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Abstract—The performance of remote sensing image retrieval
(RSIR) systems depends on the capability of the extracted fea-
tures in characterizing the semantic content of images. Existing
RSIR systems describe images by visual descriptors that model
the primitives (such as different land-cover classes) present in the
images. However, the visual descriptors may not be sufficient to
describe the high-level complex content of RS images (e.g., at-
tributes and relationships among different land-cover classes). To
address this issue, in this article, we present an RSIR system that
aims at generating and exploiting textual descriptions to accurately
describe the relationships between the objects and their attributes
present in RS images with captions (i.e., sentences). To this end,
the proposed retrieval system consists of three main steps. The first
step aims to encode the image visual features and then translate
the encoded features into a textual description that summarizes the
content of the image with captions. This is achieved based on the
combination of a convolutional neural network with a recurrent
neural network. The second step aims to convert the generated
textual descriptions into semantically meaningful feature vectors.
This is achieved by using the recent word embedding techniques.
Finally, the last step estimates the similarity between the vectors of
the textual descriptions of the query image and those of the archive
images, and then retrieve the most similar images to the query
image. Experimental results obtained on two different datasets
show that the description of the image content with captions in the
framework of RSIR leads to an accurate retrieval performance.

Index Terms—Convolutional neural network, deep learning,
image captioning, image retrieval, recurrent neural network,
remote sensing, semantic gap.

I. INTRODUCTION

R ECENT advances in satellite technology result in an ex-
plosive growth of remote sensing (RS) image archives.

Thus, one of the important research topics is the development of
accurate RS image retrieval (RSIR) systems to retrieve the most
relevant images to a query image from such massive archives.
To this end, in the RS community, a great attention is devoted to
content-based image retrieval that aims to search and retrieve the
most similar images to a query image based on two main steps:
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1) description of images by a set of visual features that model
the primitives (such as different land-cover classes) present in
the images; and 2) retrieval of images that are similar to the
query image by evaluating the similarity between the features
of the query image and those of the archive images [1]. The
traditional content-based RSIR systems rely on hand-crafted
features to describe the semantic content of images. To this end,
several visual descriptors are presented in RS. As an example,
bag of-visual-words representations of the scale invariant feature
transform features are introduced in [2]. In [3], histogram of local
binary patterns that models the relationship of each pixel in a
given image with its neighbors (which are located on a circle
around that pixel) by a binary code is presented. Graph-based
image representations, where the nodes model region properties
and the edges represent the spatial relationships among the
regions, are introduced in [4]–[6]. Descriptors of bag of spectral
values are introduced in [7] to model the spectral information
content of high-dimensional RS images. After defining the
image visual features (i.e., visual descriptors), image retrieval
can be achieved by considering unsupervised or supervised
retrieval methods. Unsupervised methods compute the similarity
between the visual features of the query image and those of
the archive images and then retrieve the most similar images
to the query. To this end, one can simply use the k-nearest
neighbor algorithm. If the images are represented by graphs,
graph matching techniques can be used. As an example, an
inexact graph matching strategy that jointly exploits a subgraph
isomorphism algorithm and a spectral embedding algorithm [5]
can be used. Supervised methods require an availability of a
set of annotated images for the training of the classifier. If
the training images are annotated by single high-level category
labels, any binary classifier could be exploited [8]. If the training
images are annotated by low-level land cover class labels (i.e.,
multilabels), multilabel image retrieval methods are required. In
[9], a sparse reconstruction-based method that generalizes the
standard sparse classifier to the case of multilabel RS image
retrieval problems is introduced.

Recent advances in deep neural networks have led to a signif-
icant performance gain in terms of content-based RSIR with re-
spect to traditional systems. Deep learning-based RSIR systems
simultaneously optimize feature learning and image retrieval
[9]–[15]. Deep feature representations based on convolutional
neural networks (CNNs) are introduced in the framework of
the RSIR in [12] and [15]. In [13], a retrieval method that
exploits a weighted distance measure that is applied to the image
features obtained by a CNN is presented. A re-ranking method
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Fig. 1. Block diagram of the proposed retrieval system. Configuration 1 allows users to query and retrieve images from the archive using image as query. Configura-
tion 2 lets users use directly a textual description to query and retrieve images from the archive. In this work, the default scenario is configuration 1. Sentence encoding
block produces a tuple vectorV q = {(e1,q ,f1,q), . . . , (el,q ,f l,q)} of the generated sentence (textual description)̂Sq = {ŵ1,q ,ŵ2,q , . . . , ŵl,q } of the query
image where el,q is the word embedding and fl,q is the normalized frequency of the l-th word in the generated sentence of the query image. Sentence matching
measures the similarity between the generated sentence vector V q of the query image and those of the archive V N = {(e1,N ,f1,N ), . . . , (el,N ,f l,N )}
where N is the total number of images in the archive. Note that the descriptions of the images found in the archive are all generated.

that represents each RS image with CNN features and then
applies image-to-class distance measures for retrieval problems
is presented in [14]. A Siamese graph convolution network
that assesses the similarity between a pair of graphs that can
be trained with the contrastive loss function is introduced in
[10]. Image representations obtained through binary codes are
discussed particularly for scalable image search and retrieval in
[9] and [11]. To obtain the binary codes, in [9], a deep hashing
neural network that exploits the cross-entropy loss is presented,
whereas in [11] a metric learning-based deep hashing network
that uses triplet loss function (instead of the cross-entropy loss)
is presented.

The performance of the above-mentioned retrieval methods
depends on the image descriptors that model the visual se-
mantics of the considered images in the archives. However,
these descriptors can have limitations in modeling the primitives
(i.e., attributes and relationships between different land-cover
classes) present in the images. It is important to note that there
are usually several areas within each RS image associated with
different land-cover classes. Thus, describing an RS image with
a visual image descriptor may lead to limited retrieval accuracy
particularly when high-level semantic content is present in the
images. To address this issue, in this article, we present an
image retrieval system that generates and exploits textual de-
scriptions through image captions of RS images. The proposed
retrieval system consists of three main blocks: image captioning;
a sentence encoding; and similarity matching. In the first step,

a CNN is initially used to extract the visual features of RS
images and then a recurrent neural network (RNN) is employed
to generate a textual feature from the visual features. In the
second step, the semantic meaning of the generated sentences
is encoded on the basis of recent word embedding techniques
that are capable of producing semantically rich word vector
representations. Finally, in the last step, the semantically rich
word vectors are exploited to search and retrieve the most similar
images to the query image from the archive. By this way, image
retrieval is applied through the estimation of similarities among
the generated textual descriptions instead of considering the
visual descriptors. The proposed system can also be configured
to allow one to use directly the textual descriptors as query
to retrieve the most similar images. Fig. 1 shows the block
diagram of the proposed retrieval system. Experiments carried
out on two different archives that include satellite and aerial un-
manned aerial vehicle (UAV) images together with their captions
demonstrate the effectiveness of the proposed system in terms
of retrieval accuracy.

It is worth noting that image captioning methods have been
recently introduced in the RS community to generate a coherent
and comprehensive description of the complex semantic content
of an image [16]–[23]. The contribution of this article consists in
presenting and testing the effectiveness of the textual descriptors
(i.e., image captions) in the framework of the RSIR problems
to provide accurate search capability within big data archives in
RS.
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To the best of our knowledge, this is the first work in the
RS community that achieves querying and retrieving images
from the archive based on the textual descriptions. The proposed
RSIR system has been briefly presented in [24] with limited
experimental analysis. This article extends our work introducing
a detailed description of the proposed approach with a thorough
experimental analysis. Another work recently published is in
[25], which proposes a deep bidirectional triplet loss to learn the
similarity between an image and its descriptions in a common
feature space. The basic idea is that the related image-text pairs
should be closer than the unrelated pairs in the common feature
space. The query is performed using one or multiple sentence
descriptions. Note that our proposed work is different from the
work in [25]. In our work one can search for similar images
using either an image (by automatically generating a description
of its content) or using directly a textual description as a query,
whereas in [25] the query can be only in the form of a textual
description.

The rest of this article is organized as follows. Section II
discusses the related work about image caption, and Section III
introduces the proposed retrieval system. Section IV describes
the datasets used in the experiments and the experimental setup.
Section V illustrates the experimental results, while Section VI
draws the conclusion of this article.

II. IMAGE CAPTIONING RELATED WORK

Image Captioning (IC) aims at automatically generating nat-
ural language descriptions that are capable of describing the
content of an image [26]. This is achieved based on machine
learning and natural language processing (NLP) techniques that
initially extract the visual features of an image and then generate
textual description from the visual features. Image captioning
has been recently introduced in the RS community [16]–[23]
and is still a topic which calls for further development and
consolidation.

Unlike RS, in the computer vision and multimedia communi-
ties, the use of captioning is more extended and widely studied
for the representation of the semantic content of an image [27]–
[32]. From a methodological point of view, RS image captioning
methods can be divided into three main categories:

1) template-based;
2) retrieval-based; and
3) generation-based methods.
Template-based IC methods are composed of prefixed textual

(sentence) templates with empty slots. Detection algorithms are
first used to detect different objects present in the images along
with their attributes. Then, the empty slots are filled with the
detected entities forming a sentence description. As an example,
Shi and Zou [18] proposed to leverage different fully convolu-
tional neural networks in order to detect different objects present
in the images and a language model based on fixed templates to
generate the image descriptions. In general template-based IC
methods produce textual description that might be correct from
a grammatical and content viewpoint. However, the generated
descriptions tend to be simple due to the prefixed templates and

the performance of this method highly depends on the object
detection algorithm used in the first stage.

A second methodology of IC in RS is retrieval-based IC. In
this methodology, the captioning task is treated as a retrieval
problem. Given a target image, this method first looks into
the archive for the most similar images together with their
descriptions and then assigns to the target image one (or more)
existing description(s) of the retrieved most similar images. As
an example, Wang et al. [20] mapped images and sentences
in the same semantic space and developed a distance metric
to learn the similarity between images and sentences. To a
target image, the sentences that have the smallest distance are
assigned to describe its content. In general, retrieval-based IC
methods produce sentences that are correct from a syntax and
grammatical point of view (if the archive is properly built) but
they are not unseen-generated captions. Furthermore, as the
sentences are retrieved from similar images, their content may
be irrelevant to the target image.

A third methodology is generation-based IC. It is the most
used methodology in RS and computer vision communities as
it produces novel descriptions, which are very similar to those
written by humans. Generation-based IC is usually based on the
encoder-decoder framework, where a CNN is used to extract
the image visual features, and then a sequence model such as
an RNN is used to generate the image content description [16],
[17], [19], [21]–[23]. As an example, an approach that combines
different CNNs and RNNs to generate textual descriptions for
high spatial resolution RS images is presented in [16].

III. PROPOSED METHOD

A. Problem Formulation

Let X = {X1,X2, . . . ,XN} be an archive of N images and
Xi be the ith image present in the archive. Each image in the
archive is associated to J ground truth textual descriptions (i.e.,
captions). Let Si,j = {w1,j , w2,j , . . . , wp,j}, j = 1, 2, . . . , J
be the jth textual description of the image Xi and wp, p =
1, 2, . . . , P be the words of the textual description. Let Xq be
the query image that can be selected by the user. Given a query
imageXq , we aim to find a setY = {Y1, Y2, . . . , Yr}of the most
similar images to Xq from the archive with a high accuracy. To
this end, the proposed methodology consists of three main steps,
which are as follows:

1) image caption generation;
2) sentence encoding; and
3) image retrieval based on the encoded sentences of images.
The block diagram is shown in Fig. 1.

B. Image Caption Generation

Due to the success of the generation-based image captioning
systems in RS community, in this article, we focus our attention
on the use of the generation-based systems in the framework
of RSIR. In detail, we define the textual descriptions of the
RS images based on a multimodal RNN. Multimodal RNN
is a combination of an RNN and a CNN in order to model
the language descriptions and the image visual content in a
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Fig. 2. RNN architecture.

unique multimodal layer [29]. The RNN learns the dense feature
embedding of the words in the dictionary and keeps track of the
semantic temporal context using its recurrent layers. The CNN
extracts the visual features of the RS images. The multimodal
layer combines the previously extracted word feature with the
image features in a unique layer representation in order to
generate word-by-word description of the RS image content. As
RNNs are affected by gradient vanishing/exploding problem,
they have limitations in the cases in which the prediction of
a new word is related to a faraway previous information. To
overcome the long-terms dependency problem, in this work, we
exploit the long short-term memory (LSTM) [33] that is a type
of RNNs that enable the long-range learning. In the following,
we introduce the simple RNN and the LSTM. Later, we present
the multimodal RNN.

1) Simple Recurrent Neural Networks: In NLP community,
RNNs have shown great success in different tasks such as speech
recognition [34], [35]. Through their recurrent connections they
have the ability to explore sequence data characterized by an
inner temporal relationship. An example of sequence data are
sentences. Sentences are composed of sequence of words corre-
lated to each other within a semantic context. Thus, to generate
a sentence, the knowledge of previous words is required. RNNs
have feedback loops that allow the flow and the storage of
the semantic temporal context in order to produce meaningful
sentences. The RNN architecture is illustrated in Fig. 2. At each
time step t , an input word wt is passed to the RNN hidden state
ht. The hidden state ht acts as a “memory” containing all the
past information. The output (predicted) word ŵt is a function of
previous information stored in the hidden stateht and the current
input word wt. The equation involved in the RNN is reported
in (1) and (2), in which f1 (.), g1(.) are element-wised sigmoid
and softmax function, respectively, and U,V are weights to be
learned through backpropagation

ht = f1 (Uwwt + Uhht−1) (1)

ŵt = g1 (Vhht) . (2)

However, as mentioned before, RNNs are affected by long-
terms dependency problem. To overcome this problem, LSTMs
have been introduced in [33]. The structure of the LSTM is more
complex than the simple RNN. Within the LSTM are found a cell
state and three gates to control the information flow through the
network as illustrated in Fig. 3. The first step of the LSTM is to
decide which information to cancel from the previous cell state
ct−1. The previous hidden state ht−1 together with the current
input wordwt are first passed through the forget gate represented
by a sigmoid function which outputs a number between 0 and
1 stating that if the output of forget gate ft = 0 information has

to be completely forgotten otherwise it has to be kept. Then
ht−1 and wt are passed to the input gate represented again
by a sigmoid function and to a tanh layer to decide the value
to be updated and the candidates to such values, respectively.
The outputs of input gate it and of the tanh layer ct multiplied
together are added to the multiplication between forget gate
output ft with the previous cell state ct−1 to finally update the
current cell state ct. Finally, the previous hidden state ht−1 and
the current word wt are passed to another sigmoid function to
output ot. The new state ht of the LSTM will be formed as the
multiplication of ot with the filtered version of current cell state
ct. Filtering of the cell state ct is done by a tanh layer. Equations
(3)–(9) describe the LSTM inner layers and information update,
where W represents the weight parameters to be learned and ∗
represents the Hadamard product

ft = σ (Wwf · wt +Whf · ht−1) (3)

it = σ (Wwi · wt +Whi · ht−1) (4)

ct = tanh (Wwc · wt +Whc · ht−1) (5)

ct = ft ∗ ct−1 + it ∗ ct (6)

ot = σ (Wwo · wt +Who · ht−1) (7)

ht = ot ∗ tanh(ct) (8)

ŵt = softmax (Whht) . (9)

2) Multimodal Recurrent Neural Network: The multimodal
recurrent network is shown in Fig. 4(a). The inputs of multimodal
RNN are the image features extracted using a CNN architecture
and their related textual descriptions to estimate the probability
distribution of the next word given the image features and
the previous words. The architecture of the multimodal RNN
is composed of an embedding layer which converts the input
words from one-hot encoding into a dense vector representation
allowing to encode the semantic meaning of the words. Then the
embedding of words is passed in the recurrent layer of the LSTM
to store the temporal semantic context. The multimodal layer
combines the LSTM new state with the image features extracted
by the CNN. For image representation, deep learning features
have shown to overcome the need of hand-crafted feature [36].
Hence, we exploit ResNet50 [37] to extract the visual features
of the image. As ResNet50 is a fully connected CNN pretrained
on ImageNet for image classification task, we remove the last
layer and use the penultimate layer to represent the image.
Before inputting the extracted features to the multimodal layer,
we pass them first to a fully connected layer (dense layer) of
dimension D having ReLu activations f(x) = max(0, x) [38].
The reason of choosing the ReLu activation is due to the fact that
it is less affected from the gradient vanishing problem during
backpropagation [39]. The combination in the multimodal layer
is done by adding both the LSTM hidden state with the image
features forming the mixed vector of dimension M as the sum
of the LSTM hidden state vector and image features vector
dimensions. Another dense layer of dimension D and ReLu
activation is added before the last layer. The output of this layer
is passed to the dense layer having dimension V of vocabulary



4466 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 3. LSTM architecture.

Fig. 4. Multimodal recurrent neural network. (a) Multimodal recurrent neural network architecture; and b) the word prediction at each time stamp t regarding the
input image and its related sentence description (e.g. asphalt on the left and a red roof on the bottom right and some grass on the top right). “startseq” and “endseq”
are special tokens denoting the start and the end of the sentence. L is the sequence (sentence) length. During test time only RS image is inputted to the model and
word-by-word prediction is made regarding the image content until sampling “endseq” token.

size and softmax activation f(xi) = exi/
∑V

k exk to predict
the next word conditioned to the image features and the previous
words. At inference stage, the RS image is fed into the model to
predict word by word the textual description of its content.

C. Sentence Encoding

Once the generated descriptions for each image are obtained,
they need to be scattered into a vector space able at exploring
the semantic content within each description. This is achieved
by representing each word with a real-valued vector. In our
work these vectors are used as features in order to retrieve the
most similar images in the archive to a query image. The word
representation in the semantic vector space in this work is done
using two different word embedding techniques: 1) word2vec;
[40] and 2) GloVe [41]. Based on the word co-occurrence both
techniques are capable at producing semantically rich word

vectors. Word2vec is trained on a shallow neural network lan-
guage model composed of an input layer, projection layer, and
output layer to learn the word vector representations based on
the nearby words [40]. Word2vec comes with two different
predictive models: 1) the Continuous Bag of Words model; and
2) the Skip-gram model. The former attempts to predict a word
given its context (nearby words), while the latter attempts to
predict the context given a target word. In this work, we used
fastText [42] which is a faster version of word2vec that takes
into account the word morphology. This technique is based
on the skip-gram model and the words are represented as a
sum of their n-gram characters. However, word2vec does not
take into account the global co-occurrence of words in the
whole text corpus. GloVe technique combines the Skip-gram
model with the global matrix factorization to explore the global
statistical co-occurrence of the words in the whole corpus.
Instead of focusing only the probability of words within a
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context it also takes into account the ratio of co-occurrence
probabilities in the whole corpus extracting information from
the data repetition within a text corpus. The generated sentences
Ŝi = {ŵ1,i,ŵ2,i, . . . , ŵp,i } representing the image Xi are en-
coded as Vi = {(e1,i, f1,i), . . . , (ep,i, fp,i)}, where ep,i is the
word embedding obtained by the two embedding techniques
and fp,i = ŵp,i/

∑p
k=1 ŵk,i is the word frequency normalized

by the total number of words in the sentence. The reason behind
this representation is explained in the following section.

D. Image Retrieval Based on Generated Textual Descriptions

The final step of the proposed methodology consists of ex-
ploiting the generated sentences of each RS image to retrieve the
desired number of most similar RS images in the archive given
a query image. To this end, we need a metric that is capable of
exploiting the semantic content encoded in each word using the
two embedding techniques of the previous section. To this end,
we exploit the word mover’s distance (WMD) [43], which is a
special case of the well-known earth mover distance [44] metric.

The WMD uses the word vectors scattered in the semantic
vector space in order to create a dissimilarity measurement of
any two sentences as the minimum distance needed to convert
the words of one sentence into the words of another sentence.
In detail, let E ∈ Rd×n be the word embedding matrix with a
vocabulary size n. Let ei ∈ Rd be the d-dimensional encoding
vector of word i. Let S and S ′ be two documents (or sen-
tences) represented as a normalized Bag of Words vector, where
fi = wi/

∑n
k=1 wk is the number of times word wi appears

in S divided by the total number of words composing S. Let
c(i, j) = ei − ej2 be the Euclidean distance in the semantic
vector space between any two words i and j representing the
word dissimilarity. Introducing an auxiliary matrix T ∈ Rn×n

such that Ti,j ≥ 0 denotes how much of word i in S should be
transferred to word j in S ′, the work in [43] defines the distance
between any two documents as the minimum cumulative cost
necessary to move all the words from sentence S to S ′ solving
the following linear problem:

min
T≥0

n∑
i,j=1

Ti,j · c (i, j) i, j ε {1, 2, . . . , n} (10)

subject to :

n∑
j=1

Ti,j = fi

n∑
i=1

Ti,j = fj (11)

where
∑n

j=1 Ti,j = fi states that the total flow from word wi

in S is fully transported to word wj in S ′ and
∑n

i=1 Ti,j = fj
states that the word wj in S ′ receives all the incoming flow.
Once the WMD distance between the generated description of
the query image Xq and all of the other images in the archive
is calculated, the images with the smallest distance to the query
image are retrieved.

IV. DATASET DESCRIPTION AND EXPERIMENTAL SETUP

A. Dataset Description

In order to evaluate the proposed method, we used two differ-
ent datasets:

Fig. 5. Example of three images from the UAV dataset. The sentences from 1
to 3 correspond to ground truth sentence and sentence 4 (highlighted in red) is
the generated sentence.

1) Unmanned Aerial Vehicles (UAV) Image Captioning
Dataset: The first dataset consists of images acquired by UAVs
with EOS 550D camera near the city of Civezzano, Italy, on
October 17, 2012. The dataset is composed of ten RGB images
of pixel size 5184× 3456 characterized by a spatial resolution
of 2 cm, of which six images are used for training, one image
for validation, and three images for test. For the purpose of this
work, frames of size 256× 256 for training, validation and test
sets are generated. In total there are 2940 frames and each of
them is composed of three textual description written by three
different human annotators. Examples of frames along with their
descriptions are shown in Fig. 5. The vocabulary size V of the
dataset is 185. Since we make a comparison between our method
and multilabel image retrieval, each image is labeled with one
or more labels based on the ground truth descriptions. The total
number of the labels associated with the archive isC = 16.The
labels composing the archive are: “Asphalt,” ”Grass,” “Tree,”
“Vineyard,” “Low Vegetation,” “Car,” “Gray Roof,” “Red Roof,”
“White Roof,” “Solar Panel,” “Soil,” “Gravel,” “Rock,” “Per-
son,” “Shadow,” and “Building Facade.”

2) Remote Sensing Image Captioning Dataset (RSICD): The
second dataset is the RSICD dataset [19]. It is composed of
more than 10 000 RS images gathered from different maps
with various resolutions. Thus, it is the largest dataset used
for RS image captioning. Each image has different number of
descriptions varying from one to five. The images are fixed to
224× 224 pixel size. The vocabulary size of this dataset is 3323.
It has shown to be very useful for image captioning problems
despite being affected by numerous misspellings. This popular
benchmark dataset is unfortunately not suited for a straightfor-
ward conversion into a multilabel version. We therefore did not
consider it for multilabel experiments.

B. Experimental Settings

As it was discussed in the previous section, our proposed
method consists of image captioning, sentence encoding, and
image retrieval blocks. The dimension of the embedding, recur-
rent and multimodal layers that compose the image captioning
block are E = R = M = 256. The features of each image are
obtained using the ResNet50. The obtained features are passed
to a dense layer (fully connected layer) of dimension D = 256
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with ReLu activations. In order to avoid overfitting, drop_out is
also applied. Subsequent to the multimodal layer a dense layer
having a dimension D = 256 with activation ReLu is applied.
The output consists of a dense layer having softmax activations
with vocabulary size dimension V = 185 and V = 3323 for
UAV and RISCD datasets, respectively. We randomly selected
1) 60% of images to derive the training set; 2) 10% of images
to derive the validation set and 30% of images for the test set.
In the retrieval stage we unite the training and validation sets
to construct the image archive and all the images in the test set
for each dataset are used as query images to retrieve the most
similar images from the archives with respect to query image
Xq .

Sentence encoding is performed using GloVe and fasText.
GloVe vectors are pretrained on Wikipedia 2014 + Gigaword 5
corpus. They are available at Stanford website [45]. The fasText
vectors were trained separately in the two datasets corpus. The
word vectors dimensionality is chosen as 50 for both the UAV
and the RSICD dataset as a tradeoff between the accuracy and
computational complexity.

C. Multilabel Image Retrieval System

In order to evaluate the performance of the proposed method,
we compare with the multilabel image retrieval. As it was already
mentioned before, the comparison with multilabeling is only
done in the UAV dataset. The architecture of the multilabel
method is the same as [46] with the difference on the last layer
in which we use a dense layer with sigmoid activation f(x) =
1/(1 + e−x) instead of radial basis function neural network. To
be fair in the comparison, we use the same features extracted
with the ResNet50 as in the proposed caption retrieval method.
The features are then passed to a dense layer of dimension
D = 256 with ReLu activation and then to the final dense layer
with dimension C= 16, the number of classes/labels of the UAV
dataset with sigmoid activation. The output of sigmoid function
is a probability score for each label. During the inference stage,
to determine the presence/absence of a label in the image,
we fix a threshold value θth and check whether the output of
each neuron exceeds the threshold value. The neuron output of
each label exceeding θth are considered active determining the
presence of the labels for a given image. The threshold value is
empirically decided as θth = 0.5.

Once the label prediction is made, for each image we obtain
a binary vector of dimension C = 16, where 1 is associated
with the presence of a given label in the image and 0 with the
absence of a given label. The retrieval is performed by computing
the Hamming distance with respect to the query image. The
images having the lowest Hamming distance to the query one
are retrieved.

D. Evaluation Metrics

The effectiveness of the proposed image retrieval system
is quantified using three different metrics: BLEU score [47],
F-score [48], and user evaluation. In order to define the dif-
ferent metrics, let Xq be the query image along with its j
different descriptions Sq,j = {w1,j , w2,j , . . . , wp,j} and with
the set Cq ∈ C of labels present in Xq . Similarly, let Yr ∈ Y

be the retrieved image along with its j different descriptions
Sr,j = {w1,j , w2,j , . . . , wp,j} and with the setCr ∈ C of labels
present in Xr.

BLEU metric is a machine translation (MT) evaluation metric
that measures how close the output of the MT system (candidate
translation) is to the translation of a human expert (reference
translation). The evaluation is based on the precision measure.
Precision is calculated as the number of consecutive words (n-
grams) in the candidate translation that occur in the reference
translation divided by the total number of words of the candidate
translation. BLEU score between a reference translation R and
a candidate translation G is computed as a product of precision
P (N,G,R) and the brevity penalty BP (G,R) as follows:

BLEU (N,G,R) = P (N,G,R)×BP (G,R) (12)

where P (N,G,R) is the geometric mean of n-gram precision
defined as follows:

P (N,G,R) =

(
N∏

n=1

pn

)1/N

(13)

and pn = mn/ln, where mn is the number of n-grams between
G and R, ln is the total number of n-grams in G. The brevity
penalty penalizes the shorter translations and is calculated as
follows:>

BP (G,R) = min

(
1.0, exp

(
1−

(
len (R)

len (G)

)))
(14)

where len(R) is the length of the reference translation and
len(G) is the length of the candidate translation. Due to the
geometric mean of n-gram precision when there is no higher
order n-gram precision (e.g. n = 4 ), BLEU score of the whole
sentence is 0 independently of the low-order n-gram precisions
(n = 1, 2, 3). To overcome this issue, we use a smoothing tech-
nique proposed in [49], which replaces the 0 score in presence of
low-order n-grams with a small value ε. BLEU scores range from
0 to 1, where 1 is good. In this work, for the n-gram precision we
used n = 1, 2, 3, 4. In our image retrieval system the reference
translations are the ground truth descriptions Sq,j of the query
image Xq and the candidate translations are the ground truth
descriptions Sr,j of the retrieved image Xr. Before calculating
the BLEU score, we apply WMD distance between each de-
scription Sq,j of Xq and all the descriptions Sr,j of retrieved
image Xr to determine the closest description to Sq,j and then
calculate the BLEU score between the closest descriptions. The
BLEU score for a query image Xq is determined averaging the
BLEU score between each description of the query image and
the closest description of the retrieved image. Finally, the BLEU
score is averaged over all the retrieved images.

Since we are comparing the proposed image retrieval system
with multilabel image retrieval system, we also evaluate the per-
formances of the proposed image retrieval system using F-score,
which is an adequate metric in case of multilabel information
[48]. F-score is defined as the weighted harmonic mean of
precision (Pr) and recall (Rec), where precision is defined as
the fraction of identical labels of Xq and Xr in the label set
Cr and recall is defined as the fraction of identical labels of
Xq and Xr in the label set Cq. Depending on the parameter β
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the F-score gives more importance to precision or recall. In this
work, we have used β = 1,2. The equations of precision, recall
and F-score are given in (15)–(17), respectively, where Nr is the
number of retrieved images.

A third metric used to measure the effectiveness of the pro-
posed retrieval system is the end-user evaluation. Each of the
end-users is asked to evaluate the performances of our retrieval
system and multilabel retrieval system based on a

Precision =
1

Nr

Nr∑
r=1

∣∣∣∣Cq ∩ Cr

Cr

∣∣∣∣ (15)

Recall =
1

Nr

Nr∑
r=1

|Cq ∩ Cr|
|Cq| (16)

Fβ =

(
β2 + 1

)
Precision× Recall

β2 × Precision + Recall
(17)

simple question: “If you were to choose between the two retrieval
systems, which one satisfies you the most in terms of retrieved
images?” The term “satisfied” is interpreted as the similarity
between the query image and retrieved image in terms of the
relationship of different entities, the position, orientation present
in the query image and in the retrieved images. Users also
considered the ranking produced by each retrieval system. The
users are required to choose one of the retrieval systems. This
evaluation is only done on our UAV dataset. In total we randomly
take 100 query image out of 882 query images and for each query
image we retrieve 20 images with both our retrieval system and
multilabel content-based image retrieval method. In total, 16
users performed the evaluation.

V. EXPERIMENTAL RESULTS

A. Experimental Results on UAV Dataset

1) BLEU Evaluation (B-1,2,3,4): In this section, we evaluate
the proposed retrieval system in terms of mean BLEU score.
In absence of works that use generated textual descriptions to
query and retrieve images, we also report the upper bound results
regarding the dataset. The upper bound results are obtained using
the ground truth descriptions for query and retrieve the desired
most similar images to a query image. As datasets has more
than one ground truth descriptions, we randomly pick one of
them to use as a query. We repeat this process 10 times and
average the results. Tables I and II show the upper bound results
and the proposed retrieval system results, respectively. In terms
of word embedding technique, the results of each table are
rather similar. We can notice an average gap of 10% in terms
of mean BLEU score between the two tables. We believe that
the reason of having this gap is due to the fact that the proposed
retrieval system is affected by several errors, one of which is the
captioning block as shown in Fig. 1. Indeed, observing Fig. 5,
we can notice some errors in the generated sentences. Thus, one
way to reduce the gap is to improve the image captioning block.

2) Comparison With Multilabel Image Retrieval Method
[46]: Table III shows the results in terms of precision, recall, F-1
and F-2 scores when multilabel image retrieval and the proposed
retrieval system are used. By analyzing Table III one can observe

TABLE I
UPPER BOUND RESULTS IN TERMS OF MEAN BLEU SCORE (B)

Note: Ground truth descriptions are used to query and retrieve the images.

TABLE II
PROPOSED RETRIEVAL SYSTEM RESULTS IN TERMS OF MEAN BLEU SCORE

Note: Generated descriptions are used to query and retrieve the images.

that in terms of recall, F-1 and F-2 score our proposed retrieval
system achieves slightly better values respect to the multilabel
image retrieval system. However, in terms of precision, the
multilabel image retrieval shows slightly better results.

3) End User Evaluation: From the comparison between the
proposed retrieval system and the multilabel one, we observed
that the results are quite similar as it can be seen from Table III.
In order to have a better understanding of the behavior of the
proposed retrieval system, we also made a comparison from
an end-user prospective between the proposed retrieval system
and the multilabel one. Table IV reports the results of end-user
evaluation. The results show that the proposed retrieval system
overcomes the multilabel retrieval system by 4% from the end-
users point of view. The users were also required to give some
general comments about the two retrieval systems. In summary,
the users confirmed that both algorithms retrieve similar images
to a query image, however the proposed retrieval system shows
better visual results in terms of orientation, number, and position
of the objects with respect to the multilabel image retrieval
method [46].

Fig. 6 shows an example of images retrieved by the multilabel
retrieval system and the proposed retrieval system. The predicted
primitive classes and the generated descriptions of the query
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TABLE III
COMPARISON RESULTS BETWEEN THE PROPOSED RETRIEVAL SYSTEM AND

MULTILABEL METHOD

TABLE IV
COMPARISON RESULTS BETWEEN THE PROPOSED RETRIEVAL SYSTEM AND

MULTILABEL METHOD FROM END USERS ON 20 RETRIEVED IMAGES

image shown in Fig. 6(a) are reported on the left and right of the
image, respectively. The predicted primitive classes and the gen-
erated descriptions of the retrieved images are shown in Fig. 6(b)
and (c), respectively. The retrieved images by the multilabel and
proposed retrieval system are also shown in Fig. 6(b) and (c),
respectively. Both the retrieval systems are able to find similar
images with respect to the query image. However, the proposed
retrieval system is more accurate in finding similar images. Even
if the first retrieved images missed “shadow,” all the retrieved
images of the proposed retrieval system [see Fig. 6(c)] have the
same spatial arrangement as the query image, the asphalt is on
the left and the grass field is on the right. On the contrary, even if
the results of multilabel retrieval system [see Fig. 6(b)] include
the same primitive classes as the ones of the query image their
spatial arrangement is not accurate, except for the first retrieved
image. Fig. 7 shows another example of images retrieved by
multilabel retrieval system and proposed retrieval system. We
can notice that the results of both the retrieval systems show cars
parked in a parking lot. However, the fifth and tenth retrieved
images from multilabel retrieval system [see Fig. 7(b)] show
only one car each, while the query image describes a parking
lot with three cars. Moreover, the first image retrieved by the
multilabel retrieval system shows an additive primitive class,
namely “person.” On the other hand, the images retrieved by
the proposed retrieval system, even though the generated de-
scriptions are affected by some errors [see Fig. 7(c)], show cars
parked on the parking lot (from 3 to 4) and do not add any
other primitive classes. Another example of images retrieved

Fig. 6. Retrieval example. (a) Query image where the ground truth and
generated labels are shown on the top and bottom left of the image, respectively;
ground truth and generated sentences are shown on the top and bottom right,
respectively. (b) Images retrieved using multilabel image retrieval system. Above
are shown the ground truth labels and below highlighted in red are shown the
predicted labels. (c) Images retrieved using the proposed retrieval system. Above
is shown one of the ground truth description and below highlighted in red are
shown the generated descriptions. The order of the retrieved images is reported
above each image.

by the two retrieval systems is shown in Fig. 8. By looking
at the images retrieved by both systems, we can see that the
proposed retrieval system is able to accurately find very similar
images [see Fig. 8(c)] to the query image. On the contrary, the
multilabel retrieval system misses different primitive classes and
adds others [see Fig. 8(b)]. By visual analysis of all the obtained
results regarding the UAV dataset, we can conclude that even
though the generated descriptions are affected by some errors,
the proposed method detects and retrieves visually most similar
images from the archive to a query image.

B. Experimental Results on the RSICD Dataset

Tables V and VI report the upper bound and the proposed
retrieval system results, respectively. As it was mentioned in
the previous section, for this dataset, the multilabels of the
images are not available. We thus only provide the results of
the proposed retrieval system and the upper bound in terms of
mean BLEU scores.
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Fig. 7. Retrieval example. (a) Query image where the ground truth and
generated labels are shown on the top and bottom left of the image, respectively;
ground truth and generated sentences are shown on the top and bottom right,
respectively. (b) Images retrieved using multilabel image retrieval system. Above
are shown the ground truth labels and below highlighted in red are shown the
predicted labels. (c) Images retrieved using the proposed retrieval system. Above
is shown one of the ground truth description and below highlighted in red are
shown the generated descriptions. The order of the retrieved images is reported
above each image.

TABLE V
UPPER BOUND RESULTS IN TERMS OF MEAN BLEU SCORE

Note: Ground truth descriptions are used to query and retrieve the images.

Fig. 8. Retrieval example. (a) Query image where the ground truth and
generated labels are shown on the top and bottom left of the image, respectively;
ground truth and generated sentences are shown on the top and bottom right,
respectively. (b) Images retrieved using multilabel image retrieval system. Above
are shown the ground truth labels and below highlighted in red are shown the
predicted labels. (c) Images retrieved using the proposed retrieval system. Above
is shown one of the ground truth description and below highlighted in red are
shown the generated descriptions. The order of the retrieved images is reported
above each image.

TABLE VI
PROPOSED RETRIEVAL SYSTEM RESULTS IN TERMS OF MEAN BLEU SCORE

Note: Generated descriptions are used to query and retrieve the images.
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Fig. 9. Railway station image retrieval. (a) Query image. (b) Images retrieved
using the proposed retrieval system. Generated textual descriptions (highlighted
by red) are reported below the related images of (b). One ground truth description
is reported above the related images of (b). The order of the retrieved images is
reported above each image.

Unlike the results obtained in the UAV dataset, here we ob-
serve a reduction in terms of mean BLEU score for the two tables
and in particular the results of the proposed retrieval system are
lower. The gap in terms of mean BLEU score between two tables
varies with the number of retrieved images, from 0.15 to 0.3.

Fig. 9 shows an example of images retrieved by the proposed
retrieval system when the query image is selected from railway
station category of the RSCID archive. The retrieval order of
each image is given above the related image together with one
of the ground truth description. The generated descriptions are
highlighted by red and are given below the retrieved image. From
the visual inspection of the retrieved images, we can observe
that all the retrieved images are very similar to the query image.
The 15th retrieved image [see Fig. 9(b)] contains some bare land
which is not captured by the generated description. However, the
bare land even if not included in all the ground truth descriptions
is present in all the retrieved images.

Fig. 10 shows another example of retrieved images when
the query image is selected from sparse residential category of
the archive. We can observe that all the retrieved images are
very similar to the query image. Even if “meadow” primitive
class is missing, all the retrieved images show a single building
surrounded by trees.

Fig. 11 shows another example of the retrieved image when
the query image is selected from dense residential category of
the archive. The ground truth descriptions of the query images
are in total three, which are as follows.

1) “The roof of residential buildings is red.”
2) “The wide have a lot of people walking on the road.”
3) “Many buildings are in a dense residential area.”

Fig. 10. Sparse residential image retrieval. (a) Query image. (b) Images
retrieved using the proposed retrieval system. Generated textual descriptions
(highlighted by red) are reported below the related images of (b). One ground
truth description is reported above the related images of (b). The order of the
retrieved images is reported above each image.

Fig. 11. Dense residential image retrieval. (a) Query image. (b) Images
retrieved using the proposed retrieval system. Generated textual descriptions
(highlighted by red) are reported below the related images of (b). One ground
truth description is reported above the related images of (b). The order of the
retrieved images is reported above each image.

From the ground truth descriptions, we can notice that the first
two descriptions may not be very accurate, as they are missing
some classes and adding some others not present in the query
image. The third description instead is found almost in all the
images within the dense residential category. As we use all the
ground truth descriptions of the query image in order to calculate
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Fig. 12. Port image retrieval. (a) Query image. (b) Images retrieved using the
proposed retrieval system. Generated textual descriptions (highlighted by red)
are reported below the related images of (b). One ground truth description is
reported above the related images of (b). The order of the retrieved images is
reported above each image.

the BLEU score, when the ground truth description presents
some ambiguity, the score will be low. Indeed, for the given
example, we have a BLEU 1, BLEU 2, BLEU 3, and BLEU 4
score of 0.333, 0.230, 0.207, and 0.163, respectively. However,
for the example shown in Fig. 9, we have BLEU 1, BLEU 2,
BLEU 3, and BLEU 4 score of 0.637, 0.551, 0.514, and 0.456,
respectively. This may be one of the reasons why the results
reported in Table VI are much lower with respect to Table V.

Fig. 12 shows another example of the retrieved images where
the query image is selected from port category of the archive.
The ground truth descriptions of the query image are in total
three, which are as follows.

1) “There are many places to a relatively large port.”
2) “The lake is green above a lot of ship.”
3) “Many boats are orderly in a port.”
The ground truth descriptions for the first retrieved image

[see Fig. 11(b)] are as follows.
1) “Many small black fish are in the pond.”
2) “The pond is surrounded by light green lawns and vege-

tation.”
3) “Many cars are parked on the street.”
4) “Many ships are parked in the harbor.”
Even in this example we can see that in both the query

and the first retrieved image we find some ambiguity in the
ground truth descriptions. For instance, the first ground truth
description of the first retrieved image is completely wrong.
Indeed, the BLEU scores 1, 2, 3, and 4 between the query image
and the first retrieved image is 0.316, 0.064, 0.055, and 0.033,
respectively. We also can notice that the generated descriptions,

even if very short and simple, are in line with what it is shown in
the query image and the retrieved images [see Fig. 12(a) and
(b)]. Furthermore, one can see that all the retrieved images,
from a visual inspection are highly correlated to the query
image.

From different examples that we have seen from the RSICD
we can conclude that the reason why the results of Table VI are
low may be mainly related to the ambiguity of the ground truth
descriptions. We would like to emphasize that this phenomenon
occurs throughout all the RSICD dataset. Despite this, we can
conclude that the caption generator block concentrates more on
the most frequent ground truth examples during training to learn
and to generate during test time highly correlated captions with
the image visual contents. We also can conclude that no matter
the low results we have obtained in terms of mean BLEU score
per query image, the similarity between the query image and all
the retrieved images shown in different examples is considerably
high.

VI. CONCLUSION

In this article, we have presented a novel image retrieval sys-
tem that represents the high-level semantic content of the images
by generated sentences and perform image retrieval based on
the generated sentences. The main idea and contribution of
the article is the combination of remote sensing and natural
language processing techniques to perform RS image retrieval.
Representing the image content by generated sentences allows
to express better the complex content of an RS image instead
of using descriptors that only model the primitives. As a con-
sequence, the retrieval system might be more accurate if proper
sentences are generated and used to query and retrieve images
from an archive. Hence, image captioning block is crucial. We
have tested our system in two different RS archives. From the
qualitative and quantitative results, using generated sentences as
a query to perform image retrieval could be a promising direction
for the community to improve the CBIR techniques. As a future
work we plan to improve the captioning block.
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