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Abstract
The “Seven Pillars” of oxidation catalysis proposed by Robert K. Grasselli represent an early example of phenomenologi-
cal descriptors in the field of heterogeneous catalysis. Major advances in the theoretical description of catalytic reactions 
have been achieved in recent years and new catalysts are predicted today by using computational methods. To tackle the 
immense complexity of high-performance systems in reactions where selectivity is a major issue, analysis of scientific data 
by artificial intelligence and data science provides new opportunities for achieving improved understanding. Modern data 
analytics require data of highest quality and sufficient diversity. Existing data, however, frequently do not comply with these 
constraints. Therefore, new concepts of data generation and management are needed. Herein we present a basic approach in 
defining best practice procedures of measuring consistent data sets in heterogeneous catalysis using “handbooks”. Selective 
oxidation of short-chain alkanes over mixed metal oxide catalysts was selected as an example.

Keywords  Standard operation procedure · Best practice · Rigorous protocols · Descriptor · Data science · Machine 
learning · Artificial intelligence

1  Introduction

The application of catalyst technologies in the chemical 
industry stands for efficient and sustainable production of 
chemicals and fuels. Catalytic processes contribute to the 
minimization of waste formation and energy consumption, 
and are essential in terms of exhaust gas treatment not only 
in the materials, but also in the energy and transport sectors 
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[1]. More stable and effective catalysts are necessary to ena-
ble chemical energy conversion and storage at the required 
global scale. Only then is a closed carbon economy and the 
construction of sustainable energy systems possible [2].

As for production of basic chemicals and consumer 
products in the chemical industry, high selectivity to the 
desired reaction product allows for the efficient utilization 
of raw materials, the minimization of energy consumption 
by avoiding separation and purification steps, and the miti-
gation of waste formation or emission of greenhouse gases 
such as CO2. However, development of selective catalysts 
for reactions with numerous products, including selective 
oxidation of hydrocarbons [3–8], and synthesis of olefins 
and oxygenates via hydrogenation of carbon oxides [9–11], 
are challenging due to their underlying complex organic 
reaction networks.

The limited understanding of relations between catalyst 
structure and reactivity entails that technology changes are 
rare in the evolution of heterogeneous catalysis and attractive 
processes such as the direct synthesis of olefins or methanol 
from methane [7, 12], the selective oxidation of propane to 
oxygenates (acrolein or acrylic acid) [13, 14], or the synthe-
sis of higher alcohols from synthesis gas [11], are commer-
cially not yet implemented despite extensive research efforts.

Experimentally determined descriptors have been identi-
fied to guide catalyst developments in oxidation reactions 
[15, 16], acid–base reactions [17], or reactions on ceria 
catalysts [18], just to mention a few examples. Grasselli 
proposed “Seven Pillars in Oxidation Catalysis”, which 
comprise lattice oxygen, metal–oxygen bond strength, host 
structure, redox properties, multifunctionality of active sites, 
site isolation, and phase cooperation, summarizing the seven 
most important features that should be taken into account in 
the design of metal oxides for selective oxidation of hydro-
carbons [19].

Artificial intelligence may facilitate the identification of 
new, high-performance catalysts. Data science applications 
find renewed interest in heterogeneous catalysis research 
with the aim to discover selective catalysts for reactions that 
are influenced by a multitude of parameters, see for example 
references [20–32].

In the present essay we will explain our viewpoint why 
the use of artificial intelligence (AI) and data science 
requires a shift in the current paradigm of data genera-
tion and documentation in catalysis research. A definition 
of standards, rigorous measurement protocols, and best 
practice procedures that enables quality control and allows 
for the generation of suitable input data is necessary. Best 
practice and pitfalls in materials synthesis, kinetic meas-
urements and characterization in both thermal catalysis and 
electrocatalysis or electrochemistry are permanent topics in 
the scientific literature [33–46] and in editorials [47–50]. 
Design issues, databases, and advanced characterization 

approaches are also discussed in materials science [51, 52]. 
Nonetheless, all efforts did not lead to any action across the 
catalysis community such as suggesting a minimum standard 
in the reporting of workflows and results. In other fields of 
science, such as crystallography, such structured reporting 
is now compulsory in each report [53]. Standards do not 
inhibit scientific creativity as they represent a minimum of 
experimentation metadata and results while setting no limits 
to additional work.

In this perspective we will explain why only a small por-
tion of the catalysis-related data published in the past meets 
the minimum standards for data analysis even if only tech-
nically correct data were considered. The chemical dynam-
ics of high-performance catalysts and the additional kinetic 
phenomena of activation and deactivation render informa-
tion regarding catalyst history critical but unfortunately 
it is frequently not published. The widespread, simplified 
perceptions about the static nature of active sites seems to 
make such information an unnecessary detail that only adds 
redundant volume to scientific reports. We here propose 
the introduction of handbooks for all classes of reactions 
in which the minimum requirement to the investigation of a 
catalyst is prescribed as a binding directive for and a com-
mitment of the community. We illustrate how such hand-
books can be defined. Using a handbook would improve the 
significance and re-usability of the present data for future 
research. The standardized data could then be used, not only 
for the intended reaction, but also for studies with unfore-
seen contexts. AI technologies (including, e.g., machine 
learning, deep learning, and data mining) could accumulate 
the information of all groups participating in the study of a 
given reaction and enhance the level of insight that can be 
derived from the worldwide experimental effort.

In Chapter 2 we will discuss gaps between theory and 
experiment, which are related to the complexity and the 
dynamics of the systems investigated in heterogeneous 
catalysis and the frequently applied assumption that active 
sites are definite and fixed. We emphasize that the outcome 
of a catalytic measurement, i.e., the overall reaction rate 
(activity) or the ratio of various product formation rates 
(selectivity), strongly depends on how the measurement is 
performed. This differs from the determination of thermo-
dynamic values (state functions), such as temperature, pres-
sure, chemical potential, or reaction enthalpy. Random and 
systematic errors affect the measurements of thermodynamic 
and kinetic data likewise. However, experimentally deter-
mined kinetic values, such as a rate or an apparent activation 
energy, additionally depend on the workflow of the experi-
ment and the “true” result cannot be extrapolated as will be 
outlined in Chapter 3. The resulting consequences for the 
conduction of experimental studies in heterogeneous cataly-
sis are listed in Chapter 4. The oxidation of ethane, propane, 
and n-butane to olefins and oxygenates is chosen as example 
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and a handbook for oxidation catalysis is proposed in Chap-
ter 5. Conclusions and an outlook are provided in Chapter 6.

2 � Predictions and Restrictions

Heterogeneous catalysis is a multi-dimensional phenomenon 
with respect to space and time (Fig. 1). Catalyst development 
involves not only the design of proper active sites embedded 
in a stabilizing active phase, but comprises the engineer-
ing of catalyst formulations for specific applications using 
binder and filling materials in the manufacture of catalyst 
pellets or electrodes. The macroscopic shape and the overall 
chemistry of the resulting composite as well as the catalyzed 
chemical reaction are linked to reactor technology and pro-
cess conditions, i.e., the applied reactor technology depends 
on the specifics of the catalyst and the chemical reaction 
(rate, reaction network, involved phases, deactivation). 
Fluidized bed or fixed bed reactor technologies and lean or 
rich feed compositions, respectively, require different cata-
lyst formulations. The composition of the composite, and 
the interaction between binder and active phase influence 
charge, mass, and heat transport properties, and may cause 
additional reactivity. To cope with all these interrelated phe-
nomena in the development of high-performance catalysts, 
synthesis, shaping, testing, and materials characterization 
are implemented by applying iterative procedures involving 
numerous feedback loops in traditional catalysis research 
approaches [54]. Important target criteria are the predomi-
nant formation of the desired reaction product(s) at high 
reactant conversion in the catalytic reaction, long-term sta-
bility of the catalyst, or the availability of facile regeneration 
methods. Performance optimization, however, implies, in 

most of cases, tremendous chemical and structural complex-
ity of the technical catalyst, which complicates any detailed 
physical and chemical analysis. The limited insight into the 
mode of operation has the consequence that catalyst design 
based on atomic-scale understanding is extremely challeng-
ing as far as high performance catalysts are concerned.

The prediction of catalytic properties and the “design” 
of active phases require an overall and quantitative insight 
into the nature of the “active sites” and the knowledge of 
the complete reaction mechanism taking into consideration 
transport phenomena at all length scales and the catalyst 
formulation as well as any reactor technology aspects as 
discussed above. Integration of experiment and theory is 
necessary to achieve this goal since measurements of activ-
ity, selectivity, and stability carried out at the macro-scale in 
a laboratory reactor provide only indirect information. The 
underlying catalyst dynamics need to be taken into account.

Descriptors are frequently used to interpret trends in cata-
lyst performance and to predict new catalysts. A descrip-
tor is defined as a function of one or more parameters that 
project chemical-physical properties upon the library of 
observations. The descriptor represents exactly this func-
tion of parameters (primary features, e.g., the concentration 
of one element on the catalyst surface) that characterizes 
the phenomena pivotal to a certain material function (e.g. 
catalysis). The parameters entering in the descriptor func-
tion expression could be either measured by experiment or 
calculated from theory.

Predictive theory was developed that allows the forecast 
of general trends in reaction rates as a function of the com-
position of the active phase [55]. In simple cases, for exam-
ple, in reactions that yield only one reaction product, i.e., 
where the catalyst exclusively determines the rate, whereas 
selectivity is no issue (e.g., CO oxidation over transition 
metals), descriptors were identified based on linear (Brøn-
sted–Evans–Polanyi (BEP)) [56, 57] relationships (scaling 
relations) between calculated adsorption energies of spe-
cies involved in the rate-determining step (thermodynamic 
value) and the reaction barrier (kinetic value) [58]. Accord-
ing to the Sabatier principle [59], activity maps that provide 
normalized, semi-quantitative links between surface bond 
energies of adsorbates and the rate of a catalytic reaction 
were implemented [60]. The adsorption and dissociation of 
diatomic molecules (N2, NO, CO, and O2) on closed-packed 
and stepped transition metal surfaces were described by the 
d-band model [58]. The energetic position of the d-band 
center was identified as a descriptor that universally deter-
mines the strength of adsorption of diatomic molecules 
and, hence, the rate of conversion of these molecules in 
various reactions, including ammonia synthesis, NO reduc-
tion, methanation of CO, and CO oxidation, in which the 
dissociation of the diatomic molecule represents the rate-
determining step.

Fig. 1   Schematic illustration of time and length scale in heterogene-
ous catalytic systems that vary between mm-sized catalyst particles 
and nm-sized active sites, and minutes that the diffusion of a mole-
cule from the gas phase through the pore system of the catalyst par-
ticle to the active site can take and picoseconds that elementary reac-
tions last. Important parameters that influence the rate of a reaction in 
different dimensions are listed above the pictures
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The reacting molecules in hydrocarbon oxidation are 
more complex. Numerous dehydrogenation, oxygen inser-
tion, and C–C bond splitting reaction pathways are possible, 
which generally result in the existence of complex reaction 
networks (Fig. 2), and the formation of product mixtures. 
The homolytic splitting of a C–H bond in the first elementary 
surface reaction step is frequently assumed to be rate-limiting 
[61–64]. Hence, hydrogen affinity EH [62], which is defined 
as the difference between the formation energy of the reduced 

center (MmOxHy+1) and the formation energy of the fresh/
regenerated active site (MmOxHy), was introduced as uni-
versal descriptor for C–H activation over different oxides, 
metals, and composite materials provided that the mecha-
nism obeys a homolytic route [65]. Furthermore, assuming 
that lattice oxygen atoms located on the surface of a catalyst 
are the oxidizing agents in oxidation reactions over metal 
oxides [66], optimization of the oxygen vacancy formation 
energy ∆EV, for example by doping, was proposed to lead to 

Fig. 2   Reaction networks of propane oxidation over Mo–V-based 
mixed metal oxide catalysts reprinted from [4] with permission of 
Wiley VCH. The reaction intermediates and products colored in blue 

were detected in the effluent gas stream by gas chromatography over a 
catalyst working in steady state
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a maximum in the reaction rate [67, 68]. For good oxidation 
catalysts, ∆EV needs to be small, but not too small to enable 
fast re-oxidation in agreement with the Sabatier principle. 
It was demonstrated that band gap, bulk formation energy, 
and electron affinity strongly influence the surface oxygen 
vacancy formation energy [69]. Such descriptors provide, 
however, only information about the overall rate of the reac-
tion. Whether C–H activation leads to the formation of a 
valuable oxidation product or to undesired formation of CO2, 
is not predicted.

Different types of lattice and adsorbed oxygen species 
are essential in oxidation reactions depending on whether 
the target molecule in, for example, alkane oxidation is an 
olefin produced by oxidative dehydrogenation, an oxygen-
ate produced by selective oxidation, or CO2 produced by 
total combustion. Oxygen species with varying reactivity 
appear in the process of oxygen reduction on the surface of 
metal oxides under reaction conditions of a selective oxida-
tion reaction. The intermediates include the polarized O2 
molecule upon adsorption, differently charged molecular 
or atomic species with electrophilic character in the pro-
cess of O2 dissociation, and nucleophilic O2− ions after 
incorporation of oxygen into the oxide lattice. Control over 
occurrence and distribution of the various oxygen species 
on the surface of oxide catalysts under working conditions 
is the key issue in terms of selectivity [70–76]. Brønsted-
Evans-Polanyi relations, which are strongly coupled to the 
adsorbate geometry of diatomic molecules like oxygen in 
the transition state, were found from density functional 
theory for rutile-type metal oxides and perovskites [77]. 
Only in case of late transition states (with a geometry close 
to the final geometry of the dissociation products 2 O*), 
the dissociative chemisorption energy was found to be as 
a descriptor for the dissociation of oxygen. In Solid Oxide 
Fuel Cells (SOFCs), the bulk oxygen p-band center or bulk 
vacancy formation energy were proposed to dictate the oxy-
gen reduction reaction (ORR) rates over perovskites cath-
ode catalysts [78]. Scaling relationships were established 
in the oxygen evolution reaction (OER) in electrochemical 
water oxidation between the binding energies of adsorbed 
(*) HO*, HOO*, and O* species on oxide surfaces [79]. 
It appeared that the OER activity is depending on a larger 
number of physical and chemical properties [80], which 
required to construct multi-descriptor correlations [81]. An 
even more complex situation exists most likely under reac-
tion conditions of alkane oxidation due to the concurrent 
presence of the hydrocarbon and carbon/oxygen-containing 
reaction intermediates on the surface of metal oxide cata-
lysts (Fig. 2), which impedes the description by applying 
solely first-principles-based modelling [82]. The implica-
tions of complexity on the dynamic feedback loops between 
catalyst and reaction medium are discussed in the following 
chapter.

3 � Challenges and Opportunities

Scaling relations are used to predict new active phase com-
positions or to encourage the implementation of desired 
catalyst nano-structures by application of specific synthesis 
techniques, which result in improved or thus so far unknown 
catalytically active materials. Descriptor-based approaches, 
however, generally concentrate on the active phase with-
out taking into account the whole complexity of a catalyst 
system (Fig. 3) and largely rest upon assumptions concern-
ing active site and reaction mechanism. Therefore, it is not 
unlikely that important leads for catalyst improvements and 
new materials will be missed.

Moreover, scaling relations are broken by the occurrence 
of strain [83–85], defects [86], ensemble effects [87], and 
intended (addition of promoters or additives) or incidental 
amounts of impurities in the catalyst [88]. These parameters 
are strongly influenced by catalyst synthesis and are reflected 
in the impact of morphology or surface composition on the 
performance of different catalysts with identical bulk struc-
ture [89]. The rate of a catalytic reaction is often governed 
by only a very small amount of highly active sites, so-called 
high-energy sites, generated, for example, by strain, executed 
by the interaction of the active site with its “non-innocent” 
support [84]. Active sites are formed as a result of frustrated 
phase transitions [90], and the underlying metastable phases 
are difficult to capture by models [91]. High-performance 
and structurally complex oxidation catalysts can terminate 
with numerous defects, which undergo changes during pre-
treatment and under reaction conditions (Fig. 3) [92, 93]. 

Fig. 3   Annular darkfield scanning transmission electron microscopy 
images of the defective surface of orthorhombic (Mo,V)Ox (M1 
phase) viewed along the crystallographic c-axis: a pristine sample, b 
after thermal treatment in N2 atmosphere at 300 °C for 4 h, c image 
of the identical location after exposure to conditions relevant for the 
oxidative dehydrogenation of ethane (ODE), and d schematic illustra-
tion of the transformation of surface defects during reaction. Black 
hexagons—tiling of the ideal M1 phase, green and pink triangular 
motifs, yellow line—mirrored motif, red arrow—translated motif, red 
and pink circle—shared and rotated motif, respectively
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Such defects are generally not considered in models used to 
establish scaling relations.

In addition, the catalyst is changed in the course of the 
reaction due to transfer of electrons, protons, or other chemi-
cal processes, such as the dissolution of a reactant in the 
bulk of the catalyst. These dynamic changes may also have 
an impact on the rate of individual elementary steps and, 
therefore, on the reaction mechanism and the reaction bar-
riers. Chemical changes of the catalyst might be reversible 
within one turnover, as generally assumed in the concept of a 
catalytic cycle. In such a case, reactivity can be controlled by 
understanding the electronic structure of the catalyst. Only 
under assumption of this boundary condition can the defini-
tion of a turnover frequency provide quantitative values that 
describe catalyst activity. However, irreversible changes are 
frequently observed and reflected in the well-known phe-
nomena of catalyst activation or deactivation in the feed. 
Even if the bulk composition of the catalyst undergoes no 
changes the active and selective catalyst surface is gener-
ally only formed under steady-state operation [1]. The active 
site can also irreversibly deactivate in the course of just one 
catalytic turnover and new active sites are constantly gener-
ated due to solid state processes within bulk and/or surface 
of the catalyst under the influence of the feed, resulting in 
an overall constant number of active sites under steady-state 
conditions. Mars and van Krevelen proposed such a concept 
in oxidation catalysis [94]. Furthermore, a dynamic response 
of the electronic structure of the catalyst can occur in contact 
with the feed [95]. This can be measured by spectroscopic 
techniques and is, for example, reflected in the well-known 
observation of band bending that results in modification 
or control of charge transfer between the catalyst and the 
reactant(s) [96]. The catalyst dynamics can occur separately 
or in combination proving catalyst design and predictions 
exceptionally difficult.

In summary, catalysis is a kinetic phenomenon where 
all its results depend upon experimental conditions and no 
extrapolation between these conditions is possible. Its mate-
rial science is characterized by a dynamic mutual response 
of catalyst and reaction medium modulated by transport phe-
nomena at various length scales. Predictions are so difficult, 
due to the following analytical challenges:

•	 Complexity of both materials and reaction networks
•	 Detection limit for minor amounts of highly active spe-

cies (dopants, defects, frustrated configurations)
•	 Challenge of time-resolution; generally, only the global 

reaction is experimentally observable, not the individual 
elementary steps

•	 Catalyst dynamics under operation conditions, i.e., the 
entanglement of solid state and surface chemistry of the 
catalyst and the chemistry in the gas or liquid phase

Consequently, descriptors that determine the catalytic 
properties will need to capture the complex and sometimes 
ill-understood interplay of several phenomena: reaction 
network, reaction conditions and catalyst dynamics. Such 
complexity was so far not taken into account when deriving 
reactivity descriptors. Instead, these descriptors were based 
on strong assumptions, for instance on the (static) catalyst 
active surface structure or rate-determining steps. As an 
alternative to the descriptors based on chemical intuition, 
we could take the opportunity to use the tools of artificial 
intelligence, which are currently undergoing renewed inter-
est in heterogeneous catalysis [20–32], for descriptor iden-
tification based on data. In this case, the algorithm itself 
learns, from data, the possibly intricate correlation between 
a target property of interest and a set of potentially-relevant 
simpler materials properties offered by the user, the primary 
features. We thus hope to find a mathematical model that 
deepens our understanding of the relationship between the 
materials properties and the catalytic performance.

To capture this in a mathematical framework we define 
a vector of target properties P, such as the formation rates 
of specific products, the selectivity, or the catalyst stability. 
We assume that the target properties P depend on a vec-
tor of physical properties x that can be easily determined 
experimentally. These properties may be, for instance, bulk 
and surface properties of the catalysts extracted from X-ray 
diffraction (e.g. unit cell volume) and X-ray photoelectron 
spectroscopy (e.g. surface elemental composition). The aim 
is to find a continuous function P that generalizes from a set 
of measurements {(Pi, xi): i = 1,…,n} for n catalysts to previ-
ously unknown compounds. In this sense, cross-validation 
can be used to assess the performance of the descriptors 
with a given data set. We want to find descriptors d = d(x), 
which depend on the physical properties x, and from which 
the target properties can be computed (i.e., P(x) = P(d)). The 
success of data-driven identification of descriptors for cata-
lytic performance using artificial intelligence faces, however, 
at least two important challenges: data quantity and data 
quality.

Whereas traditional artificial-intelligence methods require 
large data sets for training, the number of data points that are 
typically available in catalysis, and, in general, in materials 
sciences, is rather reduced. This can be explained by the time 
and resource-consuming data generation. The sure independ-
ence screening and sparsifying operator (SISSO) approach is 
an artificial-intelligence method combining symbolic regres-
sion and compressed sensing for data-driven descriptor iden-
tification [97]. Contrary to standard AI methods, SISSO is 
efficient with rather reduced data sets. Furthermore, due to 
its symbolic-regression-based feature construction, it pro-
vides descriptors in the form of analytical expressions, from 
which the most relevant primary features for the property of 
interest are directly accessible. This is fundamental to gain 
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physical insights on the underlying phenomena governing 
catalysis. When using SISSO, several catalyst properties 
can be offered as primary features and the algorithm itself 
selects those (and their combinations according to a set of 
mathematical operators—e.g. addition, subtraction, multi-
plication) that better describe the target property of interest.

Regarding data quality, a significant part of the research 
efforts to find descriptors for catalysis discussed previously 
is based on the use of quantities such as adsorption energies 
calculated by theory. Indeed, electronic-structure methods, 
and, in particular, density-functional-theory, have been suc-
cessful in modeling bulk and surface material properties. 
However, the explicit modeling of heterogeneous catalysis 
(reaction rates, selectivity, etc.) at realistic reaction condi-
tions remains to date only possible for particular cases under 
a significant number of approximations. Therefore, experi-
mental data is of utmost importance for the identification of 
descriptors with predictive power. From the artificial intel-
ligence standpoint, it is crucial that such experimental data 
is obtained in a consistent way and that it represents differ-
ent scenarios. In particular, the artificial-intelligence method 
needs to be informed about good as well as bad catalysts. 
Extracting consistent and diverse data sets from available 
literature is a challenge, since every research work focuses 
on a specific experimental set-up and only success stories 
(good catalysts) are typically reported.

4 � Quality and Comparability of Kinetic Data

The reaction kinetics in terms of a microkinetic model 
describe and predict the performance of a catalyst as func-
tion of the process conditions (i.e., temperature, pressure, 
catalyst mass, flow rate, and feed composition) in the ideal-
ized case that excludes any rate-modifying transport phe-
nomena. Flowcharting this model requires detailed knowl-
edge about the atomic structure of the active site(s) and 
every elementary step. In kinetic models the active (adsorp-
tion) site is indicated by the symbol *. According to the 
current paradigm, the active site structure changes in the 
course of one turnover (during one catalytic cycle), but * 
exists unaltered on the surface after the desorption of the 
product and is ready to perform the next cycle.

In the meso- and macroscopic scale of a continuous 
catalytic process the catalyst performance does not change 
with time when constant process conditions are applied. 
The heterogeneous catalyst operates in steady-state. But, 
even if a reaction is studied under steady-state conditions 
and the criteria for minimization of mass and heat transport 
limitations are fulfilled, the outcome of the catalytic testing 
is not necessarily defined and reproducible. This is due to 
well-known catalyst formation and conditioning processes 
that prevail during the pre-treatment and under operation 

conditions [1, 98]. We refer to these processes as catalyst 
dynamics (Chapter 3) [1]. The catalyst undergoes chemical 
interactions with reacting molecules, additives, intermedi-
ates, and products. Bulk and surface chemistry of a freshly 
prepared solid catalyst adapt to the chemical potential of 
the environment under reaction conditions. The chemical 
potential is determined by the process conditions, but also 
by the catalytic reaction (conversion, product composition). 
The rate constants of the underlying processes differ. Solid 
state reactions occur usually slower compared to gas phase 
and surface reactions.

The active phase on the surface of ZnO-supported Pd 
nanoparticles for example changes with time on stream in 
methanol steam reforming. It was observed that the catalyti-
cally active intermetallic compound PdZn is only created 
under reaction conditions [99]. The thickness of the sur-
face alloy, and its resulting electronic structure determine 
the selectivity to CO or CO2, respectively. Another example 
is the selective hydrogenation of alkynes into alkenes over 
palladium catalysts [100]. Selectivity to alkenes requires 
a strong modification of the near-surface region of Pd by 
carbon, which is supplied by fragmented feed molecules. 
The formation of sub-surface carbides and hydrides is con-
trolled by the feed composition, and thus, the population of 
subsurface sites of palladium by either hydrogen or carbon 
governs the selectivity to alkanes or alkenes, respectively. 
A third example is the industrial catalyst for oxidation of 
n-butane to maleic anhydride. Catalyst synthesis results in 
the precursor vanadyl hemihydrate, VOHPO4·0.5H2O, which 
is transformed into the active phase vanadyl pyrophosphate, 
(VO)2P2O7, by thermal procedures in reacting butane–oxy-
gen mixtures [101]. These highly dynamic steps are impor-
tant in delivering effective and stable catalyst performance 
over time periods of years and are referred to as catalyst 
conditioning [98]. The final steady-state activity and selec-
tivity sensitively depend on the applied gas atmosphere, 
temperature program, duration and sequence of the steps 
[98]. Hence, the sequence of experimental steps in kinetic 
measurements (the workflow) is very important. In Fig. 4, a 
practical example for the dynamics of an oxidation catalyst 
is shown. Propane oxidation was performed according to dif-
ferent workflows over a mixed Mo–V–Te–Nb oxide catalyst, 
pretreated at 650 °C in argon for 2 h [102]. The selectivity 
to acrylic acid is shown as a function of propane conversion. 
The selectivity differs depending on whether the conver-
sion was varied by changing the temperature and starting 
the experiment at low (blue data points) or high (purple data 
point) temperature. In this quick test, in which the tempera-
ture was increased starting from the freshly prepared and 
pretreated catalyst (blue data points), the catalyst appeared 
to have low selectivity to the desired product. Then, the cata-
lyst was kept at 400 °C and the conversion was lowered by 
going stepwise to lower temperatures (purple data points). 
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The identical material now showed improved selectivity. 
The variation of conversion by changing the contact time at 
375 °C (orange data points), which finally was performed 
after measuring the purple data points, reproduced the pur-
ple curve. The selectivity improves further at the highest 
conversion, possibly due to the lower reaction temperature. 
The experiments show that the catalyst apparently adopts a 
different chemical state under the reaction conditions at high 
temperature and high propane conversion. The higher selec-
tivity would not have been noticed when the catalytic test 
was stopped after reaching the highest reaction temperature 
(after completion of the blue curve). The example clearly 
illustrates that the experimental results of a catalytic test 
strongly depend on the workflow of the experiment. A clear 
link between the physical and chemical properties of the pre-
pared and thermally pretreated Mo–V–Te–Nb oxide catalyst 
and its performance in propane oxidation (Fig. 4) does not 
exist, because either 45% or 60% selectivity to acrylic acid 
were measured in steady-state under identical reaction con-
ditions, i.e., at the reaction temperature of 350 °C and 20% 
propane conversion, respectively, depending on the previous 
history of the catalyst. 

The majority of catalytic data reported in the literature 
were measured after short times on stream and at low con-
version, which results, for example in case of oxidation 
reactions, in the desired high selectivity values of inter-
mediates formed in the first step of consecutive reactions. 

But it is not appropriate for exploring complex reaction 
networks that involve multiple steps and for the synthe-
sis of oxygenates, which are often the product of several 
consecutive reactions. Frequently, information concerning 
the sequence of conditions in catalyst pretreatment and 
testing are only incompletely, if at all, reported. Whether 
intended or accidental, the procedures of catalyst synthe-
sis are reluctantly described in many cases. Furthermore, 
the diversity of published data is limited, because nega-
tive results are rarely reported. Data quality in catalysis 
research is usually not verified against accepted standards.

In summary, due to these shortcomings and in particular 
in view of the catalyst dynamics described above, much 
data generated in kinetic investigations of catalysts are not 
suitable for analysis by data science techniques and arti-
ficial intelligence. Generation of experimental input must 
adequately support the requirements of artificial intelli-
gence and re-usability of data by others.

In the following, we summarize 10 criteria, which need 
to be fulfilled prior to integration of experimental catalysis 
data into data sets used to predict new catalysts:

	 1.	 The synthesis and activation of a catalyst must be 
documented precisely and in such a way that repro-
duction in terms of bulk and surface structure as well 
as performance is possible without consultation with 
the original author.

	 2.	 The batch size must be large enough so that compre-
hensive characterization and catalytic testing is possi-
ble using the same batch; Generally, 15–20 g catalyst 
is needed.

	 3.	 Kinetic data must be linked to all metadata including 
the workflow of the entire experiment; Catalyst per-
formance data must be documented together with the 
metadata completely and in a standardized form.

	 4.	 Catalysts need to be tested using a broad field of pro-
cess parameters including temperature, pressure, con-
tact time, and various feed compositions following 
standardized procedures since the optimal operation 
conditions depend very much on the catalyst and might 
vary significantly for various catalysts applied in the 
same reaction.

	 5.	 The experiments must be performed for sufficient long 
times on stream to verify either steady-state or catalyst 
deactivation/activation phenomena.

	 6.	 The absence of apparent transport limitations must be 
examined.

	 7.	 The catalytic experiment must be compared with 
respect to a standardized benchmark that is included 
in each measurement.

	 8.	 Physical and chemical standard characterization of the 
catalyst bulk and surface must be performed before and 
after use of the material in catalysis.

Fig. 4   Oxidation of propane over MoVTeNb M1 oxide performed 
according to different workflows as indicated by the colors and 
arrows; The selectivity to acrylic acid is shown as a function of pro-
pane conversion; All data was measured under steady-state conditions 
in a feed of C3H8/O2/H2O/He = 3/9/20/68 vol% and a gas hourly space 
velocity (GHSV) of 1000 h−1 in the experiments in which the tem-
perature was varied: At first from 225 to 400 °C (up, blue data points) 
and secondly from 400 to 225 °C (down, purple data points) in seven 
steps of 25 K; After these two measurements, thirdly a GHSV vari-
ation (500–5000 h−1) was performed at 375 °C (orange data points)
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	 9.	 Physical and chemical properties of catalysts, which 
will be directly correlated with functional data, must 
be measured under operation of the catalyst; in oper-
ando means simultaneous collection of spectroscopic 
and catalytic data in the same experiment.

	10.	 Catalysis studies must report on successful and unsuc-
cessful attempts likewise to ensure a sufficient diversity 
of the results.

In this respect, intra-community agreements appear ben-
eficial within which catalytic tests are performed according 
to standard operation procedures defined in handbooks. In 
handbooks, the minimum requirement to the investigation of 
a catalyst is prescribed without putting restrictions on further 
experiments. The elaboration of a handbook for a specific 
reaction or class of reactions requires the input of the com-
munity and is an iterative process.

The practicability of a handbook has been explored in the 
present work using the example of alkane oxidation within 
the collaboration of two laboratories. This handbook will 
be presented in Chapter 5 and first hands-on experience will 
be reported.

5 � Implementation of Handbooks

Immense amount of catalysis-related data is accumulated 
in the literature and in local laboratories to date. Informa-
tion management and data analysis have, therefore, already a 
long history in catalysis research. Only a few examples will 
be mentioned briefly in the following.

Expert systems, which made empirical knowledge avail-
able, were developed and installed at the end of the last 
century. The systems were limited to specific reactions or 
topics, such as hydrogenation, oxidative dehydrogenation 
[103, 104], or kinetic analysis [105]. At the same time, 
efforts in terms of standardization have been undertaken. 
A group of European researchers decided to prepare a sub-
stantial batch of silica-supported platinum (6.3% Pt/SiO2 
called EUROPT-1) to compare experimental procedures for 
catalyst characterization including chemical composition, 
total surface area, size distribution of Pt-containing parti-
cles, and chemisorption properties (H2, CO, and O2). The 
large-scale preparation was performed by industry (John-
son Matthey). The aim was that the catalyst will eventually 
acquire the status of a standard material, which will then be 
used by the academic and industrial catalysis community as 
a reference [106]. Recommendations for the selection of the 
experimental reactors and conditions have also been devel-
oped in chemical reaction kinetics [33, 35].

Around the turn of the century, high-throughput experi-
mentation became a frequently applied method to screen 
for both new catalyst compositions and optimized reaction 

conditions [107–110]. To facilitate screening, library design 
by genetic algorithm (GA) was implemented [111, 112]. 
Decision trees and principal component analysis (PCA) were 
applied to extract large amount of data from the literature 
[113, 114] and from high-throughput experiments, in some 
cases ending up with catalyst compositions and reaction con-
ditions already known from experience [112, 115]. Despite 
all efforts, no real breakthrough in the implementation of 
new technologies was achieved. Only a few catalyst systems 
with composition optimized by combinatorial screening or 
data since based on literature data [116], in particular for 
the production of pharmaceuticals [117], were transferred to 
industry. We argue that this was the case because the inher-
ent complexity of high-performance catalysts, the necessary 
large process parameter space in catalyst testing, and the 
prevailing catalyst dynamics were not taken into account in 
these approaches [118].

In the future, a closer collaboration and the agreement 
upon certain standards within the catalysis community will 
be necessary to establish reliable links between experi-
ment and theory as illustrated in Chapter 4. This requires 
improved information management in the field and allow 
for open access to data generated not only in the researcher’s 
respective laboratory. The general availability of catalysis-
related data according to the FAIR principle [119, 120] is to 
the benefit of all as we can collaborate and test new hypoth-
eses by application of artificial intelligence using the data 
available globally much easier than today. FAIR data will 
have to be findable (F), accessible (A), interoperable (I), and 
re-usable (R), which requires improvements of existing and 
the installation of new data infrastructures [119].

Concerning data quality, this means that the data must be 
suitable to be interoperable with later and external analysis 
including other purposes, not only in the framework of the 
original scientific question. As outlined in Chapter 4, cata-
lytic data must be well documented by metadata, and by the 
workflow of the experiment, including a detailed description 
of catalyst synthesis. The catalyst synthesis should be prefer-
ably performed in an automated manner. Furthermore, the 
machine-readable published description must be complete 
enough to allow a full reconstruction of the experiment. 
However, for this purpose, users need to share much more 
information than what is available in the today’s literature 
including a much better formalized organization.

For these reasons, we propose the use of experimental 
handbooks in heterogeneous catalysis research (Fig. 5, Sup-
porting Information). To develop standard experimental 
operation procedures and to evaluate the practicability of 
handbooks, a collaboration project between the Departments 
of Inorganic Chemistry and the NOMAD Laboratory of the 
Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin, 
and the BasCat Joint Lab between BASF SE and the Techni-
cal University Berlin, Germany, was initiated. We selected 
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the direct oxidation of the short-chain alkanes ethane, pro-
pane and n-butane over complex mixed metal oxide catalysts 
as example for a challenging heterogeneous catalytic reac-
tion. The current version of the handbook, which is con-
tinuously revised in the ongoing project, is attached in the 
Supporting Information. The workflow in the handbook is 
presented in Fig. 5.

Thirteen different catalysts (Fig. 6) were chosen based on 
their known diverse performance in the target reactions and 

synthesized according to well-defined procedures in batch 
sizes as indicated in the figure. The example of MoVTeNb 
oxide synthesis is presented in Fig. 7. Although some of the 
process steps were performed in automated laboratory reac-
tors, such as the hydrothermal synthesis of MoVTeNb oxide 
[121, 122], for other steps, such as separation or drying, 
implementation of automation is not easy in an academic 
laboratory, which bears the risk of reproducibility issues.

Fig. 5   Proposed workflow in the handbook “Data Science Project in Oxidation Catalysis”, for details see Supporting Information

Fig. 6   Schematic representation 
of the crystal structure of 13 
oxidation catalysts synthesized 
and studied in the course of the 
development of a handbook 
in oxidation catalysis; The ID 
clearly indicates the synthesized 
batch; The mass of catalyst 
prepared is also given
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The reproducibility of the synthesis and differences 
before and after catalysis were carefully tested in the present 
work by using standard characterization techniques includ-
ing structural analysis by powder X-ray diffraction, deter-
mination of the specific surface area by nitrogen adsorption 
at liquid nitrogen temperature, chemical analysis by X-ray 
fluorescence and laboratory X-ray photoelectron spectros-
copy complemented by Raman, UV/Vis, and FTIR spectra 
(Fig. 5). The CO oxidation activity was measured for all 
fresh catalysts in two different feeds. Stabilities and redox 
properties of the fresh catalysts were analyzed by thermal 
analysis and by temperature-programmed reduction/oxida-
tion cycles. In the course of the project, it turned out that 
it is useful to perform a rapid activation procedure at high 
temperature and high conversion in the feed of the catalytic 
reaction before starting the catalytic test or performing any 
advanced characterization.

Figure 8 illustrates that in some cases even the bulk com-
position of a catalyst is changed due to the harsh conditions 
in the rapid activation phase. In the present example, the 
vanadium content of the MoV oxide catalyst is increased 
perhaps due to the loss of volatile molybdenum hydroxide. 
The surface composition of MoV oxide as measured by 
laboratory XPS differs slightly from the bulk composition, 
however, major changes occur under operation. The oper-
ando synchrotron-based near ambient pressure XPS meas-
urements, which are even more surface-sensitive compared 
to laboratory XPS, reveal an immense enrichment of vana-
dium on the surface confirming the dynamics of oxidation 

catalysts under working conditions. Advanced characteriza-
tion, such as the determination of the heat of adsorption of 
reactants and intermediates by microcalorimetry and flow 
calorimetry, the measurement of work functions, valence 
band, and X-ray absorption spectra by synchrotron-based 
photoelectron spectroscopy, and the analysis of the conduc-
tivity in presence of different gas atmospheres, which is also 
implemented in the present project, was therefore performed 
using mainly the activated catalysts (Fig. 5).
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Fig. 8   Chemical analysis of a MoVOx catalyst after preparation (left, 
catalyst ID 31012) and after rapid activation in wet feed at high con-
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right, catalyst ID 31804); The bulk analysis was performed by X-ray 
fluorescence (XRF); near surface analysis was performed by labora-
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In the analysis of the catalytic data we develop modes of 
data representation and data reduction as illustrated in Fig. 9. 
The results of testing by applying a broad parameter field (see 
handbook in the Supporting Information) are condensed in 
the pentagrams shown in Fig. 9 as an example for four differ-
ent catalysts. The performance is compared in terms of the 
yield to the desired oxidation product, activity, selectivity 
to value-added products, stability under extreme conditions, 
and quality of the measurements with respect to the mini-
mization of transport phenomena. The size of the colored 
area allows a direct reading of the overall performance and 
a ranking of the catalysts. In the ongoing project it is also 
being examined how catalytic test reactors must be designed 
to allow measurements according to standardized operation 
procedures, perform transparent data analysis, and guarantee 
the documentation of all metadata. This project is still in 
progress and the results will be published in the near future.

6 � Conclusions and Outlook

Scientific advance in catalysis needs integration of experi-
ment and theory. However, only the smallest part of exist-
ing experimental catalysis-related data meets the criteria for 

data science and re-usability. Frequently, the dynamics of 
the catalysts are not taken into account. Furthermore, the 
necessity to apply a broad parameter field in catalyst testing 
receives not sufficient consideration.

The definition of standards and best practice opera-
tion procedures is necessary to enable quality control and 
to guarantee the measurement of reliable and sufficient 
diverse data sets that are compatible with up to date data 
analytics. The purpose of the present essay is to contrib-
ute to the scientific discussion about quality standards in 
catalysis research.

We emphasize that experimental kinetic data must 
be linked to all metadata including the workflow of the 
entire experiment. This also applies to details of catalyst 
synthesis and activation. We propose the implementation 
of handbooks for various types of catalysts and catalytic 
reactions, and we are keen on discussing quality standards 
within the community.

The starting platforms for discussions could be work-
shops at national and international conferences, in which 
handbook concepts for important classes of reactions are 
presented followed by discussions and refinements in 
weblogs within the community. Finally, publishers and 
funding agencies will be involved in establishing rigorous 
measurement protocols.

New trends in the methods of storing catalysis data 
beyond publications in classical journals will also contrib-
ute to a change in the paradigm and will help to improve 
the public access to standardized data, see for example 
the advancements for computationally generated data in 
material sciences [123], surface reactions [124], but also 
experimental data [125].

Successful integration and improved general awareness 
of the level of complexity involved in catalytic reactions 
will advance the field and will lay the foundation for dis-
ruptive concepts and technologies in heterogeneous cataly-
sis. This will provide solutions to ensure sustainability in 
the chemical industry rendering the society’s future energy 
and materials supply possible.
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