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Abstract: Outlier detection is one of the most important tasks in the analysis of measured
quantities to ensure reliable results. In recent years, a variety of multi-sensor platforms has become
available, which allow autonomous and continuous acquisition of large quantities of heterogeneous
observations. Because the probability that such data sets contain outliers increases with the quantity of
measured values, powerful methods are required to identify contaminated observations. In geodesy,
the mean shift model (MS) is one of the most commonly used approaches for outlier detection.
In addition to the MS model, there is an alternative approach with the model of variance inflation (VI).
In this investigation the VI approach is derived in detail, truly maximizing the likelihood functions
and examined for outlier detection of one or multiple outliers. In general, the variance inflation
approach is non-linear, even if the null model is linear. Thus, an analytical solution does usually not
exist, except in the case of repeated measurements. The test statistic is derived from the likelihood
ratio (LR) of the models. The VI approach is compared with the MS model in terms of statistical
power, identifiability of actual outliers, and numerical effort. The main purpose of this paper is to
examine the performance of both approaches in order to derive recommendations for the practical
application of outlier detection.

Keywords: mean shift model; variance inflation model; outlierdetection; likelihood ratio test;
Monte Carlo integration; data snooping

1. Introduction

Nowadays, outlier detection in geodetic observations is part of the daily business of modern
geodesists. As Rofatto et al. [1] state, we have well established and practicable methods for outlier
detection for half a century, which are also implemented in current standard geodetic software.
The most important toolbox for outlier detection is the so-called data snooping, which is based on the
pioneering work of Baarda [2]. A complete distribution theory of data snooping, also known as DIA
(detection, identification, and adaptation) method, was developed by Teunissen [3].

In geodesy, methods for outlier detection can be characterised as statistical model selection
problem. A null model is opposed to one or more extended or alternative models. While the null
model describes the expected stochastic properties of the data, the alternative models deviate from such
a situation in one way or another. For outlier detection, the alternative models relate to the situation,
where the data are contaminated by one or more outliers. According to Lehmann [4], an outlier is
defined by “an observation that is so probably caused by a gross error that it is better not used or not
used as it is”.
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From a statistical point of view, outliers can be interpreted as a small amount of data that have
different stochastic properties than the rest of the data, usually a shift in the mean or an inflation of
the variance of their statistical distribution. This situation is described by extra parameters in the
functional or stochastic model, such as shifted means or inflated variances. Such an extended model is
called an alternative model. Due to the additionally introduced parameters, the discrepancies between
the observations and the related results of the model decrease w. r. t. the null model. It has to be
decided whether such an improvement of the goodness of fit is statistically significant, which means
that the alternative model describes the data better than the null model. This decision can be made by
hypothesis testing, information criteria, or many other statistical decision approaches, as shown by
Lehmann and Lösler [5,6].

The standard alternative model in geodesy is the mean shift (MS) model, in which the
contamination of the observations by gross errors is modelled as a shift in the mean, i.e., by a systematic
effect. This approach is described in a large number of articles and textbooks, for example,
the contributions by Baarda [2], Teunissen [7], and Kargoll [8]. However, there are other options
besides this standard procedure. The contamination may also be modelled as an inflation of the
variance of the observations under consideration, i.e., by a random effect. This variance inflation
(VI) model is rarely investigated in mathematical statistics or geodesy. Bhar and Gupta [9] propose a
solution based on Cook’s statistic [10]. Although this statistic was invented for the MS model, it can
also be made applicable when the variance is inflated.

Thompson [11] uses the VI model for a single outlier in the framework of the restricted (or residual)
maximum likelihood estimation, which is known as REML. In contrast to the true maximum likelihood
estimation, REML can produce unbiased estimates of variance and covariance parameters and it
causes less computational workload. Thompson [11] proposes that the observation with the largest
log-likelihood value can be investigated as a possible outlier. Gumedze et al. [12] take up this
development and set up a so-called variance shift outlier model (VSOM). Likelihood ratio (LR)
and score test statistics are used to identify the outliers. The authors conclude that VSOM gives
an objective compromise between including and omitting an observation, where its status as a correct
or erroneous observation cannot be adequately resolved. Gumedze [13] review this approach and
work out a one-step LR test, which is a computational simplification of the full-step LR test.

In geodesy, the VI model was introduced by Koch and Kargoll [14]. The estimation of the unknown
parameters has been established as an iteratively reweighted least squares adjustment. The expectation
maximization (EM) algorithm is used to detect the outliers. It is found that the EM algorithm for the
VI model is very sensitive to outliers, due to its adaptive estimation, whereas the EM algorithm for
the MS model provides the distinction between outliers and good observations. Koch [15] applies
the method to fit a surface in three-dimensional space to the Cartesian coordinates of a point cloud
obtained from measurements with a laser scanner.

The main goal of this contribution is a detailed derivation of the VI approach in the framework
of outlier detection and compare it with the well-established MS model. The performance of both
approaches is to be compared in order to derive recommendations for the practical application of
outlier detection. This comprises the following objectives:

1. Definition of the generally accepted null model and specification of alternative MS and VI models
(Section 2). Multiple outliers are allowed for in both alternative models to keep the models equivalent.

2. True maximization of the likelihood functions of the null and alternative models, not only for
the common MS model, but also for the VI model. This means, we do not resort to the REML
approach of Thompson [11], Gumedze et al. [12], and Gumedze [13]. This is important for the
purpose of an insightful comparison of MS and VI (Section 3).

3. Application of likelihood ratio (LR) test for outlier detection by hypothesis testing and derivation
of the test statistics for both the MS and the VI model. For this purpose, a completely new rigorous
likelihood ratio test in the VI model is developed and an also completely new comparison with
the equivalent test in the MS model is elaborated (Section 3).
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4. Comparison of both approaches using the illustrative example of repeated observations, which is
worked out in full detail (Section 4).

Section 5 briefly summarises the investigations that were carried out and critically reviews the
results. Recommendations for the practical application of outlier detection conclude this paper.

2. Null Model, Mean Shift Model, and Variance Inflation Model

In mathematical statistics, a hypothesis H is a proposed explanation that the probability
distribution of the random n-vector y of observations belongs to a certain parametric family W
of probability distributions with parameter vector θ, e.g., Teunissen [7],

H : y ∼W(θ), θ ∈ Θ (1)

The parameter vector θ might assume values from a set Θ of admissible parameter vectors.
A model is then simply the formulation of the relationship between observations y and parameters θ

based on H. In geodesy, the standard linear model is based on the hypothesis that the observations
follow a normal distribution N, e.g., Koch [16], Teunissen [7], i.e.,

H0 : y ∼ N(Ax, Σ), (2)

with u-vector of functional parameters x and covariance matrix Σ. The latter matrix might contain
further stochastic parameters, like a variance factor σ2, according to

Σ = σ2Q, (3)

with Q being the known cofactor matrix of y. In this case, θ is the union of x and σ2. The covariance
matrix Σ might eventually contain more stochastic parameters, known as variance components,
cf. Koch ([16], p. 225ff). Matrix A is said to be the n× u-matrix of design. The model that is based on
H0 is called the null model.

In outlier detection, we oppose H0 with one or many alternative hypotheses, most often in the
form of a mean shift (MS) hypothesis, e.g., Koch [16], Teunissen [7]

HMS : y ∼ N(Ax + C∇, Σ), ∇ 6= 0, (4)

where ∇ is a m-vector of additional functional bias parameters and matrix C extends the design.
In this case, θ is extended by ∇. This relationship gives rise to the MS model, where the mean of the
observations is shifted from Ax to Ax + C∇ by the effect of gross errors, see Figure 1. C∇ can be
interpreted as accounting for the systematic effect of gross observation errors superposing the effect of
normal random observation errors already taken into account by Σ in (2). The great advantage of HMS
is that, if the null model is linear or linearized, so is the MS model. The determination of the model
parameters is numerically easy and computationally efficient, cf. Lehmann and Lösler [5].

However, there are different possibilities to set up an alternative hypothesis. The most simple one
is the variance inflation hypothesis

HVI : y ∼ N(Ax, Σ′), (5)

where Σ′ is a different covariance matrix, which consists of inflated variances. Σ′ can be interpreted as
accounting for the joint random effect of normal observation errors in all observations and zero mean
gross errors in few outlying observations, see Figure 2.
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Figure 1. Schematic representation of the MS approach. The null model H0 is depicted by a dashed
grey line and the alternative model HMS is shown as a solid red line.

The VI model might be considered to be more adequate to describe the outlier situation when the
act of falsification of the outlying observations is thought of as being a random event, which might
not be exactly reproduced in a virtual repetition of the observations. However, even if the VI model
might be more adequate to describe the stochastics of the observations, this does not mean that it is
possible to estimate parameters or to detect outliers better than with some less adequate model like
MS. This point will be investigated below.

Figure 2. Schematic representation of the VI approach. The null model H0 is depicted by a dashed grey
line and the alternative model HVI is shown as solid red line.

In the following we will only consider the case that y are uncorrelated observations, where both Σ
and Σ′ are diagonal matrices, such that the hypotheses read

H0 : y ∼N(Ax, σ2
1 , . . . , σ2

n), (6a)

HVI : y ∼N(Ax, τ1σ2
1 , . . . , τmσ2

m, σ2
m+1, . . . , σ2

n), τ1 > 1, . . . , τm > 1. (6b)

Here, HVI accounts for m random zero mean gross errors in the observations y1, . . . , ym modeled by
stochastic parameters τ1, . . . , τm. In this case, θ is extended by τ1, . . . , τm, which will be called variance
inflation factors. Thus, τ1, . . . , τm can be interpreted as a special case of extra variance components.

Note that the term variance inflation factors is used differently in multiple linear regression when
dealing with multicollinearity, cf. James et al. ([17], p. 101f).
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3. Outlier Detection by Hypothesis Tests

Outlier detection can be characterised as a statistical model selection problem. The null model,
which describes the expected stochastic properties of the data, is opposed to one or more alternative
models, which deviate from such properties. Usually, the decision, whether the null model is rejected
in favour of a proper alternative model, is based on hypothesis testing. Multiple testing, consisting of a
sequence of testings with one single alternative hypothesis only, is required if there are many possible
alternative models. In this study, we first focus on such one single testing only. In the following
subsections, the test statistics in the MS model as well as in the VI model are derived.

For the sake of simplicity, the scope of this contribution is restricted to cases, where all of the
estimates to be computed are unique, such that all matrices to be inverted are regular.

3.1. Mean Shift Model

In the case of no stochastic parameters, i.e., Σ is known, the optimal test statistic TMS(y) for the
test problem H0 in (2) versus HMS in (4) is well known and yields, cf. Teunissen ([7], p. 76):

TMS(y) := ∇̂TΣ−1
∇̂ ∇̂ (7)

= êT
0 Σ−1C(CTΣ−1Σ−1

ê0
Σ−1)−1CTΣ−1 ê0,

where ∇̂ and Σ∇̂ are the vector of estimated bias parameters in the MS model and its covariance
matrix, respectively. Furthermore, ê0 and Σê0 are the vector of estimated residuals e := Ax− y in the
null model and its covariance matrix, respectively. This second expression offers the opportunity to
perform the test purely based on the estimation in the null model, cf. Teunissen ([7], p. 75), i.e.,

x̂0 =(ATΣ−1 A)−1 ATΣ−1y, (8a)

ê0 =(I − A(ATΣ−1 A)−1 ATΣ−1)y, (8b)

Σê0 =Σ− A(ATΣ−1 A)−1 AT . (8c)

Each estimation is such that the likelihood function of the model is maximized. The hat will
indicate maximum likelihood estimates below.

The test statistic (7) follows the central or non-central χ2 distributions

TMS|H0 ∼χ2(q, 0), (9a)

TMS|HMS ∼χ2(q, λ), (9b)

where q = rank(Σ∇̂) is the degree of freedom and λ = ∇TΣ−1
∇̂ ∇ is called the non-centrality parameter,

depending on the true but unknown bias parameters ∇, e.g., (Teunissen [7], p. 77).
The test statistic (7) has the remarkable property of being uniformly the most powerful invariant

(UMPI). This means, given a probability of type 1 decision error (rejection of H0 when it is true) α, (7)

• has the least probability of type 2 decision error (failure to reject H0 when it is false) β

(most powerful);
• is independent of ∇ (uniform); and,
• but only for some transformed test problem (invariant).

For the original test problem, no uniformly most powerful (UMP) test exists. For more details see
Arnold [18], Kargoll [8].

Lehmann and Voß-Böhme [19] prove that (7) has the property of being a UMPχ2 test, i.e., a UMP
test in the class of all tests with test statistic following a χ2 distribution. It can be shown that (7) belongs
to the class of likelihood ratio (LR) tests, where the test statistic is equivalent to the ratio

max L0(x)
max LMS(x,∇) . (10)
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Here, L0 and LMS denote the likelihood functions of the null and alternative model, respectively,
cf. Teunissen ([7], p. 53), Kargoll [8]. (Two test statistics are said to be equivalent, if they always define
the same critical region and, therefore, bring about the same decision. A sufficient condition is that
one test statistic is a monotone function of the other. In this case, either both or none exceed their
critical value referring to the same α.) The LR test is very common in statistics for the definition of
a test statistic, because only a few very simple test problems permit the construction of a UMP test.
A justification for this definition is provided by the famous Neyman-Pearson lemma, cf. Neyman and
Pearson [20].

3.2. Variance Inflation Model

For the test problem (6a) versus (6b), no UMP test exists. Therefore, we also resort to the LR test
here. We start by setting up the likelihood functions of the null and alternative model. For the null
model (6a), the likelihood function reads

L0(x) = (2π)−
n
2

n

∏
i=1

σ−1
i exp

{
−Ω0

2

}
, (11a)

Ω0 :=
n

∑
i=1

(yi − aix)2

σ2
i

, (11b)

and for the alternative model (6b) the likelihood function is given by

LVI(x, τ1, ..., τm) = (2π)−
n
2

n

∏
i=1

σ−1
i

m

∏
i=1

τ
− 1

2
i exp

{
−ΩVI

2

}
, (12a)

ΩVI :=
m

∑
i=1

(yi − aix)2

σ2
i τi

+
n

∑
i=m+1

(yi − aix)2

σ2
i

, (12b)

where ai, i = 1, . . . , n are the row vectors of A. According to (10), the likelihood ratio reads

max L0(x)
max LVI(x, τ1, ..., τm)

=
max exp

{
−Ω0

2

}
max ∏m

i=1 τ
− 1

2
i exp

{
−ΩVI

2

} . (13)

Equivalently, we might use the double negative logarithm of the likelihood ratio as test statistic,
because it brings about the same decision as the likelihood ratio itself, i.e.,

TVI := −2 log
max exp

{
−Ω0

2

}
max ∏m

i=1 τ
− 1

2
i exp

{
−ΩVI

2

}
= min Ω0 −min

{
ΩVI +

m

∑
i=1

log τi

}
. (14)

The first minimization result is the well-known least squares solution (8). The second minimization
must be performed not only with respect to x, but also with respect to the unknown variance inflation
factors τ1, . . . , τm. The latter yield the necessary conditions

τ̂i =
(yi − ai x̂VI)

2

σ2
i

=
ê2

VI,i

σ2
i

, i = 1, . . . , m. (15)
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This means that τ1, . . . , τm are estimated, such that the first m residuals in the VI model êVI,i equal
in magnitude their inflated standard deviations σi

√
τ̂i, and the subtrahend in (14) is obtained by

min

{
ΩVI +

m

∑
i=1

log τi

}
= min

{
m +

m

∑
i=1

log
(yi − aixVI)

2

σ2
i

+
n

∑
i=m+1

(yi − aixVI)
2

σ2
i

}
(16)

= min

{
m +

m

∑
i=1

log
e2

VI,i

σ2
i

+
n

∑
i=m+1

e2
VI,i

σ2
i

}
.

In the latter expression the minimum is to be found only with respect to the free parameter
vector xVI . This expression differs from min Ω0 essentially by the logarithm of the first m normalized
residuals. This means that those summands are down-weighted, whenever the residuals êVI,i are
larger in magnitude than their non-inflated standard deviations σi. The necessary conditions for xVI
are obtained by nullifying the first derivatives of (16) and read

0 =
m

∑
i=1

aij

yi − ai x̂VI
+

n

∑
i=m+1

yi − ai x̂VI

σ2
i

aij, j = 1, . . . , u, (17)

where aij denotes the j-th element of ai.
This system of equations can be rewritten as a system of polynomials of degree m + 1 in the

parameters x̂VI,i. In general, the solution for x̂VI must be executed by a numerical procedure. This extra
effort is certainly a disadvantage of the VI model.

Another disadvantage is that (14) does not follow a well known probability distribution,
which complicates the computation of the critical value, being the quantile of this distribution. Such a
computation is best performed by Monte Carlo integration, according to Lehmann [21].

Note that the likelihood function LVI in (12) has poles at τi = 0, i = 1, . . . , m. These solutions must
be excluded from consideration, because they belong to minima of (12) or equivalently to maxima
of (16). (Note that log τi is dominated by 1/τi at τi → 0).

A special issue in the VI model is what to do if max τ̂i ≤ 1 is found in (15). In this case, the variance
is not inflated, such that H0 must not be rejected in favour of HVI , see (6b). However, it might happen
that, nonetheless, TVI in (14) exceeds its critical value, especially if α is large. In order to prevent this
behaviour, we modify (14) by

TVI(y) :=

{
0 if max τ̂i ≤ 1,

min Ω0 −min {ΩVI + ∑m
i=1 log τi} otherwise.

(18)

If H0 is true, then there is a small probability that max τ̂i > 1 and, consequently, TVI > 0 arises, i.e.,

Pr(TVI > 0|H0) =: αmax. (19)

We see that a type 1 error cannot be required more probable than this αmax, i.e., contrary to the
MS model, there is an upper limit for the choice of α.

Even more a problem is what to do, if min τ̂i < 1 < max τ̂i is found in (15). Our argument is
that, in this case, H0 should be rejected, but possibly not in favour of HVI in (6b). A more suitable
alternative hypothesis should be found in the framework of a multiple test.

4. Repeated Observations

There is one case, which permits an analytical treatment, even of the VI model, i.e., when one scalar
parameter x is observed directly n times, such that we obtain A = (1, . . . , 1)T =: 1. By transformation



Mathematics 2020, 8, 991 8 of 21

of the observations, also all other models with u = 1 can be mapped to this case. For compact notation,
we define the weighted means of all observations and of only the last n−m inlying observations, i.e.,

w :=
∑n

i=1 yiσ
−2
i

∑n
i=1 σ−2

i
, (20a)

W :=
∑n

i=m+1 yiσ
−2
i

∑n
i=m+1 σ−2

i
. (20b)

By covariance propagation, the related variances of those expressions are obtained, i.e.,

σ2
w =

1

∑n
i=1 σ−2

i
, (21a)

σ2
W =

1

∑n
i=m+1 σ−2

i
. (21b)

Having the following useful identities

w
σ2

w
=

W
σ2

W
+

m

∑
i=1

yi

σ2
i

, (22a)

1
σ2

w
=

1
σ2

W
+

m

∑
i=1

1
σ2

i
, (22b)

w−W =σ2
w

(
W
σ2

W
− W

σ2
w

)
+ σ2

w

m

∑
i=1

yi

σ2
i

=σ2
w

m

∑
i=1

yi −W
σ2

i
, (22c)

the estimates in the null model (8) can be expressed as

x̂0 =w, (23a)

ê0 =y− 1w, (23b)

Σê0 =Σ− 11Tσ2
w, (23c)

and the minimum of the sum of the squared residuals is

min Ω0 =
n

∑
i=1

(yi − w)2

σ2
i

. (23d)

4.1. Mean Shift Model

In the MS model, the first m observations are falsified by bias parameters ∇1, . . . ,∇m. Matrix

C =

(
I
0

)
(24)

in (4) is a block matrix of the m×m identity matrix and a (n−m)×m null matrix. Maximizing the
likelihood function yields the estimated parameters and residuals, i.e.,

x̂MS =W, (25a)

êMS =y− 1W, (25b)
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respectively, as well as the estimated bias parameters and their related covariance matrix, i.e.,

∇̂ =

y1 −W
...

ym −W

 =

 êMS,1
...

êMS,m

 , (25c)

Σ∇̂ =


σ2

1 + σ2
W σ2

W . . . σ2
W

σ2
W σ2

2 + σ2
W . . . σ2

W
...

...
. . .

...
σ2

W σ2
W . . . σ2

m + σ2
W

 , (25d)

respectively. Note that (25d) is obtained by covariance propagation that was applied to (25c).
By applying the Sherman—Morrison formula, cf. Sherman and Morrison [22], the inverse matrix
of Σ∇̂ is obtained,

Σ−1
∇̂ =




σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
m

+ σ2
W11T


−1

=


σ−2

1 0 . . . 0
0 σ−2

2 . . . 0
...

...
. . .

...
0 0 . . . σ−2

m

− σ2
W

1 + σ2
W ∑m

i=1 σ−2
i


σ−2

1
σ−2

2
...

σ−2
m




σ−2
1

σ−2
2
...

σ−2
m


T

=


σ−2

1 0 . . . 0
0 σ−2

2 . . . 0
...

...
. . .

...
0 0 . . . σ−2

m

− σ2
w


σ−4

1 σ−2
1 σ−2

2 . . . σ−2
1 σ−2

m
σ−2

1 σ−2
2 σ−4

2 . . . σ−2
2 σ−2

m
...

...
. . .

...
σ−2

1 σ−2
m σ−2

2 σ−2
m . . . σ−4

m

 , (26)

and the test statistic (7) in the MS model becomes

TMS(y) =
m

∑
i=1

ê2
MS,i

σ2
i
− σ2

w

m

∑
i=1

m

∑
j=1

êMS,i êMS,j

σ2
i σ2

j
. (27)

According to (9), the distributions of the null model and the alternative model are given by

TMS|H0 ∼χ2(m, 0), (28a)

TMS|HMS ∼χ2(m, λ), (28b)

respectively, where the non-centrality parameter reads

λ =
m

∑
i=1

∇2
i

σ2
i
− σ2

w

m

∑
i=1

m

∑
j=1

∇i∇j

σ2
i σ2

j
. (29)

For the special cases of m = 1 and m = 2 extra bias parameters, as well as the case of independent
and identically distributed random observation errors, the related test statistics (27) are given by
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Case m = 1:

TMS(y) =
ê2

MS,1

σ2
1 + σ2

W
, (30)

Case m = 2:

TMS(y) = ê2
MS,1

σ2
1 − σ2

w

σ4
1

+ ê2
MS,2

σ2
2 − σ2

w

σ4
2
− 2σ2

w
êMS,1 êMS,2

σ2
1 σ2

2
, (31)

Case σ1 = σ2 = · · · = σm =: σ:

TMS(y) =
1
σ2

(
m

∑
i=1

ê2
MS,i −

1
n

m

∑
i=1

m

∑
j=1

êMS,i êMS,j

)
. (32)

In the case of σw � min σi, which often arises when m� n, the test statistic tends to

TMS(y)→
m

∑
i=1

ê2
MS,i

σ2
i

. (33)

4.2. Variance Inflation Model—General Considerations

In the VI model, the first m observations are falsified by variance inflation factors τ1, . . . , τm.
The necessary condition (17) reads

0 =
m

∑
i=1

1
yi − x̂VI

+
n

∑
i=m+1

yi − x̂VI

σ2
i

. (34)

Using (20b) and (21b), this can be rewritten to

x̂VI −W =
m

∑
i=1

σ2
W

yi − x̂VI
. (35)

This solution x̂VI is obtained as the real root of a polynomial of degree m + 1, which might have,
at most m + 1, real solutions. In the model, it is easy to exclude the case that yi = yj, i 6= j, because
they are either both outliers or both good observations. They should be merged into one observation.
Let us index the observations, as follows: y1 < y2 < · · · < ym. We see that

• in the interval −∞ . . . y1 of x̂VI the right hand side of (35) goes from 0 to +∞,
• in each interval yi−1 . . . yi it goes from −∞ to +∞, and
• in the interval ym · · ·+ ∞ it goes from −∞ to 0.
• The left hand side of (35) is a straight line.

Therefore, (35) has always at least one real solution x̂VI in each interval yi−1 . . . yi, where one of
them must be a maximum of (16), because (16) goes from −∞ up to some maximum and then down
again to −∞ in this interval. Besides these m− 1 uninteresting solutions, (35) can have no more or
two more real solutions, except in rare cases, where it might have one more real solution. If W < y1,
then there are no solutions above ym. If W > ym, then there are no solutions below y1.

From these considerations it becomes clear that (35) can have, at most, one solution that is
a minimum of (16), see also Figure 3.

The second-order sufficient condition for a strict local minimum of (16) is that the Hessian matrix
H of (16),
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H(xVI , τ1, . . . , τm) = 2



1
σ2

W
+ ∑m

i=1
1

τiσ
2
i

y1−xVI
τ2

1 σ2
1

. . . ym−xVI
τ2

mσ2
m

y1−xVI
τ2

1 σ2
1

(y1−xVI)
2

τ3
1 σ2

1
− 1

2τ2
1

. . . 0
...

...
. . .

...
ym−xVI

τ2
mσ2

m
0 . . . (ym−xVI)

2

τ3
mσ2

m
− 1

2τ2
m

 , (36)

must be positive-definite at x̂VI , τ̂1, . . . , τ̂m, cf. Nocedal and Wright ([23] p.16), i.e.,

H(x̂VI , τ̂1, . . . , τ̂m) = 2



1
σ2

W
+ ∑m

i=1
1

τ̂iσ
2
i

y1−x̂VI
τ̂2

1 σ2
1

. . . ym−x̂VI
τ̂2

mσ2
m

y1−x̂VI
τ̂2

1 σ2
1

1
2τ̂2

1
. . . 0

...
...

. . .
...

ym−x̂VI
τ̂2

mσ2
m

0 . . . 1
2τ̂2

m

 . (37)

must be a positive definite matrix. A practical test for positive definiteness that does not require
explicit calculation of the eigenvalues is the principal minor test, also known as Sylvester’s criterion.
The k-th leading principal minor is the determinant that is formed by deleting the last n− k rows and
columns of the matrix. A necessary and sufficient condition that a symmetric n× n matrix is positive
definite is that all n leading principal minors are positive, cf. Prussing [24], Gilbert [25]. Invoking
Schur’s determinant identity, i.e.,

det

(
A B
C D

)
= det(D)det(A− BD−1C) (38)

and in combination with (15), we see that the k-th leading principal minor of H in (37) is

k

∏
i=1

(
1

2τ̂2
k

)(
1

σ2
W

+
m

∑
i=1

1
τ̂iσ

2
i
−

k

∑
i=1

2
τ̂iσ

2
i

)
. (39)

To be positive, the second factor must be ensured to be positive for each k. Obviously, if this is
true for k = m, it is also true for all other k. Therefore, the necessary and sufficient condition for a local
minimum of (16) reads

m

∑
i=1

σ2
W

τ̂iσ
2
i
=

m

∑
i=1

σ2
W

(yi − x̂VI)2 < 1. (40)

In other words, if and only if x̂VI is sufficiently far away from all outlying observations, it belongs
to a strict local minimum of (16).

Using (23d),(16), the test statistic (18) in the VI model for max τ̂i > 1 reads

TVI = min Ω0 −min

{
ΩVI +

m

∑
i=1

log τi

}
(41)

=
n

∑
i=1

(yi − w)2

σ2
i

−m−
m

∑
i=1

log
(yi − x̂VI)

2

σ2
i

−
n

∑
i=m+1

(yi − x̂VI)
2

σ2
i

=
n

∑
i=1

(
(yi − w)2

σ2
i

− (yi − x̂VI)
2

σ2
i

)
−m +

m

∑
i=1

(
(yi − x̂VI)

2

σ2
i

− log
(yi − x̂VI)

2

σ2
i

)

= (x̂VI − w)
n

∑
i=1

2yi − x̂VI − w
σ2

i
−m +

m

∑
i=1

(τ̂i − log τ̂i)

= − (x̂VI − w)2

σ2
w

−m +
m

∑
i=1

(τ̂i − log τ̂i) .
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Tracing back the flow sheet of computations, it becomes clear that TVI depends on the observations
only through y1, . . . , ym and w or equivalently through y1, . . . , ym and W. These m + 1 quantities
represent a so-called "sufficient statistic" for the outlier test.

Figure 3. Illustration of two exemplary cases of the solution of (35). Whereas the dash-dot red styled
lines indicate the right hand side of the function, the black colored dashed line depicts the left hand
side of (35). A dark red circle symbolises the desired solution out of five.

An interesting result is obtained, when we consider the case σW → 0, which occurs if the n−m
good observations contain much more information than the m suspected outliers. In this case, (35) can
be rewritten as

(x̂VI −W)
m

∏
i=1

(yi − x̂VI) = σ2
W P(y1, . . . , yn, x̂VI). (42)

where P is some polynomial. If the right hand side goes to zero, at least one factor of the left hand
side must also go to zero. As σW → 0, we obtain m + 1 solutions for x̂VI , approaching W, y1, . . . .ym.
The first solution can be a valid VI solution, the others are invalid as τ̂i → 0. Note that we have
x̂VI → x̂MS in this case, and also êVI,i → êMS,i for all i = 1, . . . , m. Having in mind (22c), we see
that (41) becomes

TVI →−
(W − w)2

σ2
w

−m +
m

∑
i=1

(τ̂i − log τ̂i) (43)

=σ2
w

(
m

∑
i=1

yi −W
σ2

i

)2

−m +
m

∑
i=1

(τ̂i − log τ̂i) (44)
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and also noting that with (22b) we find σw → 0, such that

TVI →−m +
m

∑
i=1

(τ̂i − log τ̂i) (45)

=−m +
m

∑
i=1

ê2
MS,i

σ2
i
− log

ê2
MS,i

σ2
i

. (46)

When comparing this to the equivalent result in the MS model (33), we see that TVI and TMS are
equivalent test statistics under the sufficient condition min τ̂i > 1, because τ − log τ is a monotonic
function for τ > 1. This means that, in this case, the decision on H0 is the same, both in the MS and in
the VI model. However, max τ̂i > 1 might not be sufficient for this property.

4.3. Variance Inflation Model—Test for One Outlier

In the case m = 1 (35) reads

x̂VI =
σ2

W
y1 − x̂VI

+ W (47)

Rewriting this to a quadratic equation yields up to two solutions, i.e.,

x̂VI =
y1 + W

2
±
√

(y1 −W)2

4
− σ2

W . (48)

With (15), we find

τ̂1 =
1
σ2

1

(
y1 −W

2
±
√

(y1 −W)2

4
− σ2

W

)2

=
1
σ2

1

 êMS,1

2
±

√
ê2

MS,1

4
− σ2

W

2

. (49)

For a solution to exist at all, we must have |êMS,1| ≥ 2σW . This means that y1 must be sufficiently
outlying, otherwise H0 is to be accepted.

The condition for a strict local maximum (40) reads here

σ2
W < τ̂1σ2

1 =

 êMS,1

2
±

√
ê2

MS,1

4
− σ2

W

2

. (50)

For the sign of the square root equal to the sign of êMS,1, this inequality is trivially fulfilled. For the
opposite sign, we require

σW <
|êMS,1|

2
−

√
ê2

MS,1

4
− σ2

W . (51)

Rewriting this expression yields√
ê2

MS,1

4
− σ2

W <
|êMS,1|

2
− σW (52)



Mathematics 2020, 8, 991 14 of 21

and squaring both sides, which can be done because they are both positive, we readily arrive at
|êMS,1| < 2σW , which is the case that no solution exists. Therefore, we have exactly one minimum
of (16), i.e.,

x̂VI =
y1 + W

2
− sign(y1 −W)

√
(y1 −W)2

4
− σ2

W (53a)

=
y1 + W

2
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W ,

τ̂1 =
1
σ2

1

 êMS,1

2
+ sign(êMS,1)

√
ê2

MS,1

4
− σ2

W

2

, (53b)

and the test statistic (18) becomes

TVI =

0 if τ̂1 ≤ 1,

− (x̂VI−w)2

σ2
w
− 1 + τ̂1 − log τ̂1 otherwise.

(54)

The condition τ̂1 > 1 is equivalent to√
ê2

MS,1

4
− σ2

W > σ1 −
|êMS,1|

2
, (55)

which is trivially fulfilled, if the right hand side is negative. If it is non-negative, both sides can be
squared and rearranged to

|êMS,1| >
σ2

1 + σ2
W

σ1
. (56)

Since this condition also covers the case that |êMS,1| > 2σ1, it can be used exclusively as an
equivalent of τ̂1 > 1.

With (22c) we see that both

x̂VI − w =
y1 −W

2
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W − σ2
w

y1 −W
σ2

1
(57)

= êMS,1

(
1
2
− σ2

w

σ2
1

)
− sign(êMS,1)

√
ê2

MS,1

4
− σ2

W

as well as τ̂1 through (53b) depend on the observations only through êMS,1, and so does TVI in (54).
On closer examination, we see that TVI in (54) depends even only on |êMS,1|. This clearly holds as
well for TMS in (30). Therefore, both test statistics are equivalent if TVI can be shown to be a strictly
monotone function of TMS.

Figure 4 shows that (54) as a function of êMS,1 is monotone. A mathematical proof of monotony is
given in the Appendix A. Thus, it is also monotone as a function of TMS and even strictly monotone
for τ̂1 > 1, which is the case that we are interested in. Therefore, the MS model and the VI model are
fully equivalent for repeated observations to be tested for m = 1 outlier.
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Figure 4. Resulting test statistic TVI of the variance inflation (VI) approach (54) as a function of the
residual êMS,1 for various ratios of σw/σ1.

Finally, we numerically determine the probability distribution of test statistic (54) using Monte
Carlo integration by

• defining the ratio σW/σ1,
• generating normally distributed pseudo random numbers for eMS,1,
• evaluating (53) and (54), and
• taking the histogram of (54),

using 107 pseudo random samples of êMS,1. In Figure 5, the positive branch of the symmetric probability
density function (PDF) is given in logarithmic scale for various ratios of σW/σ1. However, only about
30% of the probability mass is located under this curve, the rest is concentrated at TVI = 0, and is not
displayed. The quantiles of this distribution determine critical values and also αmax in (19). The results
are summarized in Table 1.

Figure 5. Probability density function of TVI (54) as a function of the residual êMS,1 under H0,
approximated by MCM. Vertical axis is in logarithmic scale. The strong peaks at 0 for τ̂1 ≤ 1 are not
displayed. The dashed black and the solid red curve relates to σW/σ1 = 0.05 and σW/σ1 = 0.5, respectively.
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Table 1. Maximum selectable type 1 error probability αmax and critical value cα for TVI in (54) for
various ratios of σW/σ1 and α = 0.05.

σW/σ1 αmax cα

0.05 0.317 1.50
0.10 0.315 1.49
0.20 0.308 1.47
0.30 0.297 1.43
0.50 0.264 1.33

4.4. Variance Inflation Model—Test for Two Outliers

In the case m = 2 outliers, (35) reads

x̂VI −W =
σ2

W
y1 − x̂VI

+
σ2

W
y2 − x̂VI

. (58)

The solution for x̂VI can be expressed in terms of a cubic equation, which permits an analytical
solution. One real solution must be in the interval y1 . . . y2, but there may be two more solutions

• both below y1, if W < y1, or
• both above y2, if W > y2, or
• both between y1 and y2, if y1 > W > y2.

In rare cases, solutions may also coincide. The analytical expressions are very complicated and
they do not permit a treatment analogous to the preceding subsection. Therefore, we have to fully rely
on numerical methods, which, in our case, is the Monte Carlo method (MCM).

First, we compute the critical values of the test statistic (18)

TVI =

0 if max(τ̂1, τ̂2) ≤ 1,

− (x̂VI−w)2

σ2
w
− 2 + τ̂1 + τ̂2 − log τ̂1 − log τ̂2 otherwise.

(59)

The MCM is preformed, using 107 pseudo random samples. We restrict ourselves to the case
σ1 = σ2. The maximum selectable type 1 error probabilities αmax are summarized in Table 2. It is
shown that αmax is mostly larger than for m = 1. The reason is that, more often, we obtain τ̂i > 1,
even if H0 is true, which makes it easier to define critical values in a meaningful way. Moreover, Table 2
indicates the probabilities that under H0

• (16) has no local minimum, and if it has, that
• max(τ̂1, τ̂2) ≤ 1
• τ̂1 ≤ 1, τ̂2 > 1 or vice versa
• min(τ̂1, τ̂2) > 1

i.e., none, one, or both variances are inflated. It is shown that, if the good observations contain
the majority of the information, a minimum exists, but, contrary to our expectation, the case
max(τ̂1, τ̂2) ≤ 1 is not typically the dominating case.

The important result is what happens, if H0 is false, because variances are truly inflated.
The probability that H0 is rejected is known as the power 1− β of the test, where β is the probability
of a type 2 decision error. It is computed both with TMS in (31) as well as with TVI in (59). Table 3
provides the results. It is shown that the power of TMS is always better than of TVI . This is unexpected,
because TMS is not equivalent to the likelihood ratio of the VI model.

A possible explanation of the low performance of TVI in (59) is that, in many cases, the likelihood
function LVI has no local maximum, such that (16) has no local minimum. Even for an extreme variance
inflation of τ1 = τ2 = 5 this occurs with remarkable probability of 0.14. Moreover, the probability that
max(τ̂1, τ̂2) ≤ 1 is hardly less than that. In both cases, H0 cannot be rejected.
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Table 2. Maximum selectable type 1 error probability αmax and critical value cα for TVI in (59) for
various ratios of σW/σ1 = σW/σ2 and α = 0.05 as well as probabilities that (16) has no local minimum or
that 0 or 1 or 2 variances are inflated.

Probabilities for

no 0 1 2

σW/σ1 = σW/σ2 αmax cα min Inflated Variances

0.01 0.52 4.68 0.03 0.45 0.42 0.10
0.02 0.51 4.36 0.06 0.42 0.41 0.10
0.03 0.50 4.11 0.09 0.40 0.40 0.10
0.05 0.48 3.69 0.15 0.36 0.38 0.10
0.10 0.43 3.00 0.29 0.27 0.33 0.10
0.20 0.33 2.32 0.53 0.14 0.24 0.09
0.30 0.24 1.82 0.69 0.06 0.16 0.09
0.50 0.12 0.97 0.88 0.01 0.05 0.07

Table 3. Test power 1− βMS for test using TMS in (31) and test power 1− βVI for test using TVI in (59)
for various true values of the variance inflation factors τ1, τ2 for σW = 0.1 · σ1 = 0.1 · σ2 and α = 0.05,
as well as probabilities that (16) has no local minimum or that 0 or one or two variances are inflated.

Probabilities for

Test Power no 0 1 2

τ1 τ2 1− βMS 1− βV I min Inflated Variances

1.0 1.0 0.05 0.05 0.29 0.27 0.33 0.10
1.2 1.2 0.08 0.08 0.27 0.24 0.35 0.13
1.5 1.5 0.13 0.12 0.24 0.21 0.38 0.17
2.0 2.0 0.22 0.20 0.21 0.17 0.39 0.23
3.0 3.0 0.36 0.32 0.18 0.12 0.39 0.31
5.0 5.0 0.55 0.49 0.14 0.08 0.36 0.42
1.0 1.5 0.09 0.09 0.27 0.24 0.36 0.13
1.0 3.0 0.21 0.19 0.24 0.18 0.41 0.18
2.0 3.0 0.30 0.26 0.19 0.14 0.40 0.27
2.0 5.0 0.40 0.36 0.18 0.11 0.40 0.31

4.5. Outlier Identification

If it is not known which observations are outlier-suspected, a multiple test must be set up. If the
critical values are identical in all tests, then we simply have to look for the largest test statistic. This is
the case for TMS when considering the same number m of outlier-suspected observations, see (9). If we
even consider different numbers m in the same multiple test, we have to apply the p-value approach,
cf. Lehmann and Lösler [5].

In the VI model, the requirement of identical critical values is rarely met. It is, in general, not met
for repeated observations, not even for m = 1, as can be seen in Figure 5. However, in this case, it is
no problem, because the test with TVI in (54) is equivalent to TMS in (30), as demonstrated. This also
means that the same outlier is identified with both test statistics.

For repeated observations, we find identical critical values only for identical variances of the
outlier-suspected observations, such that those observations are fully indistinguishable from each
other. For example, for n = 27, m = 2, α = 0.05, and σ1 = · · · = σn, we find σW/σi = 0.20 and cα = 2.32
for all 351 pairs of outlier-suspected observations, see Table 2.

We evaluate the identifiability of two outliers in n = 10 and n = 20 repeated observations
with m = 2 outliers while using the MCM. In each of the 106 repetitions, random observations are
generated having equal variances. Two cases are considered. Whereas, in the first case, two variances
are inflated by τ according to the VI model, in the second case, two observation values are shifted
by ∇ according to the MS model. Using (31) and (59), the test statistics TMS and TVI are computed
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for all n(n− 1)/2 = 45 or 190 pairs of observations. If the maximum of the test statistic is attained
for the actually modified pair of observations, the test statistic correctly identifies the outliers. Here,
we assume that α is large enough for the critical value to be exceeded, but otherwise the results are
independent of the choice of α. The success probabilities are given in Table 4.

Table 4. Success probabilities for outlier identification in repeated observations of equal variance σ2

with two outliers.

Success Probabilities for n = 10 Success Probabilities for n = 20

τ1 = τ2 of TMS in (31) of TV I in (59) of TMS in (31) of TV I in (59)

1.0 0.022 0.021 0.005 0.005
2.0 0.065 0.061 0.028 0.026
3.0 0.108 0.104 0.061 0.057
4.0 0.150 0.144 0.095 0.089
5.0 0.185 0.180 0.128 0.121
6.0 0.218 0.212 0.156 0.151

∇1 = ∇2 of TMS in (31) of TV I in (59) of TMS in (31) of TV I in (59)

0.0 0.022 0.021 0.005 0.005
1σ 0.081 0.065 0.035 0.028
2σ 0.325 0.286 0.226 0.202
3σ 0.683 0.652 0.606 0.586
4σ 0.912 0.902 0.892 0.886
5σ 0.985 0.984 0.984 0.984

As expected, the success probabilities increase as τ or ∇ gets large. However, for both cases,
TMS outperforms TVI . In Figure 6, the ratio rT of the success probabilities between the VI and the MS
approach is depicted, having n = 10 repeated observations. If rT > 1, the success rate of TVI is higher
than for TMS and vice versa. The ratio is always rT < 1 and tends to 1, as shown in Figure 6. Therefore,
the success probability of the MS is higher than for the VI approach, even if the outliers are caused by
an inflation of the variances.

Figure 6. Ratio rT of the success probabilities between the VI and the MS approach using n = 10
repeated observations. The top figure depicts rT for the case of inflated variances. The bottom figure
depicts rT for the case of shifted mean values.
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5. Conclusions

We have studied the detection of outliers in the framework of statistical hypothesis testing.
We have investigated two types of alternative hypotheses: the mean shift (MS) hypothesis, where the
probability distributions of the outliers are thought of as having a shifted mean, and the variance
inflation (VI) model, where they are thought of as having an inflated variance. This corresponds to
an outlier-generating process thought of as being deterministic or random, respectively. While the
first type of alternative hypothesis is routinely applied in geodesy and in many other disciplines,
the second is not. However, even if the VI model might be more adequate to describe the stochastics of
the observations, this does not mean that it is possible to estimate parameters or detect outliers better
than with some less adequate model, like MS.

The test statistic has been derived by the likelihood ratio of null and alternative hypothesis.
This was motivated by the famous Neyman–Pearson lemma, cf. Neyman and Pearson [20], even though
that this lemma does not directly apply to this test. Therefore, the performance of the test must be
numerically evaluated.

When compared to existing VI approaches, we

• strived for a true (non-restricted) maximization of the likelihood function;
• allowed for multiple outliers;
• fully worked out the case of repeated observations; and,
• computated the corresponding test power by MC method for the first time.

We newly found out that the VI stochastic model has some critical disadvantages:

• the maximization of the likelihood function requires the solution of a system of u polynomial
equations of degree m + 1, where u is the number of model parameters and m is the number of
suspected outliers;

• it is neither guaranteed that the likelihood function actually has such a local maximum, nor that it
is unique;

• the maximum might be at a point where some variance is deflated rather than inflated. It is
debatable, what the result of the test should be in such a case;

• the critical value of this test must be computed numerically by Monte Carlo integration. This must
even be done for each model separately; and,

• there is an upper limit (19) for the choice of the critical value, which may become small in
some cases.

For the first time, the application of the VI model has been investigated for the most simple
model of repeated observations. It is shown that here the likelihood function admits at most one local
maximum, and it does so, if the outliers are strong enough. Moreover, in the limiting case that the
suspected outliers represent an almost negligible amount of information, the VI test statistic and the
MS test statistic have been demonstrated to be almost equivalent.

For m = 1 outlier in the repeated observations, there is even a closed formula (54) for the test
statistic, and the existence and uniqueness of a local maximum is equivalent to a simple checkable
inequality condition. Additionally, here the VI test statistic and the MS test statistic are equivalent.

In our numerical investigations, we newly found out that for m > 1 outliers in the repeated
observations the power of the VI test is worse than using the classical MS test statistic. The reason is the
lack of a maximum of the likelihood function, even for sizable outliers. Our numerical investigations
also show that the identifiability of the outliers is worse for the VI test statistic. This is clearly seen in
the case that the outliers are truly caused by shifted means, but also in the other case the identifiability
is slightly worse. This means that the correct outliers are more often identified with the MS test statistic.

In the considered cases, we did not find real advantages of the VI model, but this does not prove
that they do not exist. As long as such cases are not found, we therefore recommend practically
performing outlier detection by the MS model.
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Appendix A

To prove the monotony of the tails of the function TVI (eMS,1) in (54), the extreme values of TVI
have to be determined. Since TVI is symmetric, it is sufficient to restrict the proof for positive values of
eMS,1. The first derivation of TVI is given by

T
′
VI (eMS,1) = −

4σ2
W
(
σ2

1 + 1
)
− e2

MS,1
(
σ2

1 + σ2
W
)
+ eMS,1

(
σ2

1 − σ2
W
)√

e2
MS,1 − 4σ2

W

σ2
W
(
σ2

1 + σ2
W
)√

e2
MS,1 − 4σ2

W

. (A1)

Setting T
′
VI (eMS,1) = 0 yields two roots

e± = ±
(σ2

1 + σ2
W)

σ1
. (A2)

Inserting the positive extreme value e+ into the second derivation of TVI , i.e.,

T
′′
VI (eMS,1) =

eMS,1
(
σ2

1 + σ2
W
)
+
√

e2
MS,1 − 4σ2

W
(
σ2

W − σ2
1
)

σ2
W
(
σ2

1 + σ2
W
)√

e2
MS,1 − 4σ2

W

, (A3)

identifies e+ as a minimum value, because T
′′
VI (e+) is always positive for τ1 > 1, cf. (55). For that

reason, TVI is a monotonically increasing function on the interval (e+,+∞). Figure A1 depicts the
positive tail of TVI and T

′
VI , respectively, as well as the minimum e+.

Figure A1. Tail of the function TVI and its first derivation T
′
VI for positive values of eMS,1 as well as

the minimum e+.
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