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Model based optimization of transflection near
infrared spectroscopy as a process analytical tool
in a continuous flash pasteurizer
Imke Weishaupt , Manuel Zimmer , Peter Neubauer, and Jan Schneider

Abstract: Near infrared spectroscopy in combination with a transflection probe was investigated as inline measurement
in a continuous flash pasteurizer system with a sugar–water model solution. Robustness and reproducibility of fluctuations
of recorded spectra as well as trueness of the chemometric analysis were compared under different process parameter
settings. Variable parameters were the flow rate (from laminar flow at 30 L/h to turbulent flow at 90 L/h), temperature
(20 to 100 °C) and the path length of the transflection probe (2 and 4 mm) while the pressure was kept constant at 2.5 bar.
Temperature and path length were identified as the most affecting parameters, in case of homogenous test medium. In
case of particle containing systems, the flow rate could have an impact as well. However, the application of a PLS model,
which includes a broad temperature range, and the correction of prediction results by applying a polynomial regression
function for prediction errors, was able to compensate these effects. Also, a path length of 2 mm leads to a higher
accuracy. The applied strategy shows that by the identification of relevant process parameters and settings as well as the
establishment of a compensation strategy, near infrared spectroscopy is a powerful process analytical tool for continuous
flash pasteurization systems.

Keywords: flash pasteurization, inline near infrared spectroscopy, multivariate data analysis, process condition influences,
sugar-water-solution model beverage

1. INTRODUCTION
Pasteurization is one of the most important steps in the bever-

age production as it does not only affect biological stability and
the quality of the product, but also the energy expenditure. The
pasteurization in a flash pasteurizer as a high temperature short
time process (HTST) for example, is currently controlled only
by the flow rate and the product outlet temperature and has
therefore great potential for optimization. Using only the two
parameters in the so called beer or fruit juice formula, the pas-
teurization units representing the lethal effect on microorgan-
isms are determined. However, this calculation refers only to the
holding section of the three-stage heat plate exchanger, not tak-
ing into account the heating and cooling section as well as the
product specific properties. Despite the knowledge that it is a
highly simplified model, it is still predominantly applied in the in-
dustry (Dammann, Schwarzer, Müller, & Schneider, 2011, 2014;
Dammann, Schwarzer, Neubauer, & Schneider, 2014; Dammann,
Schwarzer, Vullriede, Müller, & Schneider, 2012; Lewis &
Heppell, 2012).

With an analytical tool that could be used to characterize both
the product and the actual pasteurization effect, the entire process
could be controlled in a more sustainable and product-friendly
manner. In addition, the possibility of real-time quality control
and a targeted process control as opposed to the current post-
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production-control would be enabled. So far, near infrared sen-
sors, which are non-destructive and non-invasive, are promising
to become a key technique in this field (Blanco & Romero, 2001;
Debebe, Temesgen, Abshiro, & Chandravanshi, 2017; van den
Berg, Lyndgaard, Sørensen, & Engelsen, 2013). The transfer from
the chemical or, pharmaceutical sector to the food sector has been
shown to be feasible on the basis of many studies (Bock & Con-
nelly, 2008; Burns & Ciurczak, 2008; Cen & He, 2007; Grassi
& Alamprese, 2018). Near infrared spectroscopy (NIRS) in com-
bination with chemometric methods enables, for example, the
determination of contents of certain ingredients, the classification
of product groups, and the identification of provenances (Kessler,
2007; Porep, Kammerer, & Carle, 2015). In the sector of bever-
ages, there have been many successful trials on wine, beer, fruit
juices, and even on distilled alcoholic beverages (Cen, Bao, & He,
Y. Sun, D.-W., 2007; Cozzolino, Cynkar, Shah, & Smith, 2011;
Cozzolino, Parker, Dambergs, Herderich, & Gishen, 2006; De-
bebe et al., 2017; Gallignani, Garrigues, & de la Guardia, 1993;
Halsey, 1985; Lachenmeier et al., 2010; Lanza & Li, 1984). How-
ever, food is usually a more complex system than chemicals or
pharmaceuticals and processes are more unstable, which can make
the implementation of NIRS difficult (Hitzmann et al., 2015; Os-
borne, 2006). Most of the existing studies do not take into account
the problems that may occur with continuous inline measurements
in industrial processes like in a heat treatment system for liquid
foods (Porep et al., 2015).

There are only a few scientific studies dealing with non-constant
measuring conditions such as fluctuating temperatures (Arimoto,
Tarumi, & Yamada, 2003; Büning-Pfaue, 2003; Chen & Mar-
tin, 2007; Cozzolino et al., 2007; Golic, Walsh, & Lawson, 2003;
Hageman, Westerhuis, & Smilde, 2017; Swierenga et al., 2000),
showing that there are influences on NIR measurements. This
makes it obvious that there is a need for further research on
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measuring conditions like the flow pattern (turbulent or viscosity
dominated), pressure, or the high amount of water as main com-
ponent in beverages, before NIRS can be implemented as PAT
tool (Huang, Yu, Xu, & Ying, 2008). Hence, based on previ-
ous research results, this study follows the hypothesis that during
inline process control in a flash pasteurizer, various influencing
variables affect the NIRS measurement. It intends to explore pro-
cess related influences on robustness, reproducibility, and accuracy
of NIR measurements as well as to the process-analytical uti-
lization of the measurement results by means of chemometric
methods when analyzing a two-component system at the example
of water–sugar-solutions in a flash pasteurization plant. Solutions
have to be found to adjust these influencing variables before an
implementation as PAT tool can be realized.

2. MATERIALS AND METHODS
Parameters had to be identified which impair the accuracy (con-

sisting of the two criteria precision and trueness) of the NIRS
measurement as inline PAT in an extend that is relevant for prac-
tical applications. Afterward, strategies for compensation of those
impairments were undertaken. For identification of influencing
parameters, the precision in terms of reproducibility was investi-
gated, shown in the left work path of Figure 1. In a second work

path the trueness was studied. Following the left work path, the
reproducibility is derived from the comparison of measurements
under the varying parameter settings of temperature and flow rate.
With the tenfold measurement carried out for each parameter
setting not only the reproducibility but also the repeatability and
robustness has been determined. The variation coefficient (VC)
has been used as a measure to express the precision (reproducibil-
ity) and was combined to a mean VC for all points of measurement
(wavelengths) per spectrum.

The trueness (right path in Figure 1) was investigated by study-
ing the effect of process conditions on the processing of spectra
by applying chemometric methods and on the prediction perfor-
mance (trueness). Therefore, the resulting models were compared
regarding their performance. The workflow of modeling and the
model performance key numbers are described in more detail be-
low. After the evaluation of both criteria, precision and trueness,
a correlation between these aspects was performed, leading to the
evaluation of the accuracy.

2.1 Experimental setup and samples
NIR measurements were undertaken in an adapted laboratory

heat treatment system for high temperature short time treat-
ment type HT220 (OMVE, Utrecht, the Netherlands). The

Figure 1–Workflow of the data analysis and evaluation: work path left evaluates the measurement preciseness and repeatability, work path right
evaluates the effects on the spectra processing (abbreviations are described in section 2).
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Figure 2–Adapted laboratory heat treatment system for high temperature short time treatment type HT220 (OMVE Netherlands B.V., 2018) (left) and
extension with the holding tube coil and three connection options for implementation of measuring probes (right).

Table 1–Process parameters and settings in the experiments.

Temperature [°C] Flow rate [L/h] Sucrose concentration [g/L]

20 30 0
40 60 20
60 90 40
80 60

100

Table 2–Reynold numbers for the different process settings
in the tube diameter of 16 mm (laminar streaming condition
Re < 2300; turbulent streaming condition Re > 2300 in italic).

Reynolds number

Sugar concentration
Temperature
[°C]

Flow rate
[L/h] 0 g/L 20 g/L 40 g/L 60 g/L

20 30 657 630 600 570
60 1314 1259 1201 1140
90 1972 1889 1801 1710

40 30 1005 961 916 870
60 2009 1921 1831 1740
90 3014 2882 2747 2610

60 30 1376 1321 1265 1208
60 2751 2642 2531 2417
90 4127 3964 3796 3625

80 30 1738 1682 1623 1561
60 3475 3363 3245 3121
90 5213 5045 4868 4682

100 30 2067 2019 1965 1905
60 4134 4038 3929 3809
90 6200 6057 5894 5714

temperature holding section was replaced by a tube coil (7 mm
inner diameter, 0.269 L volume) and a short tube (16 mm inner
diameter, 0.056 L volume) was implemented that served as mea-
suring section with connection ports for various measuring probes
like the transflection probe used for NIR measurement (Figure 2).
According to Kümmel (2004), a stable flow pattern is ensured for
all probe parts.

With this heat treatment system, different process parameter
combinations, including a variation of temperature and flow rate,
can be realized (shown in Table 1). The flow rate was adjusted
to 30, 60, and 90 L/h, allowing for flow conditions from laminar

to turbulent. The calculated Reynold numbers (Re) are shown
in Table 2, where in a tube geometry Re < 2300 are considered
to indicate laminar conditions and Re > 2300 turbulent condi-
tions (Spurk, 1987). Five temperature levels (20, 40, 60, 80, and
100 °C) were taken into calculation of the Re using an empirical
mathematical model according to Swindells, Snyder, Hardy, and
Golden (1958) to calculate the kinematic viscosity of the used
low-concentrated sugar solutions (Schmidt, 2000). Another pro-
cess characteristic considered, the pressure (in a range of 2 to 4 bar),
neither showed an effect on NIR spectra nor on the chemometric
data analysis (data not shown). Therefore, the pressure of the system
was set constant at 2.5 bar for all experiments. Measured samples
were water–sugar solutions in varying concentrations (0, 20, 40,
and 60 g/L sucrose), which were prepared by dissolving crystalline
sucrose in demineralized water.

2.2 Spectroscopic measurements
A PSS-2120 spectrometer (Polytec GmbH, Waldbronn, Ger-

many) with a diode array of 256 pixels and a spectral range from
1100 to 2100 nm was used for inline NIR measurements. The
spectrometer was combined with a transflection probe with vari-
able path length (Avantes BV, Apeldoorn, the Netherlands), which
was set at 2 or 4 mm. The Pas Labs 1.2 software (Polytec GmbH,
Waldbronn, Germany) was taken to record spectra in absorbance
mode with an integration time of 15 and 45 ms and an average
of 100 measurements per spectrum. Demineralized water, tem-
pered to 20 °C, was taken as reference medium. Reference spectra
were measured in advance to the tenfold measurements that were
recorded for each process parameter setting (Table 1).

2.3 Data analysis, spectral data pretreatment, and
model generation

After recording the spectra, the two evaluation criteria (ro-
bustness and trueness) were examined, schematically illustrated
in Figure 1. For data analysis in terms of precision (left path
in Figure 1), raw spectral data were visualized in a first step to
determine spectral “noise.” The identified wavelength section
between 1865 and 2100 nm was excluded from the evaluation
as preprocessing step, reducing the original 256 wavelengths to
194 remaining signals. After trimming the 5% of highest values
to prevent falsification and to make results more robust (Dialekt
Projekt, 2002; Kähler, 2010), the arithmetic mean of the remain-
ing 184 VCs was built for each parameter combination according
to Table 1. The mean VCs, as a measure for the repeatability,
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Figure 3–Schematic sequence of correction method development.

Table 3–Examination of the effect of the flow rate on the reproducibility; comparison of mean VC in % from a 10-measurement
series for different levels of flow rate with 60 g/L sucrose at the five levels of temperature (CI with n = 184 and α = 0.05).

Temperature [°C]

20 40 60 80 100

2 mm path length
Flow rate [L/h]

30 12.89 ± 1.67 5.03 ± 0.32 3.63 ± 0.11 1.15 ± 0.05 1.56 ± 0.05
60 5.24 ± 0.60 2.76 ± 0.17 3.24 ± 0.11 1.54 ± 0.06 2.38 ± 0.08
90 9.44 ± 0.98 7.65 ± 0.52 1.28 ± 0.04 0.77 ± 0.03 0.94 ± 0.07

4 mm path length
Flow rate [L/h]

30 9.04 ± 0.96 6.04 ± 0.69 4.22 ± 0.55 2.54 ± 0.31 2.12 ± 0.24
60 5.16 ± 0.63 6.3 ± 0.66 4.39 ± 0.48 2.74 ± 0.38 2.33 ± 0.26
90 6.47 ± 0.70 8.28 ± 0.75 5.73 ± 0.56 1.28 ± 0.35 1.68 ± 0.33

were compared among the factor combinations temperature and
flow rate. The statistical indicator VC was chosen to make the
results of different path lengths of the probe comparable (Adams,
2004). The conclusions of the VC comparison were examined
for statistical significance using an ANOVA analysis and t-tests for
value classification.

For chemometric analysis (right path in Figure 1), Simca 14.1
(MKS Umetrics AB, Malmö, Sweden) was used. Five spectra of
the 10-fold measurement were used as a training set and the other
five as an internal validation set. For modeling, the different levels
of the parameters result in data sets of varying size depending on
the reference parameter that is kept constant. The models for each
level of temperature were based on 100 spectra, models regarding
the parameter of flow rate included 60 spectra. Regression models
were made by using the PLS regression method in an iterative
process applying different preprocessing methods to optimize the

model quality. Savitzky–Golay smoothing and Standard Normal
Variate transformation (SNV) as well as Multi Scatter Correction
(MSC) smoothing techniques were applied. Furthermore, the first
and second derivations were formed and proved for an improve-
ment on model quality.

For evaluation, the coefficient of determination (R2) and the
predictive quality (Q2) as well as the two parameters root mean
square error of estimation (RMSEE) and the root mean square er-
ror of cross-validation (RMSECV) were determined using Simca.
R2 is a measure of the variance of the total variance explained
by the model. Q2 is a measure for the predictive ability and re-
sults from the internal cross-validation. Both should have values
close to the maximum value of 1. The latter two parameters are a
common measure in statistics to allow an evaluation of the scatter
of the prognosis values with low values indicating a high model
quality. To avoid overfitting, a permutation-test was applied, which
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Table 4–Two-factorial ANOVA analysis for the parameters temperature and flow rate (2 and 4 mm path length).

Factor F p-Value F crit Interpretation

2 mm path length
Sugar concentration [g/L]

0 Flow rate 2.990 0.107 4.459 No significant effect
Temperature 18.705 0.0004 3.838 p-Value smaller than .05, significant effect

20 Flow rate 1.799 0.226 4.459 No significant effect
Temperature 27.563 9.90706 × 10−05 3.838 p-Value smaller than .05, significant effect

40 Flow rate 0.216 0.810 4.459 No significant effect
Temperature 18.914 0.0004 3.838 p-Value smaller than .05, significant effect

60 Flow rate 0.336 0.724 4.459 No significant effect
Temperature 10.874 0.003 3.838 p-Value smaller than .05, significant effect

4 mm path length
Sugar concentration [g/L]

0 Flow rate 0.972 0.419 4.459 No significant effect
Temperature 6.594 0.012 3.838 p-Value smaller than .05, significant effect

20 Flow rate 1.217 0.346 4.459 No significant effect
Temperature 2.500 0.126 3.838 No significant effect

40 Flow rate 0.539 0.603 4.459 No significant effect
Temperature 9.054 0.005 3.838 p-Value smaller than .05, significant effect

60 Flow rate 0.670 0.538 4.459 No significant effect
Temperature 6.667 0.012 3.838 p-Value smaller than .05, significant effect

Table 5–Results of t-test and conclusions regarding a correlation between the level of flow rate and the mean CV; including both
path length; with t crit 1.65.

path length Compared levels mean CVs t stat p-Value Conclusion

Example 1: parameter setting 40 g/L and 80 °C
2 mm 30 | 60 L/h 1.14 | 2.05 −14.181 2.1759 × 10−35 CV(30)<CV(60)>CV(90)

60 | 90 L/h 2.05 | 1.19 23.534 3.6538 × 10−69

4 mm 30 | 60 L/h 2.19 | 2.95 −3.426 0.00034645 CV(30)<CV(60)>CV(90)
60 | 90 L/h 2.95 | 1.91 5.654 1.58991 × 10−08

Example 2: parameter setting 60 g/L and 100 °C
2 mm 30 | 60 L/h 0.94 | 2.38 18.028 3.5447 × 10−50 CV(30)>CV(60)<CV(90)

60 | 90 L/h 2.38 | 1.56 −27.531 4.2204 × 10−91

4 mm 30 | 60 L/h 2.12 | 2.33 −1.180 0.11946419 CV(30)�CV(60)>CV(90)
60 | 90 L/h 2.33 | 1.68 3.028 0.00132277

Example 3: parameter setting 20 g/L and 40 °C
2 mm 30 | 60 L/h 4.88 | 2.72 16.681 1.2263 × 10−43 CV(30)>CV(60)<CV(90)

60 | 90 L/h 2.72 | 5.44 −26.164 1.3811 × 10−81

4 mm 30 | 60 L/h 6.52 | 7.86 −4.291 1.15811 × 10−05 CV(30)<CV(60)>CV(90)
60 | 90 L/h 7.86 | 6.10 5.171 2.05791 × 10−07

serves for controlling the statistical significance of the model and
its ability to predict unknown samples.

In order to determine possible influences by the process parame-
ters, temperature, and flow rate, individual models were generated
for each set level, which have the same configurations to make
them comparable. This type of PLS model, which includes only
one adjusted level of process parameter, is called local model.
Therefore, there were five models, one for each level of tempera-
ture and three for flow rate, respectively.

After model fitting, an external validation with the second part
of the recorded spectra was performed. This resulted in the RM-
SEP as quality parameter, which was calculated using local and
global test sets. Local in this case means that spectra based on
the same process conditions of the calibration spectra were used.
Global test sets, on the other hand, contain all process parameter
ranges. The comparison enabled the identification of possible cor-
relations between prediction quality and process parameters and
thus in the end possible influencing parameters. All these investi-
gations were done for both path lengths to verify whether there
is a dependence on the path length of the probe. Finally, interac-

tions between reproducibility and trueness were investigated and
conclusions were made about the accuracy.

2.4 Correction of parameters with regard to the
prediction of sugar concentration

Two types of PLS models were examined to compensate for
temperature induced deviations, namely global PLS models with
all five temperature levels and a local PLS model based on spectra
recorded at 20 °C. Both procedures were based on spectra recorded
with the path length of 2 mm shown schematically in Figure 3.

For the global PLS models, the iterative procedure of fitting
described in the previous section was repeated. In total two global
PLS models were generated: one for direct comparison with the
local model and one in terms of optimized prediction perfor-
mance. These two global models as well as the local model were
applied to the five local test sets (20, 40, 60, 80, and 100 °C) to
predict the sugar concentration and determine the RMSEP values.
Using the RMSEP values of local model a polynomial regression
was carried out and the statistical evaluation was performed by

2024 Journal of Food Science � Vol. 85, Iss. 7, 2020
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Table 6–Comparison of model quality for different flow rate built from the spectra of the path length of 2 and 4 mm.

Flow rate [L/h] LV N R2
X R2

Y Q2 RMSEE RMSECV

Path length of 2 mm
30 5 100 1 1 1 0.358 0.697
60 5 100 1 1 1 0.448 0.500
90 5 100 1 1 1 0.444 0.498

Path length of 4 mm
30 5 100 1 0.996 0.996 1.404 1.476
60 5 100 1 0.996 0.995 1.517 1.572
90 5 100 1 0.998 0.998 0.934 1.000

Abbreviations: LV, number of latent variables; N, number of spectra included in calibration set

Table 7–RMSEPs of a local test set (based on flow rate of cali-
bration set) and a global test set (based on all flow rate levels).

2 mm Path length 4 mm Path length

Local Global Local Global

Flow rate [L/h]
30 0.383 0.388 1.928 1.577
60 0.421 0.415 1.538 1.538
90 0.366 0.401 0.879 1.292

an ANOVA analysis and a t-test for the regression coefficients.
With the resulting regression equation as a function of measuring
temperature, the sugar concentration of the several test sets, which
were predicted by applying the local model, were adjusted. Finally,
prediction performance of the three models was compared.

3. RESULTS AND DISCUSSION

3.1 Effect of flow rate and current pattern on robustness
and repeatability of NIR measurements

NIR spectra were investigated for their repeatability and ro-
bustness at different flow rates or rather current pattern and two
different path lengths. The VC of a 10-fold measurement and
the 5% confidence interval (CI) were used as a measure (results
are shown in Table 3). The results for the VC vary unsystem-
atically regarding the level of the flow rate. Since no correla-
tion between flow rate level or rather the current pattern and
the mean VC can be seen for both path lengths, the flow rate
seems to have no identifiable effect on the robustness and repeata-
bility of measurement. Solely the stabilizing effect of a smaller
path length could be proven by means of a narrower 5% CI. By
means of a statistical evaluation, these statements were checked
and proven at a significance level of 5%. By applying the two-
factorial ANOVA analysis (with the factors temperature and flow
rate), no effect of the flow rate could be identified (Table 4). The
one-factorial ANOVA analysis showed significant differences for
the mean CVs, which could not be systematically correlated with
the level of the flow rate by applying the t-test (results are shown
Table 5).

3.2 Effect of flow rate and current pattern on
chemometric analysis of NIR measurements

Influences of flow rate on NIR data analysis were investigated
regarding the quality of sugar concentration prediction by fit-
ting PLS models. Using the raw spectra of both path lengths, a
wavelength exclusion from 1401 to 1517 nm and from 1865 to
2100 nm was carried out. Information and quality parameters of
the fitted PLS models are given in Table 6. By determining the
RMSEPs for local and global test sets, influences of the flow rate

were investigated. The results, given in Table 7, showed no differ-
ence between local and global test sets and there were only slight
differences between the levels of flow rates. In comparison of the
two path length, the RMSEP values of the 2 mm one were about
a third. This is also represented in the ratio of the RMSEPs to the
average quantity of sugar (30 g/L), where the percentile values of
a path length of 2 mm differ between 1.22% and 1.40% and of
the larger path length between 2.93% and 6.43%. In conclusion,
taking into account that a smaller path length leads to a higher
reproducibility and that the results for local and global test sets
show comparable behavior, the flow condition seems to have no
relevant impact on the trueness of the analyte determination. This
could already be guessed by looking at the raw spectra, colored by
the level of flow rate in Figure 4. No systematic differentiation be-
tween the three levels of flow rate can be examined. One theory
supporting this assumption could be that water–sugar solutions
are homogeneous mixtures in which the exchange between the
different flow planes is not improved or worsened by higher tur-
bulence compared with purely parallel velocity vectors (laminar).
Therefore, the effect could be different for an inhomogeneous
medium that contains particles.

3.3 Effect of temperature on robustness and
repeatability of NIR measurements

The effect of measuring temperature on robustness and repeata-
bility was established by calculating the VC of a 10-fold measure-
ment in comparison of two path lengths. Besides this, the 5% CI
was calculated as a measure. As can be seen in Table 8, the mean
VCs and the CIs have the highest values at 20 °C. In addition to
the height of the absolute values, the range of the values is also
largest here. As the measuring temperature increases, there is a
trend toward decreasing VC values and also the CIs become nar-
rower. This trend can be observed for both path lengths, whereby
the values of the path length of 2 mm are generally smaller (only
measurements at 20 °C showed deviations from this trend). This
demonstrate a positive impact of higher temperatures and of a
smaller path length on robustness and reproducibility. These state-
ments, which were obtained by comparing the mean CV and the
CI, could be statistically confirmed as significant at a significance
level of 5%. The two-factorial ANOVA analysis showed a signif-
icant effect for temperature (Table 4). By applying the t-test, the
values of the mean CV could be classified in the systematic (in-
verse) correlation with the temperature level. Results of statistical
evaluation are summarized in Table 9.

3.4 Effect of temperature on chemometric analysis of
NIR measurements

For evaluation of temperature influence on sugar prediction,
comparable PLS models were generated by using raw spectra and
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Figure 4–Raw spectra measured at 80 °C with 60 g/L sucrose colored by level of flow rate with in the wavelength range between 1100 and 1650 nm.

Table 8–Examination of the effect of the temperature on the reproducibility; comparison of mean VC from a 10-measurement
series for different levels of temperature with 60 g/L sucrose and the flow rate of 30, 60, and 90 L/h; confidence intervals with n =
184 and α = 0.05.

Temperature [°C]

Flow rate Path length 20 40 60 80 100

30 L/h 2 mm 12.89 ± 1.67 5.03 ± 0.32 3.63 ± 0.11 1.15 ± 0.05 1.56 ± 0.05
4 mm 9.04 ± 0.96 6.04 ± 0.69 4.22 ± 0.55 2.54 ± 0.31 2.12 ± 0.24

60 L/h 2 mm 5.24 ± 0.6 2.76 ± 0.17 3.24 ± 0.11 1.54 ± 0.06 2.38 ± 0.08
4 mm 5.16 ± 0.62 6.3 ± 0.66 4.39 ± 0.48 2.74 ± 0.38 2.33 ± 0.26

90 L/h 2 mm 9.44 ± 0.98 7.57 ± 0.5 1.28 ± 0.04 0.77 ± 0.03 0.94 ± 0.07
4 mm 6.47 ± 0.7 8.28 ± 0.75 5.73 ± 0.56 1.28 ± 0.35 1.68 ± 0.33

excluding the wavelengths from 1401 to 1517 nm and from 1865
to 2100 nm. The RMSEPs for a local and a global test set were cal-
culated and compared for evaluation. Relevant information about
the number of spectra included in the calibration set, the number
of LVs of the model, and also the quality parameters are sum-
marized in Table 10. RMSEPs of local test set showed increasing
behavior with higher temperatures, RMSEPs of global test sets had
lowest values with the mean measuring temperature of 60 °C and
increased to the edges of the examination range. This is illustrated
in Table 11. Also shown is that RMSEPs of global test sets had
their maximum value in the range of maximum concentration of
sugar (60 g/L), while RMSEPs of local test sets were much lower.
The ratio to the mean sugar concentration (30 g/L) of local test
sets is between 0.22% and 3.52%, of the global test sets between
53.54% and 190.95%. In case of local test sets the smaller path
length shows lower prediction errors. The different behavior and

higher values of RMSEP of local and global test set showed an
impact of the temperature on the trueness of prediction results.
Lower temperatures for modeling generated more variance in PLS
model and this led to better prediction results. Furthermore, the
results of RMSEPs for global test set show a different behavior
than for local test set. The direct influence of temperature on the
shape of the spectra and thus on the chemometric analysis could
also be shown on the basis of the raw spectra. By coloring accord-
ing to the temperature, an increase in absorption could be shown
with increasing temperature (shown in Figure 5).

3.5 Integration of temperature influence on prediction
results by global modeling

As the temperature has been revealed of being a relevant in-
fluencing parameter, the approach of fitting global PLS mod-
els has been pursued for its compensation. This was done by
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Table 9–Results of t-test and conclusions regarding a correlation between the level of temperature and the mean CV; including
both path length; with t crit 1.65.

Path length Compared levels mean CVs t stat p-Value Conclusion

Example 1: parameter setting 40 g/L and 90 L/h
2 mm 20 | 40 °C 7.99 | 2.41 8.667 7.1271 × 10−17 CV(20)>CV(40)>CV(60)>CV(80)>CV(100)

40 | 60 °C 2.41 | 1.39 2.217 0.0139266
60 | 80 °C 1.39 | 1.19 6.488 1.62 × 10−10

80 | 100 °C 1.19 | 1.02 6.174 9.0221 × 10−10

4 mm 20 | 40 °C 7.56 | 7.56 -0.006 0.497729598 CV(20)�CV(40)>CV(60)>CV(80)>CV(100)
40 | 60 °C 7.56 | 3.33 13.737 7.07445 × 10−35

60 | 80 °C 3.33 | 1.91 6.065 1.79859 × 10−09

80 | 100 °C 1.91 | 1.06 5.003 4.56273 × 10−07

Example 2: parameter setting 60 g/L and 30 L/h
2 mm 20 | 40 °C 12.89 | 5.03 9.047 7.0735 × 10−17 CV(20)>CV(40)>CV(60)>CV(100)

40 | 60 °C 5.03 | 3.63 8.045 2.5424 × 10−14

60 | 80 °C 3.63 | 1.15 41.463 7.427 × 10−115

80 | 100 °C 1.15 | 1.56 -12.168 3.8682 × 10−29

60 | 100°C 3.63 | 1.56 34.705 1.1244 × 10−97

4 mm 20 | 40 °C 9.04 | 6.04 4.987 4.95506 × 10−07 CV(20)>CV(40)>CV(60)>CV(80)>CV(100)
40 | 60 °C 6.04 | 4.22 4.053 3.11906 × 10−05

60 | 80 °C 4.22 | 2.54 5.239 1.56262 × 10−07

80 | 100 °C 2.54 | 2.12 2.107 0.017925001

Example 3: parameter setting 40 g/L and 30 L/h
2 mm 20 | 40 °C 11.10 | 3.94 10.767 8.5235 × 10−22 CV(20)>CV(40)>CV(60)>CV(80)�CV(100)

40 | 60 °C 3.94 | 1.91 16.788 1.2615 × 10−41

60 | 80 °C 1.91 | 1.14 11.456 5.5609 × 10−26

80 | 100 °C 1.14 | 1.12 0.271 0.393

4 mm 20 | 40 °C 9.14 | 4.52 8.939 2.09542 × 10−17 CV(20)>CV(40)>CV(60)>CV(80)>CV(100)
40 | 60 °C 4.52 | 3.15 4.381 8.23381 × 10−06

60 | 80 °C 3.15 | 2.19 3.974 4.27231 × 10−05

80 | 100 °C 2.19 | 1.48 3.498 0.000274712

Table 10–Comparison of model quality for different temperatures built from the spectra of the path length of 2 and 4 mm.

Temperature [°C] LV N R2
X R2

Y Q2 RMSEE RMSECV

Path length of 2 mm
20 4 60 0.999 1 1 0.076 0.302
40 4 60 1 1 1 0.101 0.657
60 4 60 1 1 1 0.076 0.463
80 4 60 1 1 1 0.143 0.502
100 4 60 1 1 1 0.165 1.070

Path length of 4 mm
20 4 60 0.997 0.999 0.999 0.544 0.579
40 4 60 0.998 0.999 0.999 0.579 0.648
60 4 60 0.998 1 1 0.332 0.716
80 4 60 0.998 1 0.999 0.530 0.643
100 4 60 0.994 0.998 0.998 0.911 1.012

Abbreviations: LV, number of latent variables; N, number of spectra included in calibration set.

Table 11–RMSEP values for local test set and global test set in
grams per liter, resulting from measurements with the two path
lengths of 2 and 4 mm; local test set based on temperature of
calibration set; global test set based on all temperature levels.

2 mm path length 4 mm path length

Temperature [°C] Local Global Local Global

20 0.067 0.537 57.286 46.104
40 0.081 0.57 29.06 21.402
60 0.1 0.41 20.086 16.063
80 0.136 0.74 35.153 26.295

100 0.16 1.056 54.155 49.6

including a broad range of temperatures in the calibration set of
spectra, like Arimoto et al. (2003) applied in their study about
an temperature-insensitive PLS model to predict glucose concen-
tration. Two global PLS models were fitted: one with the same
number of LVs for a direct comparison of results of local and global
model, one with a higher number of LVs in terms of optimized
model performance. The preprocessing was done analogous to
the generation of local PLS model to make it comparable. De-
tails about the number of spectra included in the calibration set,
the number of LVs of the model as well as the quality parameters
are summarized in Table 12. The properties of the local model
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Figure 5–Raw spectra measured at five different stages of temperature with 60 g/L sucrose colored by level of temperature with in the wavelength
range between 1100 and 1900 nm.

Table 12–Information about model properties used for temperature compensation strategies.

Model type LV N R2
X R2

Y Q2 RMSEE RMSECV

Local (20 °C) 4 60 0.999 1 1 0.076 0.302
Global (direct comparison) 4 60 1 0.995 0.995 1.776 2.109
Global (high performance) 5 60 1 1 1 0.460 2.750

Table 13–Results of RMSEP as a measure for prediction quality for the sugar concentration by applying different types of PLS
models on test sets of different measuring temperatures; RMSEP values in g/L.

Calculated with

Local model Global model (direct comparison) Global model (performance optimized)

Temperature [°C] of test set
20 0.067 1.841 0.258
40 9.048 1.442 0.482
60 31.706 1.171 0.221
80 64.647 1.148 0.53
100 105.72 1.992 0.441

based on 20 °C spectra are also listed there. RMSEPs were fo-
cused for evaluation of prediction quality. Results of both global
models were stable over the different temperature stages, whereas
RMSEP of local model increased with distance to the measuring
temperature as can be seen in Table 13. The global model for
comparison showed a percentage error between 3.83% and 6.64%
in relation to the mean sugar quantity, the optimized model only
between 0.74% and 1.77%. Thus, local models prove to be suitable
only in the range of their calibration temperature, whereas global
models have acceptable error levels and are universally applicable.

3.6 Integration of temperature influence on prediction
results by polynomial regression

Another approach to compensate the influence of temperature
was the subsequent correction of the prediction results reached
with the local model by calculating a regression equation for the
growth of the RMSEP as a function of the temperature. By us-
ing the RMSEP values given in Table 13 (results of local model),
the numerical value equation RMSEP = −5.603 × 10−05 T3

+ 0.0235 T2 − 0.8086 T + 7.2834 resulted with a coefficient
of determination R2 of 1. The dimensions here are in grams per
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Table 14–Regression Statistics for polynomial regression.

Multiple R 0.99999953
R2 0.99999906
Adjusted R2 0.99999622
Standard Error 0.08428752
Observation 5

ANOVA
df SS MS F Significance F

Regression 3 7527.42217 2509.14072 353181.911 0.00123694
Residual 1 0.00710439 0.00710439
Total 4 7527.42927

t-Test Coefficients Standard Error t Stat p-Value Lower 95% Upper 95%

Intercept 7.28336 0.41463978 17.5655119 0.03620352 2.01486205 12.551858
T −0.8085805 0.02709985 −29.837084 0.02132854 −1.1529167 −0.4642442
T2 0.02353339 0.00050293 46.792896 0.01360298 0.0171431 0.02992368
T3 −5.603 × 10−05 2.7765 × 10−05 -20.180044 0.03152121 −9.131 × 10−05 −2.075 × 10−05

Figure 6–Prediction results for the sugar concentration of local model before and after correction via RMSEP regression equation and of the comparison
with global model; for the examples of the measuring temperature of 40 (left) and 80°C (right) in g/L with the target sugar content as diagonal.

liter for the RMSEP and °C for the temperature. The regression
statistics show with a F-value much higher than the significance
F-value that there is a significant correlation between the de-
pendent and independent variable, that is, that there is at least
one non-zero regression coefficient. Results of the statistical eval-
uation were shown in Table 14. The t-test was used to check
which of the regression coefficients are not equal to zero and
whether they are statistically validated at a significance level of
5%. All regression coefficients show a value of t Stat unequal to
zero and also have p-values smaller than .05, thus proving their
significance. Using this equation, the correction values for pre-
diction results of the two test set temperatures of 40 and 80 °C
were calculated. The RMSEP value for 40 and 80 °C was 8.699
and 62.275 g/L, respectively. Calculation of the summed devi-
ations from predicted to target sugar content of the two meth-
ods for the two measurement temperature of 40 and 80 °C as

examples showed little differences in trueness (shown in Fig-
ure 6, left, for the temperature of 40 °C and in Figure 6, right,
for 80 °C). The application of the method thus proved to be
successful.

3.7 Comparison of the two compensation methods for
temperature influence

A comparison of both methods was done to verify which
one performs better in this kind of application. This was done
by summing up the deviations of predicted sugar concentra-
tion from target concentration, considering the two measuring
temperatures 40 and 80 °C. For the measuring temperature of
40 °C, the sum of deviation was 3.209 g/L when predicted and
corrected with the local model and 3.892 g/L when predicted
with the global model. For the 80 °C measurements, the sum of
deviation for local corrected model and global model was 9.161
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and 3.656 g/L, respectively. Comparing the corrected prediction
results of the local model with the results reached with the global
model, it can be seen that both methods perform successfully,
whereas method of global model leads to slightly better results
in terms of trueness. Which method should be chosen for other
applications depends on the process itself, the measurement con-
ditions, and the time frame for calibration. Basically, the method
using a regression of the RMSEP is more complex in the post-
treatment of the data and is only worthwhile if it is not possible
or is only associated with a much higher expenditure of time to
generate the calibration data, that is, to carry out a corresponding
number of measurements at different temperatures. Furthermore,
the danger of undiscovered errors creeping in during the appli-
cation of chemometric methods and further processing steps of
raw spectra into regression model is higher than the identification
of faulty process control. In later work, the method of RMSEP
regression should be verified using more complex systems or real
beverages.

4. CONCLUSIONS
The results indicate that the flow rate or Reynolds number

has in the tested range no relevant influence on robustness or re-
producibility of measurement and on trueness in the meaning of
multivariate data analysis. In contrast, the temperature was iden-
tified as an influencing parameter. While the robustness of the
measurements increased with increasing temperature, the trueness
of the multivariate data analysis decreased simultaneously due to
a reduced variance within the calibration data. Considering this,
two strategies of correction methods were tested and compared.
Both strategies of correction led to comparable and tolerable error
values, the former involving more workload during the experi-
mental procedure and the latter during data processing. A further
outcome was that a smaller path length leads to a higher accuracy.
Hence, a narrower path length is preferable for the application of
the transfection probe to quantify sugar concentration in a water–
sugar solution. With identification of a relevant process parameter
and setting as well as the establishment of a compensation strategy,
the applicability for using near infrared spectroscopy as process
analytical tool within a continuous flash pasteurization system is
proven.
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