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Abstract

The High Asia Refined analysis (HAR) is a regional atmospheric data set gen-

erated by dynamical downscaling of the Final operational global analysis

(FNL) using the Weather Research and Forecasting (WRF) model. It has

been successfully and widely utilized. A new version (HAR v2) with longer

temporal coverage and extended domains is currently under development.

ERA5 reanalysis data is used as forcing data. This study aims to find the opti-

mal set-up for the production of the HAR v2 to provide similar or even better

accuracy as the HAR. First, we conducted a sensitivity study, in which differ-

ent cumulus, microphysics, planetary boundary layer, and land surface

model schemes were compared and validated against in situ observations.

The technique for order preference by similarity to the ideal solution

(TOPSIS) method was applied to identify the best schemes. Snow depth in

ERA5 is overestimated in High Mountain Asia (HMA) and causes a cold bias

in the WRF output. Therefore, we used Japanese 55-year Reanalysis (JRA-55)

to correct snow depth initialized from ERA5 based on the linear scaling

approach. After applying the best schemes identified by the TOPSIS method

and correcting the initial snow depth, the model performance improves.

Finally, we applied the improved set-up for the HAR v2 and computed a one-

year run for 2011. Compared to the HAR, the HAR v2 has a better represen-

tation of air temperature at 2 m. It produces slightly higher precipitation

amounts, but the spatial distribution of seasonal mean precipitation is closer

to observations.
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1 | INTRODUCTION

High Mountain Asia (HMA) is a geographic region that
includes the Tibetan Plateau (TP) and its surrounding
mountain ranges, such as the Himalayas, the Karakoram,
the Tian Shan, and so on. Climate-triggered natural haz-
ards pose a threat to human lives in HMA, for example,
big landslides regularly occurring in the Fergana basin
along the foothills of Tian Shan (Roessner et al., 2005).
Landslides are predetermined by static factors that can be
derived from surface characteristics but are triggered by
dynamic factors, which are mainly extreme and pro-
longed rainfall, as well as earthquakes (Dai and Lee 2002;
Hong et al. 2007; Kirschbaum et al., 2012). Another
example of climate-triggered natural hazards is the Gla-
cier Lake Outburst Flood (GLOF). Glacier thinning and
retreat in the Himalayas, caused by rising air tempera-
ture, have resulted in the formation of new glacier lakes
and the enlargement of existing ones (ICIMOD, 2011).
The sudden discharge of water from these lakes is known
as GLOF and leads to extensive damage in downstream
villages (Kropáček et al., 2015).

Availability of climate data with a high spatial and
temporal resolution is crucial for a better understanding
of climatic triggering mechanisms of these localized haz-
ards. However, in HMA, in situ meteorological observa-
tions are sparsely and unevenly distributed (Hasson et
al., 2016), for example, only a few stations are available
in the western TP due to the harsh environment and
complex terrain. Moreover, the existing stations are com-
monly situated at lower altitudes close to valley-based
settlements or airports. Thus, our knowledge of the cli-
mate at high elevations, that is, where most of the haz-
ards mentioned above occur, is still limited. Global
reanalysis data can provide evenly distributed climate
data, but they are still too coarse to resolve fundamental
processes over complex terrains, such as orographically-
induced precipitation, and therefore, they are not suitable
for applications at regional to local scales (Leung et
al., 2003; Lo et al., 2008; Feser et al., 2011). Here, regional
climate models (RCMs) applying dynamical downscaling
method have great potential to overcome this problem.

The High Asia Refined analysis (HAR, Maussion et
al., 2011; 2014) is a regional atmospheric data set gener-
ated by dynamical downscaling using the Weather
Research and Forecasting (WRF) model version 3.3.1
(Skamarock and Klemp, 2008) as RCM. The Final opera-
tional global analysis (FNL) from the National Centres of
Environmental Prediction (NCEP) was used as forcing
data. The HAR covers the period from October 2000 to
October 2014 and is available in 30 km (3-hourly inter-
val) and 10 km (hourly interval) resolution. The HAR
provides detailed and accurate gridded climate data for

HMA region. It has been comprehensively analysed,
especially in terms of precipitation and atmospheric
water transport (Maussion et al., 2014; Curio et al., 2015;
Pritchard et al., 2019; Li et al., 2020) and has been suc-
cessfully applied in many research fields, such as glacier
mass balance modelling (Mölg et al., 2014), snow and
energy balance modelling (Huintjes et al., 2015), and so
forth.

However, the short temporal coverage of the HAR
makes it unsuitable for long-term and climatological
studies. Moreover, its 10 km domain does not cover the
whole TP and Tian Shan, which further limits its applica-
tion within these two regions. Therefore, a new version
(HAR v2) with extended temporal coverage and a larger
10 km domain is developed. The state-of-the-art ERA5
reanalysis data set (Copernicus Climate Change Service
(C3S), 2017) from the European Centre for Medium-
Range Weather Forecast (ECMWF) is used as forcing
data. We switch to ERA5 because it will eventually cover
the period from 1950 to near real time (currently avail-
able from 1979 to near real time), which is much longer
than FNL (available from 1999 to near real time).

The overall goal of this study is to find an optimal
model set-up for the HAR v2 to provide similar or even
better accuracy as the HAR. During the development of
the HAR, the sensitivity of simulated precipitation to dif-
ferent physical parameterization schemes (PPSs) was
already thoroughly tested (Maussion et al., 2011). How-
ever, changes in forcing data and domain configuration
may have a significant impact on model output (Miguez-
Macho et al., 2004; Leduc and Laprise, 2009; Kala et
al., 2015; Huang and Gao, 2018). Thus, the PPSs used in
the HAR might not be suitable for the HAR v2, and
therefore, the first objective of the current study is to
investigate the sensitivity of simulated total precipitation
(Prcp) and air temperature at 2 m above ground (T2) to
different cumulus (CU), microphysics (MP), planetary
boundary layer (PBL) and land surface model (LSM)
schemes. The technique for order preference by similarity
to the ideal solution (TOPSIS) method is applied to deter-
mine the best PPSs.

Snow depth in ERA5 over the TP is reported to be
largely overestimated (Orsolini et al. 2019). Snow depth is
an important quantity in the initial condition, which later
on determines surface albedo, alters surface energy bal-
ance, and influences T2. We assume that the over-
estimated snow depth in ERA5 leads to an
underestimation of T2, and by correcting the bias in snow
depth, the cold bias might be reduced. The second objec-
tive is to validate this assumption and to examine the
model's sensitivity to initial snow conditions. Snow depth
from the Japanese 55-year Reanalysis (JRA-55) data set is
used to correct snow depth initialized from ERA5. The
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final objective is to apply the best PPSs identified by the
TOPSIS method and the snow correction approach as the
final set-up for the HAR v2, and to compare the two ver-
sions of the HAR.

2 | METHODOLOGY

2.1 | WRF model set-up of the reference
experiment (Ref)

WRF version 4.0.3 (Skamarock et al., 2019) was employed
as RCM for our sensitivity studies. We chose January and
July 2011 as simulation periods to consider atmospheric
conditions in summer and winter, which are under dif-
ferent influence by monsoon and mid-latitude westerlies.
Initial and boundary conditions were derived from ERA5
reanalysis data set with 0.25� spatial resolution and
hourly temporal resolution. The domain setup (Figure 1)
consisted of two-way nested domains with 30 km and
10 km grid spacing (hereinafter: d30km and d10km).
Only the output from d10km was used in this study. One
might argue that ERA5 already has a high resolution of
�32 km, so the parent domain (d30km) might not be
necessary. However, a one-day experiment, which
directly downscaled ERA5 to 10 km resolution (see
Supporting Information), shows that the large-scale cir-
culation patterns are distorted in the direct downscaling
approach, and the 500 hPa wind field from two-way
nesting approach is closer to the forcing data ERA5

(Figure S1). Thus, we kept the d30km as parent domain.
In the vertical direction, 28 Eta-levels were used. Lake
surface temperature was substituted by daily mean sur-
face air temperature using the avg_tsfc.exe module in
WRF. The forcing strategy was daily re-initialization
adopted from the HAR. Each run started at 12:00 UTC
and contained 36 hr, with the first 12 hr as spin-up time.
This strategy avoids the model from deviating too far
from the forcing data and provides computational flexi-
bility since daily runs are totally independent of each
other and can be computed in parallel and in any
sequence. PPSs used in Ref are the same as in the HAR.
The model set-up for Ref are summarized in Table 1.

2.2 | Design of sensitivity experiments
and evaluation methods

At first, we conducted four sets of experiments to exam-
ine the performance of different CU, MP, PBL and LSM
schemes (Table 2, hereinafter, PPS experiments). In each
experiment set, except for the reference scheme adopted
from the HAR, we chose two additional schemes. The
selected schemes fulfil at least one of the following
criteria: (a) they are commonly used in the WRF commu-
nity; (b) they have excellent performance according to
previous studies and (c) they were not tested in Maussion
et al. (2011). Except for the corresponding PPS, all the
other set-ups are the same as for Ref. At the end of the
PPS experiments, statistical measures for model

(a) (b)

FIGURE 1 Maps of (a) 30 km resolution domain (d30km, 281 × 217 grid points); (b) 10 km resolution domain (d10km, 382 × 253 grid

points). The position of stations from global surface summary of the day (GSOD) are marked by points. For the comparison of simulation

results with the HAR, only the stations marked by red points are used, because the stations marked by white points are outside the 10 km

domain of the HAR [Colour figure can be viewed at wileyonlinelibrary.com]
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performance were calculated, which include mean bias
(MB), mean absolute error (MAE), root mean square
error (RMSE) and Spearman correlation coefficient (rs)
for Prcp and T2, respectively. They are defined as follows
(Wilks, 2006):

MB=
1
N

XN
i=1

�Pi− �Oi ð1Þ

MAE=
1
N

XN
i=1

�Pi− �Oij j ð2Þ

RMSE=
1
N

XN
i=1

�Pi− �Oið Þ2 ð3Þ

rs=1−
6
PM
i=1

Rpi−Roi
� �2

M M2−1ð Þ
ð4Þ

Where �Pi and �Oi are simulated monthly averages and
observed monthly averages at each station, and �Pi− �Oi is
the bias score at each station; N is the total number of
stations; Rpi and Roi are the ranks of simulated and
observed daily averages over all stations; M is the total

TABLE 1 WRF model setup for the reference

experiment (Ref)

Timing

Simulation period January and July 2011

Time step 120 s, 40 s

Maps and grids

Map projection Lambert conformal conic

Horizontal grid
spacing

30 km (281 × 217 grid points), 10 km
(382 × 253 grid points)

Vertical levels 28 eta-levels

Model top 50 hPa

Forcing strategy

Forcing data ERA5 (0.25�, hourly)

Lake surface
temperature

Substituted by daily mean surface air
temperature

Initialization Daily

Runs starting time Daily at 12:00 UTC

Runs duration 36 hr

Spin-up time 12 hr

Physical parameterization schemes

Longwave radiation RRTM scheme (Mlawer et al., 1997)

Shortwave radiation Dudhia scheme (Dudhia, 1989)

Cumulus (CU) Grell 3D scheme (Grell, 1993; Grell and
Devenyi, 2002)

Microphysics (MP) Thompson scheme (Thompson et
al., 2008)

Planetary boundary
layer (PBL)

Mellor–Yamada–Janjic scheme
(Janjic, 1994)

Land surface model
(LSM)

Unified Noah land surface model
(Tewari et al., 2004)

Surface layer Eta similarity scheme (Janjic, 1994)

TABLE 2 Summary of set-ups used in all the sensitivity

experiments

Experiments
Difference
from Ref Description

CU1 CU Kain-Fritsch cumulus
potential scheme
(Berg et al., 2013)

CU2 CU Grell-Freitas ensemble
scheme (Grell and
Freitas, 2014)

MP1 MP Purdue Lin scheme
(Chen and
Sun, 2002)

MP2 MP Morrison 2-moment
scheme (Morrison et
al., 2009)

PBL1 PBL Bougeault and
Lacarrere scheme
(BouLac, Bougeault
and Lacarrere, 1989)

PBL2 PBL Yonsei University
scheme (YSU, Hong
et al., 2006)a

LSM1 LSM Unified Noah LSM
with mosaic
approach (Li et
al., 2013)

LSM2 LSM Noah-MP land surface
model (Niu et
al., 2001; Yang et
al., 2011)b

COMB CU, MP, PBL CU, MP and PBL
schemes from CU1,
MP2 and PBL2

COMB_S CU, MP, PBL and
snow correction

PPSs same as COMB,
but the initial snow
depth and snow
water equivalent are
corrected

aYSU scheme only works with revised MM5 surface layer scheme
(Jiménez et al., 2012).
bAll the options used in Noah-MP are default.
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number of days. MB demonstrates the systematic devia-
tion of the model from the observations. However, MB
could sometimes be misleading due to the offset of posi-
tive and negative values. MAE shows the average magni-
tude of the error. Since RMSE gives more weight to
errors with larger absolute values and is more sensitive to
outliers, it provides information about the variability of the
error distribution (Chai and Draxler, 2014; Willmott and
Matsuura, 2005). The distribution-free Spearman rank cor-
relation coefficient (rs) measures the extent to which simu-
lated and observed values tend to change together. In order
to identify the best scheme for each experiment set, MB,
MAE, RMSE and rs were utilized as criteria in the TOPSIS
method (Section 2.3). In the next step, the identified best
schemes were combined to conduct two runs (Table 2):
one without modifying initial snow depth (COMB) and
one with bias correction of snow depth (COMB_S). We
used JRA-55 to correct snow depth initialized from ERA5
(Section 2.4). Finally, the improved set-up was applied as
the best set-up for the HAR v2 for a one-year run in 2011.
The resulting one-year data set was then compared with
observations and the HAR.

2.3 | Technique for order preference by
similarity to the ideal solution (TOPSIS)

The TOPSIS method was applied to identify the best
scheme among the sensitivity experiments. It is a multi-
ple criteria decision-making method and aims at finding
the optimal decision when the alternatives are numerous
and conflicting. It was proposed by Hwang and
Yoon (1981) and later applied in several studies, such as
ranking general circulation models (Raju and
Kumar, 2014; Jena et al., 2015; Li et al., 2019) and identi-
fying the best PPSs in WRF (Sikder and Hossain, 2016;
Stergiou et al., 2017). The basic concept of TOPSIS is to
determine the best alternative that has the shortest and
longest distance from the positive and negative ideal
solution. We applied this method for each experiment
set. The process was carried out following the description
in Tzeng and Huang (2011):

1 Define the weighted normalized evaluation matrix
containing m alternatives and n criteria:

rij=w j
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i=1aij

2
q ð5Þ

where aij represents the criterion j for alternative i; wj is
the weight for each criterion. In our case, there are three

alternatives (Ref and other two schemes, i = 1, 2, 3) and
16 criteria (MB, MAE, RMSE and rs for Prcp and T2 in
January and July, j = 1, 2, …16).

Determine the positive ideal solution (PISj) and the nega-
tive ideal solution (NISj) for each criterion:

PIS j= max rij
� �j j�J1

� �
, min rij

� �j j�J2
� � j i=1,2,3

� � ð6Þ

NIS j= min rij
� �j j�J1

� �
, max rij

� �j j�J2
� � j i=1,2,3

� � ð7Þ

where J1 and J2 represent the benefit criteria (larger is
better) and the cost criteria (smaller is better).

Calculate the Euclidean distances between each alterna-
tive to PISs (D+

i ) and to NISs (D−
i ):

D+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j=1

rij−PIS j
� �2

vuut ð8Þ

D−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j=1

rij−NIS j
� �2

vuut ð9Þ

Define the closeness coefficient (CCi) for each alterna-
tive as:

CCi=
D−
i

D+
i +D−

i
ð10Þ

Rank the alternatives by their CC in descending order.
The alternative with the highest CC is chosen as the best
scheme.

2.4 | Bias correction of snow depth

A systematic cold bias has been found over high ele-
vated areas in WRF simulations (e.g., Gao et al., 2015;
Karki et al., 2017; Bonekamp et al., 2018), including the
HAR (Maussion, 2014; Pritchard et al., 2019). Several
studies addressed this cold bias to snow-related pro-
cesses (Tomasi et al., 2017; Meng et al., 2018). Orsolini
et al. (2019) compared snow depth over the TP in five
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recent global reanalyses using in-situ and satellite
remote sensing observations. They found that ERA5
largely overestimates snow depth, especially during
winter. Compared to its predecessor ERA-interim, snow
depth in ERA5 is still much higher, because ERA5 does
not assimilate snow cover from Interactive Multi-Sen-
sor Snow and Ice Mapping System (IMS) for areas
above 1,500 m (Orsolini et al., 2019). A realistic repre-
sentation of snow depth in the forcing data is crucial to
accurately simulate snow cover, surface albedo, surface
energy balance and T2. To overcome this issue, we
could use snow depth from another data set to initialize
WRF. But as mentioned before, we chose ERA5 as forc-
ing data due to its long temporal coverage. If we intro-
duce a third-party data set, the production of the HAR
v2 would be dependent on it. To avoid this, we applied
an alternative strategy that is already used in WRF,
where land surface characteristic, such as snow-free
albedo, leaf area index, and so forth, are given in the
form of static data represented as 12-month climatol-
ogy. Here, analogously, we used this concept of static
data and introduced a gridded 12-month climatology of
a scaling factor to correct snow-related variables in the
initial conditions.

JRA-55 (Kobayashi et al., 2015) developed by the
Japan Meteorological Agency was utilized to calculate
the scaling factors. JRA-55 has an excellent performance
among reanalyses regarding snow depth (Orsolini et
al., 2019) and also has a relatively longer temporal cover-
age. Monthly means of snow depth at the model resolu-
tion (�55 km) available from 1958 to 2013 were
downloaded from NCAR Research Data Archive. We
used a linear approach (Lenderink et al. 2007) to scale
the initial snow depth by the ratio of long-term monthly
means of JRA-55 and ERA5. First, snow depth of ERA5
was derived from snow water equivalent and snow den-
sity. The 12-month climatological snow depth of JRA-55
and ERA5 was calculated from 35-year monthly means
(1979–2013). Between 1979 and 2013, the two data sets
overlap. Second, the 12-month climatological snow depth
was reprojected and linearly resampled to the grid of
d30km and d10km, respectively. Then the gridded 12-
month climatology of the scaling factor was calculated
for every domain as the ratio of reprojected climatological
snow depth between JRA-55 and ERA5. The ratio of grid
points where reprojected ERA5 snow depth was zero was
set to one. Figure 2a depicts the 35-year mean annual
cycle from ERA5 and JRA-55 averaged over the whole

(a)

(b) (c)

FIGURE 2 (a) 35-year

(1979–2013) mean annual cycle

of snow depth from ERA5 and

JRA-55 averaged over the whole

area of d10km of the HAR v2.

Map of scaling factor for d10km

of HAR v2 in January (b) and

July (c). The grid points where

the value is equal to one are

masked out [Colour figure can be

viewed at

wileyonlinelibrary.com]
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area of d10km of the HAR v2. Figure 2b,c show the map
of scaling factors applied for d10km in January and July,
respectively. After running the real.exe program in WRF,
files containing the initial conditions are generated. In
the initial conditions, snow depth is represented by two
variables: physical snow depth (SNOWH) and snow
water equivalent (SNOW). We modified these two vari-
ables in the initial files by multiplying them with the
scaling factor of the corresponding month.

2.5 | Observational data

To calculate the skill scores described in Section 2.2, in-situ
observations of Prcp and T2 from Global Surface Summary
of the Day (GSOD) provided by National Centres of Envi-
ronmental Information (NCEI) were used. We selected sta-
tions with more than 80% of records within the simulation
period. After filtering, 103 stations are available within
d10km of the HAR v2 (all points in Figure 1b), and 57 sta-
tions are left within d10km of the HAR (red points in Fig-
ure 1b). We compared the station data with the nearest
grid cell from the model. Because of the difference between
station elevation and the elevation of grid cells in the
model, we applied a constant lapse rate of −6.5 K·km−1 to
correct simulated T2. No correction was applied for Prcp
due to its high spatial and temporal variability.

Due to the sparse and uneven distribution of GSOD
stations in HMA, for example, hardly any station located
in western TP and Pamir-Karakorum (Figure 1b), we also
made use of a satellite-based gridded precipitation prod-
uct from Tropical Rainfall Measuring Mission (TRMM).
Here, Multi-Satellite Precipitation Analysis (TMPA,
Huffman and Bolvin, 2015) Rainfall Estimate Product
3B42 Version 7 was applied to examine the spatial distri-
bution of simulated Prcp in the HAR and the HAR v2.
TMPA merges satellite measurement with gauge data. It
has a spatial resolution of 0.25� and a quasi-global cover-
age between 50�N and 50�S.

3 | RESULTS

3.1 | Sensitivity to PPSs

Statistical scores for all the PPS experiments and Ref are
listed in Table 3. Besides, we use box-whisker plot to
visualize the spatial distribution of bias scores (WRF-
observation) over 103 GSOD stations. White triangles in
each box in Figure 3 (Prcp) and Figure 4 (T2) correspond
to the MB scores in Table 3.

For Prcp, Ref features a wet bias, with MB of
0.14 mm·day−1 and 0.70 mm·day−1 in January and July,

respectively (Table 3). The HAR outperforms Ref with
respect to Prcp (Table S1). Sensitivities of Prcp to PPSs
vary seasonally. The fluctuation of the boxes of all experi-
ments implies that PPSs have a stronger influence on
Prcp in July than in January (Figure 3). MB of Prcp
ranges from 0.27 mm·day−1 to 1.15 mm·day−1 in July,
and only from 0.10 mm day−1 to 0.18 mm·day−1 in Janu-
ary (Table 3). The main reason for this seasonal variabil-
ity is that most GSOD stations are located in areas
receiving more precipitation in summer than in winter
(Maussion et al., 2014; Curio and Scherer, 2016). Wider
boxes in July indicate a stronger spatial variation of bias
score in summer (Figure 3). Compared to the other two
ensemble CU schemes, CU1 (Kain-Fritsch-Cumulus
Potential scheme) shows the best performance regarding
MAE and MB scores. In contrary, RMSE of CU1 in July
is higher than Ref, which implies that the station-wise
bias in CU1 is more scattered. CU1 is a modified version
of the Kain-Fritsch scheme with a better treatment of
shallow cumuli (Berg et al., 2013). According to Qian et
al. (2016), CU1 tends to suppress deep convections and
consequently produces lower Prcp. All three MP schemes
consider five hydrometeor species: cloud, rain, ice, snow
and graupel. MP1 (Purdue Lin scheme) is a single-
moment scheme only predicting the mixing ratio for
these hydrometeor species (Chen and Sun, 2002). Ref
(Thompson scheme) uses a double-moment description
for rain and ice (Thompson et al., 2008), while MP2 (Mor-
rison two-moment scheme) uses a double-moment
description for rain, ice, snow and graupel (Morrison et
al., 2009). MP2 performs the best (Table 3), probably due
to its double-moment prediction in all ice-phase particles
(Orr et al., 2017). The nonlocal scheme PBL2 (YSU) has
the best skill compared to the other two local schemes.
PBL2 largely improves summer Prcp with MB of
0.27 mm·day−1 compared to MB of 0.70 mm·day−1 in
Ref. As for LSM schemes, LSM1 uses the same scheme as
Ref (Noah LSM) but with a mosaic approach (Li et
al., 2013), which considers sub-grid variability of land
use. However, it does not improve Prcp simulation. LSM2
is Noah LSM with multi-parameterization options (Noah-
MP). It captures winter Prcp better but produces more
Prcp in summer than Ref (Table 3).

The same analysis is performed for T2. The HAR has
a better performance than Ref in winter (Table S1). All
PPS experiments including Ref produce larger T2 bias in
January than in July, with MB of T2 ranging from
−0.06 K to 0.70 K in July and −0.39 K to −2.69 K in Janu-
ary (Table 3). The spatial variability of the bias score is
also stronger in winter (Figure 4). Independently from
PPSs applied, all experiments show an overall underesti-
mation of T2 in winter. CU schemes hardly influence
winter T2. CU1, which shows some improvement over
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Ref in simulating Prcp, produces larger summer warm
bias than Ref. Both MP schemes show an improvement
in summer, but MP1 produces larger winter cold bias. As
for PBL schemes, PBL1 improves T2 simulation in winter
but worsens it in summer. It is warmer than Ref in both
seasons, which is in accordance with previous studies
(Kleczek et al. 2014; Jänicke et al., 2017; Xu et al., 2019).
Xu et al. (2019) suggests that this is because PBL1 con-
siders turbulent exchange induced by steep terrain when
calculating the turbulent diffusion coefficient. Besides,
our results show that the nonlocal PBL2 scheme is colder
than both local schemes, which is in contrast with some
previous studies concluding that nonlocal schemes gener-
ally produce higher temperature than local schemes (Hu
et al., 2010; Xie et al., 2012; Kleczek et al., 2014). This dif-
ferent behaviour might due to the unique PBL character-
istics over HMA compared to the plain regions (Yang et
al., 2004; Zou et al., 2005; Chen et al., 2013), which indi-
cates that PPSs behave very differently in different
regions, and the choice of PPSs always depends on the
specific purpose. For LSM schemes, again, LSM1 does
not show significant improvement. Noah-MP (LSM2) was
reported to have better performance than Noah LSM
(Ref) in previous studies (Yang et al., 2011; Gao et
al., 2017) and has been widely applied in numerical
modelling studies in HMA (Collier and Immerzeel, 2015;
Karki et al., 2017; Norris et al., 2017). However, our
results show the opposite, that is, that Noah-MP is colder
than Noah LSM. This might result from our relatively
short spin-up time. All the studies mentioned above use a
spin-up time longer than 2 weeks. Noah-MP needs longer
spin-up time than Noah LSM to reach a climatological
equilibrium state (Cai et al., 2014; Barlage et al., 2015;
Gao et al., 2015).

3.2 | Combination run and sensitivity to
initial snow depth

The results from Section 3.1 indicate that there is a trade-
off in model performance between Prcp and T2, as well
as between January and July. No single PPS performs ide-
ally in both seasons and for both quantities. For instance,
PBL2 has a better skill in predicting Prcp, but it worsens
the winter cold bias. PBL1 shows superior performance
in terms of T2 during winter with the lowest MAE, MB
and RMSE among all experiments, but it also features the
highest warm bias in summer. Therefore, we used the
TOPSIS method to find the optimal solution for each
experiment set, giving the same weight to each criterion
(MAE, MB, RMSE and rs) for each quantity (Prcp and
T2). Table 4 lists the closeness coefficient (CC) and
TOPSIS ranking for each experiment set. We then usedT
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(a) (b)

FIGURE 3 Box-whisker plot of Prcp bias in January (a) and July (b) for all the 103 GSOD stations (red and white points in Figure 1b).

White triangles represent the mean value [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

FIGURE 4 Box-whisker plot of T2 bias in January (a) and July (b) for all the 103 GSOD stations (red and white points in Figure 1b).

White triangles represent the mean value [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Closeness coefficient (CC) and TOPSIS ranking for each experiment set

Ref CU1 CU2 Ref MP1 MP2 Ref PBL1 PBL2 Ref LSM1 LSM2

CC 0.56 0.61 0.38 0.27 0.60 0.88 0.46 0.47 0.53 0.51 0.50 0.50

Ranking 2 1 3 3 2 1 3 2 1 1 3 2

Note: The best schemes under each set are marked in bold.
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the first ranking schemes, namely Kain-Fritsch cumulus
potential scheme (CU1), Morrison 2-moment scheme
(MP2), Yonsei University scheme (PBL2) and Noah LSM
(Ref) to conduct a combination run (COMB). Scores in
Table 5 show that COMB inherits from these first-rank-
ing schemes. COMB has a better skill in predicting Prcp
than Ref because CU1, MP2 and PBL2 all perform better
than Ref in Prcp simulation. The wet bias is significantly
reduced in COMB, especially in summer. Figures 5a–d
shows the bias of monthly Prcp at each GSOD stations
for Ref and COMB. The stations with high bias are
located along the foothills of the Himalayas, where the
actual precipitation amount is also large (Figure S2).
Compared to Ref, COMB produces lower Prcp in India
and Pakistan. COMB captures Prcp over the TP better,
especially for stations in Southern TP, where Ref exhibits
a dry bias. However, COMB does not improve the simula-
tion of winter T2 (Figures 6a–d, Table 5), which is mainly
due to the larger winter cold bias induced by PBL2
(Table 3).

To validate the assumption that the large winter cold
bias is partly induced by overestimation of snow depth in
the initial conditions, we conducted a further simulation
(COMB_S). The PPSs used in this experiment are the
same as in COMB, but initial snow depth and snow water
equivalent were corrected using the method described in
Section 2.4.

After the correction, the prediction of winter T2 is
largely improved with MB of −1.54 K in COMB and MB
of 0.17 K in COMB_S (Table 5). The impact of snow cor-
rection on summer T2 is minor compared to winter.
Comparing the station-wise bias scores (Figure 6c,e), the
most affected stations are located in the TP and in North-
ern Pakistan, where snow depth differs the most between
ERA5 and JRA-55 (Section 4.2). This snow correction
approach leads to slightly higher Prcp in both months
(Table 5), but COMB_S still performs better than Ref.

3.3 | Comparison of HAR v2 with HAR

COMB_S achieves a significantly better performance
than Ref (Table 5). Therefore, the set-up of COMB_S was
applied to the HAR v2. We switched to a newer version
of WRF (V4.1) for the generation of the HAR v2 and
firstly produced HAR v2 d10km data for the whole year
of 2011. Figure S3 shows that the change of model ver-
sion only has a minor impact on the output.

We compared daily Prcp from the HAR v2 with the
HAR and GSOD data (Figure 7). Here, only 57 GSOD sta-
tions within the d10km of the HAR are used (red points
in Figure 1b). The HAR shows an overall lower MB and
is better in explaining the variance in observations thanT
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the HAR v2 (MB of 0.30 mm·day−1 and 0.36 mm·day−1,
r2 of .61 and .57). The HAR v2 tends to produce more
Prcp than the HAR in April and from September to
December. However, this kind of comparison only dem-
onstrates the ability of the two versions of the HAR to
reproduce the overall Prcp amount. In addition, we uti-
lized gridded Prcp products to examine their ability to
reproduce the spatial distribution of Prcp. Figure 8 shows
seasonal Prcp from the HAR, the HAR v2 and the TMPA
in 2011. In winter, the HAR and the HAR v2 produce
similar spatial patterns of Prcp with maximum Prcp over
Pamir-Karakoram-western-Himalayas (PKwH) region.
However, this maximum centre is not detected in the
TMPA. In MAM, two Prcp maxima exist in both versions

of the HAR: one in PKwH and one over the region near
Brahmaputra River. Only the latter one is visible in the
TMPA, but with lower Prcp amount. The HAR and the
HAR v2 show the largest differences in JJA. The HAR v2
shares more spatial similarity with the TMPA, while the
HAR produces higher Prcp amount in Indian, Pakistan
and eastern TP. In SON, the HAR still shows higher Prcp
amount in Indian. Same as in winter and spring, both
versions of the HAR detect more Prcp in PKwH than
the TMPA.

Daily T2 from the HAR and the HAR v2 are com-
pared with each other and with GSOD (Figure 9). Both
data sets reproduce T2 seasonality well (r2 = .99). The
HAR v2 simulates T2 better with MB of −0.58 K

(a) (b)

(c) (d)

(e) (f)

FIGURE 5 Bias scores of monthly mean Prcp for ref (a and b), COMB (c and d) and COMB_S (e and f) in January (a, c and e) and July

(b, d and f) at all 103 GSOD stations [Colour figure can be viewed at wileyonlinelibrary.com]
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compared to MB of −0.86 K for the HAR. The HAR has a
cold bias in spring, autumn and winter but a warm bias
in summer. The HAR v2 has the same pattern, but the
magnitudes of these biases are smaller.

4 | DISCUSSION

4.1 | Sources of uncertainties

One should always keep in mind that the accuracy of
observational data and the method used for validation
could lead to uncertainty of the result. In this study, we
use freely available observations from GSOD as the gro-
und truth to calculate statistical metrics. Station data

from this data set underwent quality control before being
published (NOAA, 2019). However, some GSOD stations
seem to be outliers, for example, the station in southeast-
ern TP featuring winter warm bias, while all the sur-
rounding stations show cold bias (Figure 6a,c,e). With
regards to Prcp, it is well known that rain gauges under-
catch Prcp under strong wind conditions (Duchon and
Essenberg, 2001; WMO, 2008). We used T2 and Prcp from
the nearest grid point to compare them with observa-
tions. With a resolution of 10 km, the distance between
the actual location of stations and the associated grid
point could reach a few kilometres, which leads to a large
difference in elevation over complex terrain. A constant
lapse rate of −6.5 K·km−1 is applied to correct the simu-
lated T2 values. For Prcp, no correction is applied.

(a) (b)

(c) (d)

(e) (f)

FIGURE 6 Bias scores of monthly mean T2 for ref (a and b), COMB (c and d) and COMB_S (e and f) in January (a, c and e) and July

(b, d and f) at all 103 GSOD stations [Colour figure can be viewed at wileyonlinelibrary.com]
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Therefore, the point-to-point comparison between mod-
elled and observed Prcp always depicts discrepancies.
Another source of uncertainty comes from the fact that
we only conducted sensitivity experiments for the year
2011 due to the high computational costs.

Due to the sparse distribution of GSOD stations, we
also compared the spatial distribution of seasonal Prcp
from two versions of the HRA with the TMPA. The
results (Figure 8) indicate that the TMPA fails to repro-
duce Prcp over PKwH in winter, spring and autumn. This
region is dominated by mid-latitude westerlies and expe-
riences its maximum Prcp amount in winter (Archer and
Fowler, 2004; Bookhagen and Burbank, 2010; Curio and
Scherer, 2016; Mölg et al., 2018). The majority of Prcp in
this region falls as snow (Maussion et al., 2014). Satellite-
based Prcp has a deficiency in detecting snowfall
(Behrangi et al., 2014; Immerzeel et al., 2015). The Global

Precipitation Measurement (GPM) mission, launched in
February 2014, is a successor of TRMM and a next gener-
ation of global observations of precipitation from space.
The onboard Dual-frequency Precipitation Radar is more
sensitive than TRMM in detecting snowfall and light
rainfall (NASA, 2019). GPM-based products are expected
to be a better validation tool for modelled results
after 2014.

4.2 | Snow correction approach

In this study, we propose a bias correction method for
initial snow depth and snow water equivalent based on
the concept of linear scaling approach. This approach has
the advantage that only monthly climatological informa-
tion is required. Figure 6 and Table 5 show that bias-

(a)

(c)

(b)

FIGURE 7 Comparison of daily Prcp from HAR, HAR v2 and GSOD averaged over 57 GSOD stations (red points in Figure 1b) in 2011.

Scatter plots of HAR v2 (a) and HAR (b) with statistical scores MB in mm day−1 and r2. Daily Prcp time series (c) [Colour figure can be

viewed at wileyonlinelibrary.com]

WANG ET AL. 13

http://wileyonlinelibrary.com


corrected initial conditions improve winter T2
simulations.

To further explore the influence of snow depth on
T2, monthly mean difference of T2, surface albedo and
snow cover fraction between COMB and COMB_S in
January and July are presented in Figure 10. In January,
regions with the highest increase of T2 in COMB_S are
Southeastern TP, the Himalayas, and the Tian Shan.
These regions also feature lower albedo and lower snow
cover fraction. The same relationship can be found in
July. However, the increase of T2 is much weaker in
July than in January, which is in accordance with the
MB scores in Table 5.

In the Noah LSM, surface albedo (α) is calculated as:

α=αsn,free+ f sn � αsn−αsn,freeð Þ ð11Þ

where αsn, free and αsn refer to snow-free albedo and snow
albedo, respectively. fsn is snow cover fraction. α is pro-
portional to fsn, which is defined as:

f sn=
1−e−as W

Wcr +
W
W cr

e−as ,W<W cr

1,W≥W cr

8><
>:

ð12Þ

In Equation 12, W is snow depth in water equivalent;
Wcr is a land-use-dependent threshold of snow depth, over
which fsn is set to 1; as is a distribution shape parameter.
After snow correction, W decreases in most grid points in
d10km (Figure 2), which leads to smaller fsn according to
Equation 12. Smaller fsn results in lower surface albedo
(Equation 11) and modifies the surface energy balance by
reflecting less short-wave radiation, and thus, influences T2
in COMB_S. On the other hand, more absorption of short-
wave radiation could lead to larger moist static energy
(Meng et al., 2014), which could be a possible reason of the
enhanced precipitation in COMB_S (Table 5). Note that
snow-related changes affect T2 and Prcp through multiple
complex processes. Further work is needed to quantify the
impact of these processes on T2 and Prcp.

FIGURE 8 Seasonal mean Prcp from HAR, HAR v2 and TMPA in 2011 [Colour figure can be viewed at wileyonlinelibrary.com]

14 WANG ET AL.

http://wileyonlinelibrary.com


The error sources of dynamical downscaling are two-
fold: deficiencies in model dynamics and physics, as well
as inaccuracies in forcing data. After snow correction, the
cold bias over TP is reduced but not eliminated. The dis-
tribution of T2 bias score in COMB_S (Figure 6e,f) share
some similar pattern with the HAR (figure 2.4 in
Maussion, 2014): cold bias over the TP but warm bias in
Pakistan and Northwestern China. This implies that
these patterns of biases are related to WRF itself, or the
same errors exist in both ERA5 and FNL data sets. Cold
bias over the TP is reported from many other WRF stud-
ies independent of the forcing data (ERA-interim: Gao et
al., 2015; Karki et al., 2017; Bonekamp et al., 2018; Huang
and Gao, 2018; FNL: Huang and Gao, 2018;
Maussion, 2014; Zhou et al., 2018). Meng et al. (2018)

pointed out that this is due to the overestimation of
albedo over snow-covered areas in Noah LSM. After
switching off albedo parameterization and replacing the
albedo with MODIS time-varying albedo, their simulated
T2 improved. According to Chen et al. (2014), the major
weakness of LSM is snow processes, and Noah LSM
needs a higher snow albedo to retain snow on ground
since it only considers a single layer of snowpack.

5 | CONCLUSIONS

Validation of the reference experiment (Ref) indicates
that, due to the changes in forcing data and domain con-
figuration, the PPSs used in the HAR are no longer

(a) (b)

(c)

FIGURE 9 Comparison of daily T2 from HAR, HAR v2 and GSOD averaged over 57 GSOD stations (red points in Figure 1b) in 2011.

Scatter plots of HAR v2 (a) and HAR (b) with statistical scores MB in K and r2. Daily T2 time series (c) [Colour figure can be viewed at

wileyonlinelibrary.com]
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suitable for the HAR v2 since they produce large summer
wet bias and winter cold bias. We examined model sensi-
tivities to different PPSs and initial snow conditions to
find an optimal set-up for the HAR v2. The results of PPS
experiments reveal that no single PPS is optimally suited
for both seasons (January and July) and both quantities
(T2 and Prcp). Trade-offs always exist between quantities
and between seasons.

Kain-Fritsch cumulus potential scheme, Morrison 2-
moment scheme, Yonsei University scheme and Noah
LSM are identified by the TOPSIS method as the best
schemes. The combination run (COMB) inherits from
these schemes and has a superior performance in Prcp
but not in T2 when compared to Ref.

Overestimation of snow depth in ERA5 in most areas
of d10km leads to higher snow cover fraction and higher
surface albedo, which ultimately results in a cold bias.
After correction of initial snow depth, cold bias is signifi-
cantly reduced but not eliminated. This could imply a

deficiency of Noah LSM. In future LSM development,
improvement of representation of snow-related processes
is needed.

After careful selection of PPSs and correction of initial
snow depth, model performance is improved. The
improved set-up was applied to produce 1 year of HAR
v2 data for 2011. Compared to the old version, the HAR
v2 generally produces slightly higher Prcp amounts, but
the spatial distribution of seasonal Prcp matches better to
observations. Both versions of the HAR show cold bias in
spring, autumn and winter, but warm bias in summer.
The HAR v2 has smaller magnitudes of these biases.

The HAR v2 is planned to have a temporal coverage
of at least 30 years. Comprehensive validation against
observations and comparison with the HAR are sched-
uled once data production is finished. The HAR v2 is
developed within the framework of the “Climatic and
Tectonic Natural Hazards in Central Asia (CaTeNA)”
project to investigate the climatic triggering mechanism

(a) (b)

(c) (d)

(e) (f)

FIGURE 10 Difference of T2 (a and b), surface albedo (c and d) and snow cover fraction (e and f) between COMB_s and COMB in

January (a, c and e) and July (b, d and f) [Colour figure can be viewed at wileyonlinelibrary.com]
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of landslides in Central Asia. However, application of this
data set will not be limited to this research field. With
high resolution and extended temporal coverage, the
HAR v2 can contribute to a better understanding of cli-
mate-related processes in the remote and data-sparse
HMA region.
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