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Abstract

The objective of this study was the design, implementation, evaluation and applica-

tion of a compact wideband self-grounded bow-tie (SGBT) radiofrequency

(RF) antenna building block that supports anatomical proton (1H) MRI, fluorine (19F)

MRI, MR thermometry and broadband thermal intervention integrated in a whole-

body 7.0 T system.

Design considerations and optimizations were conducted with numerical electromag-

netic field (EMF) simulations to facilitate a broadband thermal intervention frequency

of the RF antenna building block. RF transmission (B1
+) field efficiency and specific

absorption rate (SAR) were obtained in a phantom, and the thigh of human voxel

models (Ella, Duke) for 1H and 19F MRI at 7.0 T. B1
+ efficiency simulations were vali-

dated with actual flip-angle imaging measurements. The feasibility of thermal inter-

vention was examined by temperature simulations (f = 300, 400 and 500 MHz) in a

phantom. The RF heating intervention (Pin = 100 W, t = 120 seconds) was validated

experimentally using the proton resonance shift method and fiberoptic probes for

temperature monitoring. The applicability of the SGBT RF antenna building block for

in vivo 1H and 19F MRI was demonstrated for the thigh and forearm of a healthy

volunteer.

The SGBT RF antenna building block facilitated 19F and 1H MRI at 7.0 T as well as

broadband thermal intervention (234-561 MHz). For the thigh of the human voxel

models, a B1
+ efficiency ≥11.8 μT/√kW was achieved at a depth of 50 mm. Tempera-

ture simulations and heating experiments in a phantom demonstrated a temperature

increase ΔT >7 K at a depth of 10 mm.

The compact SGBT antenna building block provides technology for the design of

integrated high-density RF applicators and for the study of the role of temperature in
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(patho-) physiological processes by adding a thermal intervention dimension to an

MRI device (Thermal MR).

K E YWORD S

broadband antenna, magnetic resonance, radiofrequency antenna, self-grounded bow-tie,

thermal intervention, thermal magnetic resonance, ultrahigh field MR

1 | INTRODUCTION

Temperature is a critical attribute of life, since biological processes are highly sensitive to temperature changes. The aberrant thermal properties

of pathological tissues have led to a strong interest in temperature as a clinical parameter, but this interest has been hampered by the lack of non-

invasive methods to measure and manipulate temperature.1-5 Vigorous efforts in fundamental research and (bio)engineering of electromagnetic

(EM)-induced heating has resulted in an enormous body of literature, paving the way for further technical developments.6-8

Targeted radiofrequency (RF)-induced thermal intervention based on constructive interference of EM waves transmitted within an MRI

system is conceptually appealing for pursuing image-guided mild hyperthermia and other thermal interventions including controlled release of

therapeutics from nanocarriers that bestow environmental responsiveness to physiologically relevant changes in temperature.6,9 The efficacy and

release profiles of MR-sensitive fluorine payloads from thermos-responsive nanocarriers can be monitored and quantified with 19F MRI, which

could provide an ideal means to monitor the release kinetics and bioavailability of an MR visible cargo in vivo, which would be a major leap for-

ward to temperature-induced drug delivery in vivo.10 In vivo thermometry and thermal dose management are essential for temperature-triggered

interventions or drug delivery, and are at the forefront of the awareness and attention of the corresponding research communities. Similar to pro-

ton, the fluorine resonance frequency is also affected by temperature and can be exploited for temperature monitoring of fluorinated probes.11

Ensuring a patient- and problem-oriented adaptation of the size, uniformity and location of the RF energy deposition in the target region

is highly relevant for the thermal intervention, with the focal point quality being governed by the radiation pattern of the single RF transmit

element, the RF channel count and the thermal intervention radiofrequency of the RF applicator.12-15 Reports on the radiation pattern of res-

onant structures underline the benefits of dipole antenna arrays for enhancing the focal point quality in thermal interventions.16 These

pioneering developments include dipole configurations with a reduced size, using high-permittivity dielectric and low-loss materials for

antenna shortening en route to high-density arrays.17,18 The thermal intervention frequency is a significant parameter that impacts the focal

point quality. While long RF wavelengths in tissue at 64 MHz (1.5 T) are not suitable to focus EM energy within small targeted areas, the

shortened wavelength in tissue at ≥297 MHz (7.0 T) enables stronger focusing of RF fields, thanks to more localized interference pat-

terns.14,18 Theoretical research and numerical simulations of targeted RF heating have shown how an ultrahigh field MR (UHF-MR) instrument

can be adapted to generate highly focused heat in regions of tissue by the use of RF antenna arrays.18 Studies on ultimate intrinsic specific

absorption rate (SAR) and RF applicator concepts suggested high frequencies of up to 1 GHz for a highly focused EM energy deposition.12,13

Antenna count and positioning also influence the focal point quality.13 Increasing the number of antennas enables a lower surface RF energy

deposition, while the focal point quality can be improved by longitudinal steering using multiple rings of antenna along the z-dimension.13,19

A variable frequency increases the degrees of freedom (amplitude, phase and frequency) to modulate the focal point quality.13,19,20 Reports

on this subject suggest an ideal intervention frequency or a mix of intervention frequencies for a particular target and target location.19-23 A

compact wideband antenna setup based on a self-grounded bow-tie (SGBT) antenna is a potential answer to the need for multiple rings and

a high channel count setup to enable broadband thermal intervention.19,22-24 While several previous reports on RF antenna systems have

addressed these multiple issues individually,8,15,18-20,25 our objective with this new design was to achieve a comprehensive solution.

Recognizing the opportunities of adding a thermal intervention dimension to an MRI device (Thermal MR) for studying the role of tempera-

ture in biological systems and disease, this work reports on the design process, implementation, evaluation and application of a compact wideband

SGBT building block. We demonstrate the suitability of this design for thermal intervention, proton (1H) MRI, 1H MR temperature mapping and

fluorine (19F) MRI in a single device, integrated in a whole-body 7.0 T MRI system.

2 | METHODS

2.1 | RF antenna building block design considerations

The RF antenna building block consists of an SGBT antenna with a dielectric material filled housing (Figure 1A). The SGBT antenna is based on a

design with a strong main lobe directivity and limited back radiation due to the self-grounded backplane.24 This feature makes it an ideal
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candidate for a highly efficient thermal intervention antenna with the ability of MR imaging at 7.0 T.22,23 A deuterium oxide (D2O, 99.9%, εr ≈

81 at 297.2 MHz, Sigma Aldrich GmbH, Munich, Germany) filled housing was used to shorten the effective transmit RF wavelength to reduce the

overall antenna size.17-19

The SGBT antenna was manufactured with 0.3 mm copper, to guarantee a mechanically robust antenna system. A low-permittivity dielec-

tric material was used to improve the broadband characteristics by spreading the electric field in the tip area of the antenna.19 The dielectric

material thickness was found to have a minor influence on the broadband characteristics, so that 0.5 mm FR4 was used to limit the degrees

of freedom for the antenna optimization. Additive manufacturing based on lithography (Form2, Formlabs, Somerville, MA) was used to model

the housing of the building block (Figure 1B). A balanced to unbalanced (balun) transformer, manufactured of copper-coated FR4 composite,

was employed to match a 50 Ω coaxial device (coaxial cable) to the antenna port and vice versa.26 A microstrip exponential taper was used

to combine the balun with impedance matching.20,24 To enhance the efficiency and directivity of a dipole antenna for targeted heating, a

water bolus between the radiating element (here, the SGBT building block) and the subject or phantom was used.8,27 The water bolus was

filled with deionized water (H2O) to minimize costs; it was separated from the D2O-filled building block with a 0.5 mm FR4 layer. The

water bolus (with the dimensions 59.0 x 119.4 x 20 mm3) was manufactured from a waterproof latex cover stabilized by a plastic ring

(thickness = 5 mm).

F IGURE 1 (A) Basic scheme of the SGBT building block, balun and SGBT antenna design. (B) Additively manufactured building block with the
SGBT antenna placed inside the housing and with the balun positioned on top of the building block. (C) Experimental setup with SGBT building
block, water bolus and phantom used for magnetic transmission field assessment and thermometry measurements. (D) Basic scheme of the setup
including the positioning of small tubes within the phantom (length = 210 mm; width = 140 mm; depth = 64 mm) for accommodating fiberoptic
probes for temperature measurements or a fluorinated compound for fluorine MRI. (E) Measured broadband material characteristics of the used
phantom for a frequency ranging from 200 to 500 MHz
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2.2 | RF antenna building block optimization approach

The software package CST Microwave Studio 2018 (Computer Simulation Technology GmbH, Darmstadt, Germany) was used for numerical elec-

tromagnetic field (EMF) simulations and optimization. Interactions between the components of the RF antenna building block were evaluated

step-by-step: (i) submerging the antenna in distilled water, (ii) placing the antenna within the building block housing with the water bolus installed,

and (iii) combining the SGBT building block with the exponential stripline balun. The complex interaction of the components of the antenna design

required evaluation and optimization of the geometry of the combined setup, whereas the optimization parameter space is multidimensional and

listed in Table 1, including upper and lower limits as well as the optimization result. A genetic optimization algorithm implemented in CST was

applied for the multidimensional optimization.28 The population of the algorithm was set to 4 x 8 at a mutation rate of 60% with a maximum num-

ber of iterations of 60. The cost function used a reflection coefficient S11 ≤ -13 dB for 260 to 600 MHz and S11 ≤ -10 dB for 600 to 700 MHz

with the objective to enable fluorine imaging (f19F = 279.6 MHz), proton imaging (f1H = 297.2 MHz) and MR thermometry at 7.0 T, as well as

supporting a broadband frequency regime for thermal interventions. For the optimization process, a rectangular box (length = 240 mm, width =

240 mm, height = 150 mm) filled with muscle tissue mimicking material was used. For this purpose the dispersive material specifications were pro-

vided by the IT’IS Foundation (Zurich, Switzerland) for a broad frequency range.29 This setup was used instead of an upper thigh of the virtual

population to limit the computational effort.30 The basic feasibility of a high-density array of SGBT antenna building blocks was evaluated and

confirmed in EMF simulations and measurements of the nearest neighbor coupling. To cover all possible arrangements in an array configuration,

the coupling (S21) of the reference antenna (Ref) to the antennas A, B, and C was exemplarily investigated.

2.3 | EMF, SAR and temperature simulations

Evaluation simulations of dielectric losses, transmit RF B1
+ field, SAR distribution and temperature were performed with the time domain

solver of CST Microwave Studio 2018. Dielectric losses were analyzed for the individual components (balun, antenna, building block and water

bolus) of the proposed SGBT building block. The B1
+ efficiency was calculated by dividing the transmit RF field by the square root of the input

power. Simulations were performed for a phantom validation setup (length = 210 mm, width = 140 mm, depth = 64 mm, shown in Figure 1)

and for the human voxel models Ella and Duke from the virtual population using a voxel resolution of 1.0 x 1.0 x 1.0 mm3.30 For the simula-

tions, the SGBT building block and the water bolus were positioned (i) in the center of the phantom surface (Figure 1D) and (ii) at the surface

above the center region of the left thigh of the human voxel models. The boundary region distance between the SGBT building block filling

and the water bolus was considered as 0.5 mm FR4; the water bolus latex cover was found to be ≥0.02 mm and was neglected in the simula-

tions. The measured dielectric parameters of the phantom (based on an open-end coaxial probe setup)31 and the tissue specifications29 for the

human voxel models were defined as dispersive to support the broadband intervention (Figure 1E). The mesh resolution was kept at ≤4.0 x

4.0 x 4.0 mm3 for both phantom and voxel model studies. The evaluation differentiates between two modes: (i) the imaging mode at f19F =

279.6 MHz and f1H = 297.2 MHz, and (ii) the thermal intervention mode at f1 = 300 MHz, f2 = 400 MHz and f3 = 500 MHz. For the imaging

mode, both B1
+ efficiency distribution and SAR distribution according to IEC 62704-1 standards were examined.32 SAR was normalized to

1 W input power and averaged over 10 g of tissue (SAR10g). Evaluation of the B1
+ efficiency and SAR10g distribution were assessed for a

TABLE 1 Metrics, including boundaries used and results obtained for the genetic optimization of the SGBT building block and the exponential
stripline balun. The building block dimensions were considered without the housing (3 mm thickness manufactured, 0.5 mm FR4 substrate). The
overall antenna length (ltotal = 46.3 mm) is defined with the radius of the antenna bending radius (r = 7.5 mm). The building block length top
(lbuilding block = 85.1 mm) is defined with the building block scaling factor and the building block width top

Description Lower limit Upper limit Optimization result

Antenna aperture angle, [º] 65 100 74

Antenna length backplane [mm] 25.0 35.0 31.3

Antenna width backplane [mm] 27.0 45.0 42.3

Antenna pin width [mm] 1.5 3.0 1.7

Balun antenna connector [mm] 1.5 6.0 4.5

Balun width [mm] 30.0 55.0 39.3

Building block width top [mm] 40.0 60.0 56.9

Building block length bottom [mm] 70.0 110.0 108.4

Building block height [mm] 12.0 30.0 18.9

Building block scale factor 1.01 1.60 1.49
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central transversal slice through the left thigh of Ella and Duke. Temperature simulations were performed with a uni-directional, thermal

transient solver in CST Microwave Studio's postprocessing routine. For this purpose, material parameter estimations used for the thermal inter-

vention were derived from the literature, including phantom density (1230.89 g/l), heat capacity (2.9635 J/g/K) and thermal conductivity

(0.4355 W/m/K).33,34

2.4 | Hardware

Bench measurements of the reflection coefficient were performed using an eight-channel vector network analyzer (VT 8, Rohde & Schwarz,

Memmingen, Germany) and analyzed in MATLAB (MathWorks, Natick, MA). 1H MRI, 19F MRI and MR thermometry were conducted using a 7.0 T

whole-body MRI system (MAGNETOM, Siemens Healthineers, Erlangen, Germany) equipped with an 8 x 1 kW RF amplifier (Stolberg HF-Technik

AG, Stolberg-Vicht, Germany) and a gradient system with a maximum slew rate of 170 mT/m/ms and gradient strength of 38 mT/m (Siemens

Healthineers). The heating regime setup consisted of an external signal generator (SMGL, Rohde & Schwarz) and a custom-made power amplifier

supporting continuous 100 W forward power at the desired frequencies of f1 = 300 MHz, f2 = 400 MHz and f3 = 500 MHz.

2.5 | Validation of EMF and temperature simulations

EMF and temperature simulations were validated using a custom-made phantom (Figure 1C-E) filled with deionized water, sucrose (994.0 g/l),

NaCl (38.8 g/l), agarose (20.0 g/l) and CuSO4 (0.75 g/l). Three vertically aligned polytetrafluorethylene (PTFE) plastic tubes (inner diameter =

2 mm) were placed at increasing depths in the center of the phantom to accommodate fiberoptic probes (Omniflex, Neoptix, Québec, Canada) for

temperature measurements.

The performance of the developed RF antenna building block and its reflection coefficient was validated for the phantom and a healthy

male human subject (aged 29 years). For transmit RF field validation, B1
+ mapping was conducted in the phantom using 3D actual flip angle-

imaging (AFI) (spatial resolution = 1.0 x 1.0 x 5.0 mm3, TE = 2.07 ms, TR1 = 35 ms, TR2 = 115 ms, nominal FA = 30�, scan time = 2.25 minutes

per slice, 96 slices).35 The deviation of the measured B1
+ field from the loss-corrected simulated B1

+ efficiency field was calculated for the

central transversal slice through the phantom. A comparison with the simulations of the B1
+ efficiency field along three vertical lines in the

transversal slice was conducted for the central, 10 mm left and 10 mm right lines. Temperature simulations were validated in a phantom study

by performing heating experiments at frequencies f1, f2 and f3 in conjunction with MR thermometry at 7.0 T. The antenna was connected to an

external RF power amplifier (RFPA) for the heating experiments and manually reconnected to the MRI signal chain for thermometry. RF heating

was performed in the iso-center of the MRI bore at room temperature (~ 297 K) for 120 seconds continuously applying Pin = 100 W at the

antenna building block. Cable losses of <-1.9 dB were compensated for by adjusting the output amplitude of the RF power amplifier at all

examined frequencies. 2D MR thermometry was conducted using the proton resonance frequency shift (PRFS) method by applying a dual

gradient-echo method (spatial resolution = 1.5 x 1.5 x 4.0 mm3, TE1 = 2.26 ms, TE2 = 6.34 ms, TR = 102 ms, scan time = 0.44 minutes) before

and after the RF heating period.36-39 The relative temperature mapping of PRFS after the heating process was compared with fiberoptic probe

measurements.

2.6 | Ethics statement

For the in vivo feasibility study, a subject without any known history of disease was included after approval by the local ethical committee

(registration number DE/CA73/5550/09, Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit, Berlin, Germany). Informed

written consent was obtained from the volunteer prior to the study.

2.7 | 1H and 19F MR imaging

Phantom and in vivo studies were performed to demonstrate the 19F and 1H imaging characteristics of the SGBT building block. The tubes within

the phantom, previously used for temperature measurements, were filled with high fluorine content nanoparticles prepared according to the

literature.40 19F-rich nanoparticles were prepared by emulsifying perfluoro-15-crown-5-ether (1200 mmol/L) (PFCE; Fluorochem, Hadfield, UK)

with Pluronic F-68 (Sigma-Aldrich).40 For the in vivo study, 15 g of flufenamic acid (101 mmol/L), a nonsteroidal antiinflammatory drug containing
19F (Mobilat, Stada, Bad Vilbel, Germany) was sealed in a latex bag and placed on the forearm or the upper thigh of a healthy male volunteer.10

The imaging protocol (one sagittal and three transversal slices) included:
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• Phantom 1H: FLASH, spatial resolution = 0.5 x 0.5 x 2.5 mm3, TR = 50 ms, TE = 2.86 ms, nominal FA = 40�, receiver bandwidth = 260 Hz/Px,

scan time = 1.18 minutes;

• Phantom 19F: RARE, spatial resolution = 0.5 x 0.5 x 5.0 mm3, TR = 1000 ms, TE = 5.20 ms, nominal FA = 180�, echo train length = 4, averages

= 8, receiver bandwidth = 592 Hz/Px, scan time = 12.51 minutes;

• Forearm 1H: FLASH, spatial resolution = 0.5 x 0.5 x 2.5 mm3, TR = 90 ms, TE = 3.86 ms, nominal FA = 30�, receiver bandwidth = 260 Hz/Px,

scan time = 1.18 minutes;

• Forearm 19F: RARE, spatial resolution = 1.5 x 1.5 x 5.0 mm3, TR = 2360 ms, TE = 5.60 ms, nominal FA = 180�, echo train length = 16, averages

= 8, receiver bandwidth = 337 Hz/Px, scan time = 2.27 minutes;

• Thigh 1H: FLASH, spatial resolution = 0.5 x 0.5 x 2.5 mm3, TR = 90 ms, TE = 3.86 ms, nominal FA = 30�, receiver bandwidth = 260 Hz/Px, scan

time = 2.20 minutes;

• Thigh19F: RARE, spatial resolution = 1.5 x 1.5 x 5.0 mm3, TR = 2000 ms, TE = 5.60 ms, nominal FA = 180�, echo train length = 16, averages =

8, receiver bandwidth = 337 Hz/Px, scan time = 2.12 minutes.

3 | RESULTS

3.1 | Characterization of the RF antenna building block

Figure 1 shows the building block with an SGBT antenna and a stripline balun after the optimization process. The weight of the filled building

block was m = 150 g, with dimensions of 114.4 x 54.0 x 22.5 mm3.

F IGURE 2 (A) Reflection coefficient (S11) and
(B) input impedance (Z11) simulation results for
the optimized antenna design immersed in
distilled water with and without the dielectric
layer at the tip area of the antenna. (C) S11 and
(D) Z11 simulation results for the antenna within

the optimized building block with and without the
water bolus. (E) S11 simulation and measurement
results of the building block antenna with balun
design for the experimental setup. (F) S11
simulation results of the thigh of the human voxel
model Duke and Ella, and experimental
measurement of a healthy volunteer
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EMF simulations of the individual components revealed the contributions of the RF antenna, building block, water bolus and balun to the

broadband characteristics of the proposed RF antenna building block. The reflection coefficient of the antenna immersed in water showed broad-

band behavior with a resonance at 335 MHz. The bandwidth was increased using a low dielectric material at the tip area (Figure 2A).19 With the

dielectric material, the antenna impedance decreased from 50.6 Ω – j 19.3 Ω at 234 MHz to 28.5 Ω + j 0.8 Ω at 560 MHz (Figure 2B). The water

bolus between the subject and the RF antenna building block ensured EMF propagation at a broadband frequency range (Figure 2C,D). The bolus

resulted in more wideband behavior of the reflection coefficient, and a more constant impedance (49.8 Ω – j 3.9 Ω at 234 MHz to 21.4 Ω + j 14.5

Ω at 560 MHz) at the antenna feed for the SGBT building block (Figure 2C,D). Introducing the balun allowed matching of a 50 Ω coaxial cable to

the 43.5 Ω differential antenna port (stripline width = 4.5 mm). The combination of the RF antenna building block with the balun resulted in an

overall bandwidth of 340 MHz (for S11 <-10dB, f = 235 to 575 MHz).

The simulated S11 parameters in the phantom were in good agreement with the measured values from 250 to 650 MHz (Figure 2E). The mea-

sured cut-off frequency was increased by 6 MHz compared with the simulation, with an overall linear difference between simulation and mea-

surement of 3.3% ± 1.9% (mean ± SD). The reflection coefficient obtained from simulations with the RF antenna building block placed on the left

thigh of the human voxel model Duke and Ella exhibited a bandwidth of Δf = 337 MHz for Duke and Δf = 303 MHz with an increased minimum

of S11 <-9.4 dB for Ella (Figure 2F). The measurement of the healthy subject provided a broadband response with an enhanced overall bandwidth

ranging from 292 to 664 MHz for S11 <-10 dB.

Simulation and measurement of the nearest neighbor coupling between individual SGBT building blocks revealed exemplary Sij <-17 dB for

possible antenna arrangements in an array configuration (Figure 3).

F IGURE 3 (A) Experimental setup used for the exemplary
assessment of nearest-neighbor coupling of the SGBT building block.
Simulated and measured coupling parameter (S21) of the reference
antenna (REF) to (B) antenna A, (C) antenna B and (D) antenna C
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3.2 | EMF, SAR and temperature simulations

The dielectric power losses of the RF antenna building block and the water bolus ranged from 8.8% at 300 MHz to 15.6% at 500 MHz for the

accepted RF power at the coaxial cable connector. The major part of the losses was due to the filled building block (5.2% at 300 MHz to 8.4% at

500 MHz) and the water bolus (2.5% at 300 MHz to 5.3% at 500 MHz). Losses for the SGBT antenna were ≤0.5%, whereas the balun showed

losses of ≤1.4% for ≤500 MHz. B1
+ efficiency maps and SAR distributions for 19F and 1H obtained for the human voxel models are illustrated in

Figure 4. Ella showed a minor decrease in the transmission field efficiency compared with Duke. For Duke and Ella, a B1
+ efficiency ≥11.8 μT/

√kW was achieved at a depth of 50 mm (Figure 4A,B). The 1 W-normalized SAR10g distribution at f19F = 279.6 MHz and f1H = 297.2 MHz showed

a maximum SAR10g = 1.8 W/kg for Ella and SAR10g = 3.0 W/kg for Duke (Figure 4C,D). Considering the measured hardware losses of -3.2 dB for

the RF imaging signal chain, the input power was limited to 7.0 W, to stay within the 10 W/kg for SAR10g limits of the IEC guidelines for the

normal operating mode.41 The simulations on the phantom revealed a B1
+ efficiency of ≥11.1 μT/√kW at a depth of 50 mm (Figure 5).

F IGURE 4 Experimental arrangement of the building block and the water bolus placed on the left thigh of the human voxel model Duke and
Ella: (A) cut plane in z-direction and (B) top view. (C) Radiofrequency transmission (B1

+) field simulation maps of the left thigh of the human voxel
models for fluorine (19F) and proton (1H). (D) Specific absorption rate (SAR) averaged over 10 g tissue (SAR10g) at f19F = 279.6 MHz and f1H =
297.2 MHz of the left thigh of the human voxel models. (E) Comparison of the B1

+ field along the center line (marked in (C)) derived from the
EMF simulations of the thigh of Duke and Ella. (F) Comparison of the SAR10g distribution along the indicated center line (marked in (C)) of the
thigh of Duke and Ella

8 of 14 EIGENTLER ET AL.



Temperature simulations demonstrated the wideband thermal intervention feasibility providing a comparable heating pattern in the phantom

at f1 = 300 MHz, f2 = 400 MHz and f3 = 500 MHz (Figure 6).

3.3 | Validation of EMF and temperature simulations

The simulated B1
+ efficiency maps showed qualitative and quantitative agreement with the results derived from experimental B1

+ mapping. The

difference map revealed a deviation of less than 6.7 μT/√kW (or 17%) for the central area underneath the RF antenna building block by consider-

ing the measured -3.2 dB losses in the RF signal chain. The B1
+ profiles along the lines indicated in Figure 5A,B demonstrate both the quantitative

and qualitative agreement between the simulation and the measurement.

Connecting the SGBT building block to the MRI RF signal chain employed for imaging experiments and MR thermometry took tmaximum =

1.15 minutes. A relative difference map between simulation and MR thermometry temperature distribution and a profile along the central axis

underneath the antenna, including the fiberoptic probes, is shown in Figure 6C,D. The difference between the temperature simulations and MR

thermometry along the indicated vertical lines of Figure 6A,B is 0.79 ± 0.36 K for f1, 0.82 ± 0.36 K for f2 and 1.19 ± 0.38 K for f3 (mean ± SD). An

overall difference between simulation and measurement of 0.94 ± 0.40 K (mean ± SD) for all profiles in the performed thermal interventions was

calculated. The mean difference between the fiberoptic probe measurements and MR thermometry was 0.66 K for all probe locations (Figure 6D).

Probe position 1 showed a higher relative deviation (>15.4%) compared with the other measurement points (<9.3%) for all intervention frequen-

cies (Figure 6D).

F IGURE 5 Radiofrequency transmission (B1
+) efficiency map obtained from (A) numerical simulations and (B) experiments based on the actual

flip angle imaging technique (AFI) of the indicated SGBT building block with the water bolus on the phantom. (C) Absolute and (D) relative
difference maps of the simulation and the measurement of the phantom setup. (E) B1

+ field values obtained from simulations and measurements
along the lines (marked in (A) and (B)) in the phantom
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3.4 | 1H and 19F MR imaging

Imaging PFCE in the phantom study, as well as the fluorinated topical drug in the in vivo studies, showed sufficient signal to locate the compounds

in the proton reference images. This demonstrates the feasibility of 19F and 1H imaging with the proposed broadband SGBT antenna building

block without additional tuning and matching circuits (Figure 7).

4 | DISCUSSION

This work demonstrates the design and optimization of a novel wideband SGBT building block to support thermal intervention, 1H MRI, 1H MR

temperature mapping and 19F MRI integrated in a whole-body 7.0 T MRI system.

The water bolus has a significant role in the overall SGBT building block behavior; it ensures proper coupling between the building block and

the object under investigation, allowing impedance matching, and forming a short waveguide-like element. This promotes the performance by

(i) affording a compact size of the antenna building block, (ii) enhancing EMF coupling to the subject, and (iii) enabling broadband characteristics of

the antenna. Additionally, flowing water within the bolus could be used to allow for superficial cooling during thermal interventions.8,19,27,42 With-

out proper impedance matching by the water bolus, the reflection coefficient showed a single self-resonance at ~ 645 MHz. With the water bolus

installed, the SGBT antenna design and the building block optimization yielded a nearly constant impedance and low-reflection coefficient for a

wide bandwidth. Adapting the exponential stripline balun to the impedance at the feeding pins of the antenna allows a connection to a 50 Ω

F IGURE 6 (A) Temperature simulations in the phantom after 120 seconds of thermal intervention at continuous Pin = 100 W at the antenna
port for f1 = 300 MHz, f2 = 400 MHz and f3 = 500 MHz. Highlighted are the reference line and three fibreoptic probe positions (P1-P3) used for
one-dimensional plots. (B) Temperature measurements were obtained with MR thermometry based on proton resonance frequency shift (PRFS).
The reference line and three fiberoptic probe positions (P1-P3) used for one-dimensional plots are highlighted. (C) Difference maps obtained from
the numerical simulations and measurements of the phantom setup. (D) Comparison of the RF heating-induced temperature changes obtained
from temperature simulations and experimental measurements
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coaxial cable. This low-loss stripline balun is advantageous for high-peak and average-power applications such as MR imaging and thermal

interventions.

The proposed compact SGBT building block affords a size reduction of 55% and 72% compared with previously reported SGBT (107 x 78 x

31 mm3) and bow-tie (150 x 70 x 40 mm3) RF antenna building block configurations, respectively.18,22 A previous implementation of a single-side

adapted dipole antenna that used high dielectric material to shorten the wavelength had a volume of 143 x 70 x 42 mm3; our proposed design is

72% smaller in volume than this.17 The size reduction is even more pronounced when benchmarking the proposed SGBT building block against

pioneering dipole designs without a dielectric cavity, such as fractionated dipole (l = 300 mm),43 snake dipole44 or meander dipole (l = 320 mm)

designs.45 For example, a well-established implementation of the fractionated dipole uses a housing with a size of ~ 300 x 40 x 20 mm3; our com-

pact SGBT configuration results in a volume reduction of 52% compared with this, and a reduction in the antenna length of nearly a factor of

three.43 The compact size of the RF antenna building block and its low nearest neighbor coupling is suitable for high-density and many-element

RF array configurations, which is crucial for improving the focal point quality of thermal interventions and for approaching the ultimate SAR ampli-

fication factors predicted by numerical simulations.12-14

The proposed antenna design shows an efficiency of 91.2% at 300 MHz and 84.4% at 500 MHz, with the dielectric losses being mainly

attributed to the filled building block and the water bolus. The efficiency of the proposed building block could be increased using dedicated low-

loss, high-permittivity dielectrics (eg, ceramics) close to the copper part of the SGBT antenna. The compact SGBT building block supports imag-

ing at 7.0 T with a B1
+ efficiency of ≥11.8 μT/√kW at a depth of 50 mm for 1H and 19F MRI. Although the coupling of the electric field from the

building block to the subject increases due to the water bolus, the superficial SAR is still comparable with other array antenna designs by scaling

the results to 1 W input power per channel.17,43 Incorporating 19F MRI adds additional value to the thermal intervention by providing the

F IGURE 7 Proton image (1H), fluorine image
(19F) and 19F/1H overlay. The position of the RF
building block is outlined in white; the water
bolus is indicated by an arrow in the 1H images.
Illustrated are (A phantom axial slice, (B) phantom
sagittal slice, (C) forearm axial slice and (D) thigh
axial slice
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capacity for detection and quantification of fluorinated compounds, allowing research and implementation on fluorinated, thermally activated

drugs (eg, release of fluorinated compounds from thermosensitive carriers).10,46,47 Further to 19F and 1H imaging, the SGBT antenna building

block supports RF-induced heating for a broad frequency range. Arranged in an RF array, this feature facilitates the adjustment of the thermal

intervention frequency, providing an extra degree of freedom to the thermal intervention.12,14,19 The proton-based MR thermometry has the

potential to acquire three-dimensional temperature maps, enabling a feedback loop to control RF power deposition during a thermal interven-

tion.48 Our temperature simulations, MR thermometry and temperature measurements showed good agreement with a temperature rise of ΔT

>7 K at a depth of 10 mm. It is a recognized limitation of our proof-of-principle study that manual switching was used to change between the

RFPAs used for thermal intervention and for MRI. Due to a time delay between RF heating and MR thermometry, an underestimation of the

monitored temperature could occur. For clinical implementation with multiple antennas, a controllable switch is beneficial to avoid time delays

and connection errors for sequential RF heating and MR thermometry.

Phantom and in vivo imaging experiments demonstrated the feasibility of a broadband RF antenna concept for 1H and 19F imaging without

tuning and matching based on discrete inductive and capacitive elements. For 19F in vivo imaging, the 15 g of topical ointment used in the

proof-of-principle study showed sufficient SNR to visualize and register the 19F image with the 1H image. Analytically, this mass of the substance

has ~ 2.9 x 10+21 fluorine atoms. This correlates to a bolus of the antitumor drug 5-fluorouracil administered intravenously (3.3 x 10+21 fluorine

atoms), which afterward distributes via the blood circulation.49 In the serum, 5-fluorouracil is present at a concentration of 1.1 and 5.9 μg/mL in

the center of a tumor.50 In the tumor, this results in a local level of 2.7 x 10+19 fluorine atoms/L, which is four orders of magnitude below the

administered bolus concentration. Such differences in the total numbers of fluorine atoms can be addressed by increased averaging, using reduced

matrix size, lower SNR thresholds and optimized scan parameters.

The broadband characteristics of the RF antenna building block are well suited for thermal interventions, since the presented RF antenna

building block is less sensitive to loading conditions based on (i) a temperature increase and impedance change of the dielectric building block due

to losses during the high (average) power transmission, (ii) a temperature-dependent impedance change of the water bolus or target tissue,

(iii) patient movement, and (iv) intersubject variability. The balun design shows a weak suppression of common mode on the cable, which could

lead to artifacts in the acquired images or crosstalk in an array configuration. A narrowband cable-trap or bazooka balun can be used to minimize

the common-mode effects for MRI, where the broadband behavior is not affected. Arranging the stripline balun and the cable connector orthogo-

nal to the electric field allowed minimization of the common-mode effects for the supported frequency bandwidth without using a blocking

circuit. Whereas no signal was observed for the SGBT building block (filled with D2O), deuterium oxide can be used to avoid the proton signal of

the water bolus (filled with H2O).

5 | CONCLUSION

The electric and magnetic characteristics of the SGBT building block support 1H and 19F (MRI), broadband thermal intervention (RF hyperthermia)

and therapy control (MR thermometry) in an integrated device. The compact design can be exploited for the design of high-density RF applicators,

offering an increased degree of freedom based on high channel count, phase and amplitude manipulation, as well as adjustable intervention

frequency for each channel.
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