
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4 | DISCUSSION

It was shown that the particle-resolved CFD approach is in general

able to predict fluid dynamics accurately as long as bed voidage of the

experimental and numerical packing are equal. As already discussed

bed voidage strongly depends on experimental filling procedure

(e.g., artificial tamping and the use of loading devices) as well as sur-

face characteristics of the particles. Loading devices can explicitly be

included in the filling simulation as shown and lead to an increase of

bed voidage and can also cause a change of particle orientation close

to the reactor wall. However, most often the static friction coefficient

for the respective system is unknown and artificial tamping is used to
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F IGURE 9 Impact of loading device on particle orientation for LDP 19 × 12 shape: (a) Cfs = 0.001, (b) Cfs = 0.01, (c) Cfs = 0.2, (d) Cfs = 0.4,
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create dense beds. This arises the question what value for the static

friction coefficient should be used in the DEM simulation to generate

a packing that is in good agreement with the experimental one by

considering these effects.

It was recently shown by Jurtz et al24 that the effect of tamping

and surface characteristics can be lumped into the static friction coef-

ficient and that it is possible to generate packings with a desired bed

voidage by using an adapted friction coefficient. Nevertheless, their

investigations were limited to simple particle shapes as cylinders,

hollow-cylinders and spheres, and the question remained if a once cal-

ibrated friction factor can be used to predictively describe the bed

voidage of other reactor configuration with the same type of particles.

If this is possible it would be a straight forward method for the calibra-

tion of the friction coefficient since just one experimental filling and

some DEM simulations would be necessary.

To investigate this, a packing of 19 × 12 LDP particles in a 400-

tube was generated in the lab. The loading device was used during the

filing process and the number of particles within a bed height of

H = 457.2 mm were counted. Based on the numerical results shown

in Figure 10 a regression curve was fitted. Based on that function and

the experimentally bed voidage ε19 × 12, 4 in the static friction coeffi-

cient of the respective particle shape was calibrated to a value of

Cfs = 0.01. With the adapted friction coefficient filling simulations of

19 × 12 LDP particles in 400- and 600-tubes were conducted and com-

pared with experimental measurements as shown in Figure 11. A bed

height of H = 508.0 mm was used for the 600-tube. In case of the 400-

tube the experimental and numerical particle count is almost identical

which is not unexpected since this was the reference case for the cali-

bration of the friction coefficient. Nevertheless, the results for the 600-

tube also show very good agreement between experimental particle

count and simulation result with an error in terms of particle count

below 1%. This indicates that with a once calibrated friction coeffi-

cient bed voidage of reactors with different tube-to-particle diameter

ratios can be predicted using DEM. This brings particle-resolved CFD

one step further toward being a predictive design tool for new cata-

lyst shapes. A potential work flow could be as follows:

1. For a new particle shape a series of DEM simulations with differ-

ent values for the static friction coefficient are conducted. If

needed, a loading device can be included in the DEM simulation to

account for its effect explicitly.

2. A regression curve is fitted based on the numerical data of the bed

voidage.

3. A filling experiment with a certain tube-to-particle diameter ratio is

conducted and bed voidage is evaluated.

4. Based on the numerical regression curve and the experimentally

measured bed voidage the static friction coefficient is calibrated.

5. The calibrated static friction coefficient can be used for filling sim-

ulations in the particle-resolved CFD framework to predictively

generate packing geometries for different tube-to-particle diame-

ter ratios under same filling conditions.

A good description of bed morphology is of major importance for

an accurate prediction of fluid dynamics, heat/mass transfer and

chemical reactions by particle-resolved CFD simulations. The pro-

posed work flow significantly reduces the numerical turnaround time

and experimental effort to generate packing geometries that are com-

parable to its experimental/industrial counterpart.

The experiments and simulations were repeated for 19 × 16 LDP

shapes using Cfs = 0.01 to evaluate if the determined static friction

coefficient can also be used for slightly modified particle shapes.

However, the simulation results have shown an up to 9% higher parti-

cle count than the one that was found in experiments. Therefore,

based on the already existing calibration curve for 19 × 12 LDP given

in Figure 10, the static friction coefficient was adapted to a value of

Cfs = 0.3 which corresponds to the experimentally determined bed

voidage for 19 × 16 LDP in 400-tube of ε19 × 16, 4 in. The DEM
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simulations were repeated with the adapted friction coefficient. The

comparison to experimental data is given in Figure 11 and shows good

agreement between experimentally and numerically generated pack-

ings. For the 400-tube the simulation results exactly match the experi-

mental data, while for the 600-tube the particle count is

underestimated by 3%. This may indicate that an existing calibration

curve, to some extent, can also be used if particle geometry is slightly

modified, for example, small changes in aspect ratio. This is in accor-

dance with results of Jurtz et al24 who found for cylindrical particles

only little effect of aspect ratio on bed voidage if 0.5 < h/dp < 2. Nev-

ertheless, further experimental and numerical investigations are

needed to assess the validity and accuracy when using a calibration

curve for modified particle shapes, especially for those with additional

outer surface structure.

5 | CONCLUSION

Particle-resolved CFD was applied to simulate the fluid dynamics in

packed-beds filled with different complex particle shapes over a wide

range of industrially relevant Reynolds numbers (Rep ≈ 1300-5800). It

was shown that an accurate prediction of pressure drop with a devia-

tion in the range of ±15% can be achieved if bed voidage is in agree-

ment with the experimentally investigated packing. The particle

orientation close to the reactor wall was also found to be qualitatively

in accordance with lab results.

For the first time the impact of loading devices on particle orien-

tation and bed voidage was studied numerically. It was found that bed

voidage is significantly increased if loading devices are used. There-

fore, it is advised to explicitly include them in the packing generation

simulation. It was shown that the overset mesh approach is an effi-

cient and reliable method to include moving boundaries in the

simulation.

Since it is of major importance to meet the bed voidage as close as

possible, it was shown how this can be efficiently achieved, and experi-

mental and numerical effort can be minimized. It is proposed to use an

adapted static friction coefficient to account for artificial densification

and surface characteristics. A once calibrated friction coefficient can be

used to simulate reactor configurations that differ in tube-to-particle

diameter ratio as long as the same filling strategy is used.

NOTATION

ωp particle angular velocity, rad/s

D deformation tensor, 1/s

Fb body forces, N

Fn normal contact force, N

Fs surface forces, N

Ft tangential contact forces, N

Ip particle moment of inertia, kg/m2

I unit tensor, (−)

Mc moment due to contact, N m

rp position vector from particle center of gravity to

contact point, m

T stress tensor, Pa

υp particle velocity, m/s

υ fluid velocity, m/s

μ dynamic viscosity, Pa s

υ Poisson ratio, (−)

ρ fluid density, kg/m3

Cfr rolling friction coefficient, (−)

Cfs static friction coefficient, (−)

Cn, rest normal restitution coefficient, (−)

Ct, rest tangential restitution coefficient, (−)

Di inner tube diameter, m

dn overlap in normal direction, m

dp, i inner diameter, m

dp, o outer diameter, m

dp sphere-equivalent particle diameter, m

dt overlap in tangential direction, m

Eeq particle equivalent Young's modulus, Pa

Geq particle equivalent shear modulus, Pa

H bed height, m3

h particle height, m

i contact index, (−)

Kn normal spring stiffness, N/m

Kt tangential spring stiffness, N/m

Meq particle equivalent mass, kg

mp particle mass, kg

N tube-to-particle diameter ratio, (−)

Nn, damp normal damping coefficient, (−)

Nn normal damping, N s/m

Nt, damp tangential damping coefficient, (−)

Nt tangential damping, N s/m

p pressure, Pa

Req particle equivalent radius, m

t time, s

vn normal velocity component of the relative sphere

surface velocity, m/s

Vp particle volume, m3

vt tangential velocity component of the relative sphere

surface velocity, m/s
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