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Maximum likelihood difference scaling (MLDS) is a
method for the estimation of perceptual scales based on
the judgment of differences in stimulus appearance
(Maloney & Yang, 2003). MLDS has recently also been
used to estimate near-threshold discrimination
performance (Devinck & Knoblauch, 2012). Using MLDS
as a psychophysical method for sensitivity estimation is
potentially appealing, because MLDS has been reported
to need less data than forced-choice procedures, and
particularly naive observers report to prefer
suprathreshold comparisons to JND-style threshold
tasks. Here we compare two methods, MLDS and two-
interval forced-choice (2-IFC), regarding their capability
to estimate sensitivity assuming an underlying signal-
detection model. We first examined the theoretical
equivalence between both methods using simulations.
We found that they disagreed in their estimation only
when sensitivity was low, or when one of the
assumptions on which MLDS is based was violated.
Furthermore, we found that the confidence intervals
derived from MLDS had a low coverage; i.e., they were
too narrow, underestimating the true variability.
Subsequently we compared MLDS and 2-IFC empirically
using a slant-from-texture task. The amount of

agreement between sensitivity estimates from the two
methods varied substantially across observers. We
discuss possible reasons for the observed disagreements,
most notably violations of the MLDS model assumptions.
We conclude that in the present example MLDS and 2-
IFC could equally be used to estimate sensitivity to
differences in slant, with MLDS having the benefit of
being more efficient and more pleasant, but having the
disadvantage of unsatisfying coverage.

Introduction

Maximum likelihood difference scaling (MLDS) is a
psychophysical method that allows the efficient char-
acterization of perceptual scales (Knoblauch & Malo-
ney, 2012; Maloney & Yang, 2003). Observers are
asked to judge appearance differences for supra-
threshold stimuli that vary along some dimension of
interest, and a scale is constructed based on the
reported differences in appearance. The method has
been used to study appearance in a variety of visual
domains such as color differences (Maloney & Yang,
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2003), texture properties (Emrith, Chantler, Green,
Maloney, & Clarke, 2010), surface glossiness (Obein,
Knoblauch, & Viènot, 2004), transparency (Fleming,
Jäkel, & Maloney, 2011) and material properties
(Paulun, Kawabe, Nishida, & Fleming, 2015), as well as
for the assessment of perceived image quality in
compression-degraded images (Charrier, Maloney,
Cherifi, & Knoblauch, 2007).

Recently, MLDS has been used to link stimulus
appearance with stimulus discriminability. Assuming
an underlying signal detection model, Devinck and
Knoblauch (2012) have demonstrated a quantitative
agreement between sensitivity estimates derived from
perceptual scales (MLDS) and sensitivity estimates
assessed with a traditional forced-choice procedure for
the watercolor effect. Their finding is remarkable given
the long effort in psychophysical research of relating
discrimination and appearance in a unified framework.

Relating stimulus appearance—the stimulus subjec-
tive magnitude—to discrimination—the ability to
discriminate stimuli—dates back to the roots of
psychophysical research. Fechner (1860) proposed that
by summing equal subjective, just-noticeable differ-
ences (JND) and assuming Weber’s law, a function
could be constructed which relates stimulus subjective
magnitude and physical magnitude (Baird, 1978). Soon
Fechner’s suggestion was criticized, theoretically as well
as for lack of experimental evidence to support it
(reviewed in detail in Krueger, 1989).

Stevens (1957, 1975) later proposed that subjective
magnitude could be directly measured from observer
responses to suprathreshold stimuli. He devised direct
methods to measure subjective magnitude and derived
(power) functions that would relate subjective and
physical magnitude (Gescheider, 1997; Stevens, 1975;
but c.f., Treisman, 1964a, 1964b). However, Steven’s
proposal was met with equal criticism, partly because
of the scale’s lack of predictive power for discrimina-
bility and partly because of the methodological
concerns of asking observers to numerically estimate or
provide ratings of perceived sensation (e.g., Baird,
1989). Although a considerable amount of work has
been done trying to unify discrimination and appear-
ance, so far the debate still continues and mixed
experimental evidence has been found (e.g., Hillis &
Brainard, 2007; Krueger, 1989; Ross, 1997). Thus, the
finding of Devinck and Knoblauch (2012) that ap-
pearance and sensitivity can be linked via MLDS is
promising, because it suggests that a suprathreshold
method like MLDS could be used to predict sensitivity
to near-threshold stimulus differences. Apart from
potential theoretical implications, Devinck and Kno-
blauch’s finding may be beneficial from a purely
methodological point of view, because MLDS requires
a considerably smaller amount of data than traditional
discrimination methods. Because of its efficiency

MLDS could be used to identify experimental settings
in which appearance and discrimination judgments are
consistent, by comparing sensitivity measured in
discrimination tasks (e.g., two-interval forced-choice)
with sensitivity derived from MLDS. The goal of this
work was to further explore—theoretically and empir-
ically—the possibility to use MLDS to predict near-
threshold discrimination performance using a slant-
from-texture task.

Slant-from-texture tasks

We measure perceptual scales in a slant-from-texture
experiment. The perceptual scale that relates apparent
and physical slant in slant-from-texture tasks has a
nonlinear shape and it therefore provides an interesting
test case for predicting sensitivity at different positions
of the MLDS based scale. Slant-from-texture stimuli
have been used extensively in the study of depth and
surface perception (e.g., Knill, 1998; Rosas, Wichmann,
& Wagemans, 2004; Saunders & Backus, 2006; Todd,
Thaler, & Dijkstra, 2005; Velisavljević & Elder, 2006),
because texture gradients can evoke a strong impres-
sion of 3-D slant in the absence of other cues
(Saunders, 2003). Stimuli are surfaces that are covered
with a texture pattern such as randomly placed circular
elements (or ‘‘polka dots’’; Figure 1). The surface is
slanted at varying degrees relative to the fronto-parallel
position resulting in characteristic changes in the polka
dot patterns. The slanted texture is viewed through an
aperture to isolate texture cues from other pictorial
cues such as the shape and borders of the surface
(Knill, 1998; Todd, Christensen, & Guckes, 2010).
Using this type of stimuli, it has been found that
sensitivity to slant is lower when the surface is close to
the fronto-parallel position than when the surface is
slanted away from it (Knill, 1998; Rosas et al., 2004).
The difference in sensitivity between 08 and 708 can be
up to ten-fold (Knill, 1998).

Figure 1. Example stimuli showing surfaces of different slants

covered with the ‘‘polka dots’’ texture. Here we used the

method of triads for MLDS where observers judge which of the

pairs exhibit a larger difference in perceived slant, the left-

middle pair or the right-middle pair. Most observers would

report that the right-middle pair (35, 70) contains the larger

slant difference, although the physical slant difference is

identical between the pairs: (0, 35) versus (35, 70).
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MLDS and the signal detection model

The decision model underlying the MLDS frame-
work is depicted in Figure 2A. It is assumed that
different stimulus levels si are associated with discrete
perceptual responses Wsi ; and that observers compare
different stimuli by judging the differences between
the perceptual responses. The decision variable is
assumed to be corrupted by decision noise, e, which is
assumed to be Gaussian distributed with zero mean
and variance r2. MLDS estimates the perceptual scale
together with the noise associated with the judgments
(Knoblauch & Maloney, 2008; Maloney & Yang,
2003).

The same perceptual process can be rephrased in a
signal detection framework by shifting the noise from
the decision process to the sensory representation (see
Figure 2B). In this way, the original MLDS scale can be
transformed to a normed scale in which the units on the
perceptual axis represent differences in units of d 0. This
transformation has been suggested by Devinck and
Knoblauch (2012) to compare supra- and near-thresh-
old judgments in the watercolor effect. A detailed
description of the transformation and the MLDS
model is provided in the Appendix.

In order to apply this transformation, the following
assumptions are made: (a) The sensory representations
associated with each stimulus level are Gaussian
random variables with equal variance (r2). (b) They are
independent. (c) The decision process is deterministic.
(d) The sensory representation function is monotoni-
cally increasing. This produces only positive values of
sensory response intervals so that the absolute value
operation can be removed from the decision rule (D
variable in Figure 2A and B). An MLDS decision

model with the above assumptions is equivalent to a
signal detection model with equal-variance and
Gaussian distributed sensory representations, as de-
picted in Figure 2C.1

Objectives

We want to test whether and to what extent we can
assume the equivalence of MLDS and forced-choice
procedures for estimating sensitivity as it was reported
by Devinck and Knoblauch (2012) for the Watercolor
effect. We first examine the theoretical equivalence
between both methods by means of simulations. We use
a known observer model to generate sensitivity
estimates for both methods. In the present analysis we
evaluate the adequacy of MLDS to predict sensitivity
using the 2-AFC method as the standard of reference as
the latter has proven its usefulness in the estimation of
sensitivity over time. We quantify the amount of
agreement between the two methods in the presence of
different violations in the assumptions underlying
MLDS. We then test the empirical consistency between
sensitivity estimates derived with MLDS and forced-
choice procedures in two experiments with a slant-
from-texture task. In Experiment 1 observers judge
suprathreshold slant differences and perceptual scales
are derived from the judgments using MLDS. From
these scales we derive sensitivity estimates (thresholds)
at different slant levels. In Experiment 2 observers
judge near-threshold slant differences in a two-interval
forced-choice (2-IFC) task. Sensitivity estimates
(thresholds) are derived from psychometric functions
for the same slant levels as in Experiment 1.

Figure 2. MLDS in the signal detection framework. (A) In its original formulation the decision variable (D) in MLDS is defined as the

difference between intervals ( Ws3 ;Ws2j jand jWs2 ;Ws1 j), and this difference is corrupted by Gaussian noise (e). (B) In the signal

detection formulation of MLDS, the noise originates only from the sensory representations (ws) which are assumed to be independent

Gaussian random variables with equal variance. In the signal detection version of MLDS, the model is equivalent to forced-choice

methods (C) at the level of the sensory representation. See text for details.
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To anticipate, the amount of agreement between
sensitivity estimates from the two methods varied
substantially across observers. The simulations showed
that disagreement between the methods might be due to
violations of the model assumptions underlying
MLDS.

Simulations

The sensory representation was modelled as a power
function, W (s)¼ se, with exponent e¼ 2.0 (Figure 2A).
We used an exponent greater than one so that
sensitivity would increase with stimulus intensity,
which is the case for slant-from-texture (Knill, 1998).
The sensory representation function was used to
simulate responses of a model observer for the MLDS
and the 2-IFC procedure. It was assumed to be a
Gaussian random variable with the mean correspond-
ing to W(s) and unique variance r2 (Figure 2B through
C). An example simulation is depicted in Figure 3.
Thresholds were derived for a standard value of st¼ 0.6
from MLDS scales (panel A) and from psychometric
functions in a 2-IFC task (panel B).

MLDS thresholds

We performed the MLDS experiment with the
method of triads (Knoblauch & Maloney, 2012;
Maloney & Yang, 2003). A triad consists of three
stimuli, s1, s2, and s3. To simulate a triad, the generative
model (Figure 2A) assigns perceptual responses, Wi, to

each of the three stimuli, si. The simulated observer
decides which of the pairs, (s1, s2) or (s2, s3), contains
the bigger difference in perceived slant according to the
decision model depicted in Figure 2B.

MLDS data (simulated and observed) were analyzed
with the R package MLDS, available in CRAN
(Knoblauch & Maloney, 2008) and with python
routines based on numpy and scipy libraries. A python
wrapper of the MLDS routines together with all
subsequent analysis routines is available online (http://
github.com/TUBvision/mlds).

We first estimated a perceptual scale from the
simulated responses by employing the standard MLDS
routines available in R (Knoblauch & Maloney, 2008;
see Appendix, MLDS with the method of triads section
for a detailed description of the estimation procedure).
We then derived sensitivity estimates from the percep-
tual scale following the procedure suggested by
Devinck and Knoblauch (2012). To do this we
reparametrized the original unconstrained scale so that
the scale values are expressed in units of d 0. The details
underlying the reparametrization are explained in
Appendix, Difference scales and signal detection
theory. In the simulation we derived sensitivity
estimates for eight standard values (experiments were
done with four standard values). Due to the nonlinear
shape of the perceptual scale, the local slopes differed
between different standard values and hence translated
into different sensitivity levels along the stimulus
dimension. For each standard we determined sensitivity
at three performance levels (d 0 ¼ 0.5, 1, and 2) above
and below the standard. To derive the stimulus values
that corresponded to each d 0 difference for a given
standard, we interpolated between the sampled data

Figure 3. Comparison of MLDS and forced-choice thresholds. (A) Difference scale for a simulated MLDS experiment using the sensory

function depicted in Figure 2A. A cubic spline (dark solid line) is fitted to the scale values (circles). The procedure to read out

thresholds is illustrated by arrows. Here we read out the threshold ( ĥjMLDS) for a standard st¼0.6 (vertical gray line) at a performance

level of d 0¼1 for comparisons above (red arrow) and below (blue arrow) the standard. B. Psychometric functions from a simulated 2-

IFC procedure with the same sensory function for comparisons above (red) and below (blue) the standard (vertical gray line).

Thresholds (ĥj2IFC) were derived from the fraction correct corresponding to a performance level d 0 ¼ 1 (Fc ¼ 0.76). (C) Thresholds

derived with each method are plotted against each other. They are expressed relative to the standard (st¼0.6) for comparisons above

(red colors) and below (blue colors) the standard. The main diagonal white line indicates identity. Error bars indicate 95% C.I.

Journal of Vision (2017) 17(1):37, 1–18 Aguilar, Wichmann, & Maertens 4

Downloaded from jov.arvojournals.org on 11/20/2020

http://github.com/TUBvision/mlds
http://github.com/TUBvision/mlds


points with a cubic spline fit (/̂ðsÞ;shown as solid dark
gray line in Figure 3A). The scale value, /̂ðstÞin d 0

units, that corresponds to a particular standard
stimulus (st) and performance level (d 0) was read from
the fitted function. The readout can be described by

/̂
�1

/̂ðstÞ6d 0
� �

¼ ĥst
6d 0

���MLDS ð1Þ

in which theþ (–) sign next to d 0 stands for comparison
values above (below) the standard, and ĥst6d 0jMLDS
stands for a particular sensitivity value in stimulus units
as estimated by MLDS.

2-IFC thresholds

The same generative model is used to simulate
responses in the 2-IFC procedure. In each trial, one
response is generated for the standard and one for the
comparison value. Perceptual responses are compared
according to the decision model depicted in Figure 2C.
We simulated the same number of trials that we ran in
the behavioral experiments (see Experiments, both
Observers and Procedure experiment 1: MLDS sec-
tions).

To allow the comparison of thresholds across
different standard slants, we report comparison values
in terms of differences relative to each standard. We
fitted separate psychometric functions for positive and
negative comparison values (smaller and larger than the
standard). Psychometric functions were Weibull func-
tions (F) with the guess rate (c) set to 50% chance level.
The lapse rate (k), slope, and position parameters of the
psychometric function were estimated using Bayes
inference (Kuss, Jäkel, & Wichmann, 2005). We used
the psignifit4 implementation (Schütt, Harmeling,
Macke, & Wichmann, 2016) for function fitting,
estimation of confidence intervals, and analysis of
goodness of fit. Each psychometric function was
estimated from a total of 320 trials (4 comparison
values 3 80 repeats) as in the experiments.

An example psychometric function for one standard
slant is shown in Figure 3B. Performance thresholds
were obtained from each psychometric function by
finding the stimulus value that produces a percentage
correct corresponding to a desired d 0. Assuming the
equal variance Gaussian case of a signal detection
model (Green & Swets, 1966), d 0 can be converted to
percentage correct and vice versa, and the threshold
can be read out by

F̂�1ðFc 0Þ ¼ ĥst
6d 0

2IFCj

where þ (–) indicate comparisons above (below) the
standard, Fc 0 ¼ {0.28, 0.52, 0.84} are the unscaled
fractions correct (range between 0 and 1) that
correspond to the raw fractions correct Fc¼ {0.64, 0.76,

0.92} (range between 0.5 and 1.0). These fraction
correct values Fc correspond to the performance levels
of d 0 ¼ 0.5, 1, and 2, respectively, in a two-alternative
forced-choice task (Green & Swets, 1966).

Threshold comparison

In Figure 3C the thresholds derived with each
method are plotted against each other. They are
expressed as differences relative to the standard value.
Perfect agreement between the two methods is indi-
cated by the main diagonal. To evaluate the statistical
significance of the differences between thresholds, we
estimated the 95% CI for each of the thresholds using
the bootstrap technique (for details see Simulations,
Variability of threshold estimates section).

Thresholds were said to be in agreement when either
one of the two confidence intervals of a data point
(vertical or horizontal corresponding to 2-IFC and
MLDS, respectively) crossed the unity line. This
criterion ensures that the point estimate of one method
is included in the 95% CI of the other method. In
Figure 3C all data points coincided with the unity line,
resulting in a 100% agreement.

We used this measure to quantify the degree to
which the consistency between the thresholds. For eight
different standard values we performed n ¼ 1,000
simulations, and Figure 4A shows a summary of the
results for the average of the empirically observed noise
level, r¼ 0.07 (green lines). Thresholds agreed in more
than 90% of the cases, and the agreement was also high
across a range of noise levels that we tested, from r¼
0.035 to r ¼ 0.14 (see Supplementary material), which
includes all the values of sensory noise observed in the
experiments.

Thresholds that could not be obtained

The estimation procedure in either of the methods
sometimes failed when sensitivity was low. When the
stimulus was in a range where the sensory function is
too shallow, for example for values below 0.4 in the
sensory function in Figure 2A, the interpolation of
scale differences was not possible. Similarly, the
psychometric function was sometimes so shallow that it
did not allow the read out of a threshold at a given
performance level. These ‘‘failure’’ cases provide an
additional test of consistency between the two methods,
because when sensitivity is genuinely low, both
methods should fail to provide a threshold estimate.
We counted the number of cases in which either one or
both of the methods did not provide a threshold
estimate for a given performance level. The results are
shown in Figure 4A (gray lines). It can be read from the
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Figure that both methods did consistently fail to
provide threshold estimates for standard values near
zero.

Model assumptions

To test the effect of violations of some of the model
assumptions on the agreements between thresholds, we
repeated the simulations with a modified generative
model. We introduced sensory noise that was not
independent of the stimulus level but instead increased

with the stimulus value. We also tested a model that
included uniform correlations between the sensory
representations (specific details in Supplementary
material). These two modifications violate the as-
sumptions of equal variance (assumption 1) and
independence (assumption 2). As illustrated by King-
dom (2016) and tested in simulations by Maloney and
Yang (2003), the scales themselves are insensitive to a
violation of the equal variance assumption. However,
violating the equal variance assumption did reduce the
agreement between thresholds (Figure 4B) in particular
for extreme standard values where the simulated noise

Figure 4. MLDS and forced-choice thresholds from simulations. At each standard level, thresholds for different performance levels

could be successfully estimated (dark green) and have quantitative agreement between them (light green). There were cases in which

thresholds could not be estimated (dark gray), from which an agreement occurred when both methods were unable to estimate it

(light gray). The sum of agreement cases for estimated and not estimated thresholds is also shown (light blue). Percentage over 1,000

simulations: (A) Independent, equal-variance case with noise level r¼ 0.07; (B) independent, unequal-variance case with increasing

noise level from 0.035 to 0.14 (violation of equal-variance assumption); (C) same as (A) but with added uniform correlation in the

sensory representation of q¼ 0.8 (violation of independence assumption); and (D) same as (B) but with added uniform correlation of

q ¼ 0.8 (both assumptions violated).
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was respectively lower or higher than in the equal-
variance model. The reason for this is illustrated in
Figure 3 which shows how threshold readout depends
on noise on the sensory axis. Introducing correlations
reduced the amount of agreement between thresholds
independent of the standard value (Figure 4C). We
observed the smallest agreements when both assump-
tions are violated (Figure 4D).

Variability of threshold estimates

To study the variability of threshold estimates, we
made use of the bootstrap samples that are already
generated by MLDS to calculate confidence intervals
(CIs) for the scale values (error bars in Figure 3A;
Knoblauch & Maloney, 2012). Bootstrap samples are
generated from the response probabilities that are
observed for each triad. Each bootstrap sample is a
new perceptual scale and by default MLDS generates
1000 of these bootstrapped scales. To derive the
bootstrap samples for a particular threshold value, we
fitted a cubic spline to each bootstrap scale and
determined the slant value corresponding to the
threshold value (see Equation 1). From these boot-
strap distributions, we obtained the 95% CI for each
threshold (a detailed description of the procedure can
be found in Appendix, Variability of the difference
scale).

To compare the confidence intervals associated with
each method, Figure 5A plots the widths of the
respective CIs against each other, for one example
standard. The main diagonal indicates equal width in
the confidence intervals; data points above the main
diagonal indicate that the width of the CIs for
thresholds from MLDS were smaller than the width of
the CIs for thresholds from 2-IFC. For all standard

levels (Figure 5) and for all tested noise levels
(Supplementary material) the majority of confidence
intervals (99%) was smaller in MLDS than in 2-IFC.
This is curious because MLDS requires a smaller
amount of data than 2-IFC.

A smaller width in the confidence intervals could
either be due to a truly more precise estimate (less
underlying variability), or alternatively, it could result
from an insufficient coverage of the confidence
intervals. This is a common problem in derivations
using bootstrap techniques (Wichmann & Hill, 2001)
and we tested this with an analysis of the coverage of
the scales and the derived thresholds. We calculated
coverage by counting how many times the ‘‘true’’ value
(as defined in the generative model) was contained in
the estimated confidence interval of a scale or
threshold. For confidence intervals to be credible,
coverage across multiple simulations should reflect the
confidence in the confidence interval, i.e., coverage
should be 95% over multiple simulations for 95% CI.

Coverage of the scale estimates was adequate for
the range of noise levels studied (Supplementary
Figure S4). MLDS thus provides credible confidence
intervals for the scale estimates that it was designed
for. However, coverage for the threshold estimates
was at best at 90% for nominal values of 95% (Figure
5B), and for stimulus values at shallow portions of the
sensory function (e.g., smaller than 0.4) coverage was
as low as 50%–60%. These results indicate that the
confidence intervals for the thresholds derived with
MLDS were indeed too narrow. Threshold variability
might hence be underestimated when derived from
MLDS in the way described above. This is an
important caveat when using MLDS to estimate
thresholds.

Upon suggestion of the reviewers, we performed a
sanity check for the confidence intervals to test for their

Figure 5. (A) Comparison of the variability in the threshold estimation. The width of the confidence intervals are plotted against

each other for multiple simulations at one standard stimulus value st ¼ 0.4 as example. (B) Coverage of threshold estimated at

different standard levels, and for three different simulated noise levels (r). Expected coverage of 95% is shown as a black dashed

line.
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stability and bias when trial numbers are high. We
repeated the scale and threshold estimation procedure
and calculated bias and coverage for increasingly large
trial numbers (Supplementary Figures S8 and S9). For
the scale estimation, the pattern of results indicates that
coverage slightly improved with an increasing trial
number. For the threshold estimation, coverage did not
improve when the number of trials is tripled. This result
suggests that low coverage was not due to a small
sample size.

Summary and discussion

We simulated an observer model with a known
sensory representation function. We compared thresh-
olds derived from MLD scales with thresholds derived
from a 2-IFC procedure at different standard values
and performance levels. We found a high degree of
consistency between thresholds obtained with each
method, when all the assumptions are met (Figure 4A).
The amount of agreement did not depend on the
sensory noise level for the range of noise levels that was
observed experimentally (see Supplementary material).
The estimation procedure fails to obtain thresholds
when sensitivity is low. In most of these cases both
methods failed to estimate a threshold which is a
further indication of consistency between them. The
variability of threshold estimates, quantified as the
width of their confidence intervals, is smaller for
MLDS than for 2IFC thresholds (Figure 5A). This
finding needs to be qualified by the coverage analysis
which indicates that the bootstrapped confidence
intervals for MLDS thresholds might be too small
(Figure 5B).

The agreement between threshold estimates did not
amount to the theoretically expected 100%. This might
be due to the rather small number of simulated trials.
However, the simulations should capture actual psy-
chophysical experiments where it is not practicable to
collect large numbers of trials. In addition, they capture
the software pipeline of estimation and statistical
inference, which could be prone to different kind of
problems (e.g., numerical). Thus, the simulation results
establish an upper bound for the agreement that is
expected for a realistic amount of collected data and
estimation procedures.

Finally, we found that violating the equal-variance
assumption by MLDS might lead to disagreement
between estimated thresholds. The disagreement is
relevant because unequal variance models might fit
behavioral data better when the equal variance
assumption is violated in real data (e.g., Goris, Putzeys,
Wagemans, & Wichmann, 2013).

Experiments

Observers

Six naı̈ve (three male, three female; age range
between 23 and 29) and two experienced observers
(observers ‘‘O3’’ and ‘‘O6,’’ two of the authors)
participated in the study. All observers had normal or
corrected-to-normal visual acuity. The participation of
naı̈ve observers was voluntary and financially com-
pensated. Informed written consent was given by all
observers prior to the experiment.

Stimuli and apparatus

Stimuli were planes textured with a ‘‘polka dot’’
pattern and slanted about their horizontal axis. They
were generated in two steps. First, the textures
containing the ‘‘polka dot’’ pattern were generated as
2500 3 500 pixel images. The ‘‘polka dot’’ pattern is
created using a hard core point process, which is a
random spatial process that avoids dot superposition
by applying an inhibition radius to each point. Using
the R package spatstat (Baddeley & Turner, 2005), we
generated fifteen samples of this process following
specifications from previous work (Rosas et al., 2004).
The textures consisted of black dots (0.4–0.6 cd/m2, 12
pixels or 0.58 visual angle in diameter in the fronto-
parallel plane) on a gray background area (48–52 cd/
m2, Figure 1).

In a second step the textured planes were rendered in
3-D using OpenGL (Shreiner, Woo, Neider, & Davis,
2005). The planes were slanted and perspectively
projected into 2-D. The so-generated planes were
viewed through simulated circular apertures that
subtended 8.38 of visual angle and were added at the
depth of the screen distance.

Stimuli were displayed on a 24.1-in. LCD monitor
(Eizo CG243W 496 3 310 mm, 1920 3 1200 pixels, 60
Hz) located in a dark cabin. Observers viewed the
stimuli monocularly with their dominant eye at a
distance of 60 cm. Eye dominance for each observer
was determined with the Miles test (Miles, 1930)
prior to the start of the experiment. The nondomi-
nant eye was covered with an eye-patch and the head
rested on a chin rest. Stimulus presentation was
controlled by a computer (Apple Mac Pro QuadCore
2.66 with a graphic card Nvidia GeForce 7300GT)
that was running custom-made software which was
based on python and the visualization library pyglet.
Observers’ responses were registered via the key-
board.
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Procedure experiment 1: MLDS

In each trial, three stimulus exemplars that varied in
slant were presented next to each other. Each of the
slanted surfaces was rendered independently and
viewed through a different circular aperture (see Figure
1). Slant values (s) varied between 0 (fronto-parallel) to
708 in steps of 108. This spacing results in p¼ 8 possible
slant values and a total number of n¼p!/((p – 3)!33!)¼
56 unique triads.

By design each triad consists of stimuli that are
slanted so that the two intervals enclosed by the three
stimuli do not overlap. The stimuli in a triad were
presented in either ascending (s1 , s2 , s3) or
descending (s1 . s2 . s3) order, and the order was
randomized across trials. Observers were asked to
report which of the pairs, (s1, s2) or (s2, s3), contained
the bigger perceived difference in slant. Observers
viewed the stimulus configuration with no time limit for
their response. They indicated their choice by pressing a
keyboard button, and this triggered the next trial after
a delay of one second. No feedback was given as to the
correctness of the response.

The full set of unique triads was presented in one
experimental block, and 15 such blocks were presented
within one session. In total, each observer judged 840
triads. This was the same amount of trials used in the
simulations. Observers could pause after each block.
Before the experiment observers were shown two to five
examples of extreme triads (08, 108, 708) and (08, 608,
708), together with the ‘‘correct’’ answers and the
corresponding keyboard presses. We employed this
instruction method to ensure that observers understood
the task. Comparing stimulus intervals is not an
obvious task, and in previous experiments we noted
that, instead of reporting the pair with the biggest
perceived difference, some observers reported the pair
that included the most extreme slant.

Procedure experiment 2: 2-IFC

A standard 2-IFC procedure was employed in
Experiment 2. A trial started with a fixation cross that
appeared for 1000 ms in the center of the screen. Then
the first stimulus was presented for 200 ms. Its contrast
ramped on and off from zero to full contrast and back
to zero within the first and last 50 ms of presentation so
that the stimulus was seen at full contrast for 100 ms.
After a blank interstimulus interval of 500 ms, the
second stimulus was presented with temporal param-
eters identical to those of the first. After stimulus offset,
observers had to report which of the two stimuli was
more slanted using a keyboard button to indicate first
or second. Observers did not receive feedback about
their performance. Standard and comparison stimuli

were randomly assigned to the first or the second
interval.

Discrimination performance was measured for the
same four standard slant values (268, 378, 538, and 648)
for which MLDS thresholds were predicted. Each
standard slant was compared with one of eight
comparison slants (four below and four above the
standard slant) in a method of constant stimuli
procedure. In the first session the range of comparison
stimuli for each standard slant was selected based on
the point estimates corresponding to performance
levels of d 0¼ 0.5, 1, 2, and 3 that were derived from the
MLD scale (see Simulations, MLDS thresholds sec-
tion). After the first session the comparison values were
adjusted so as to provide good coverage of the
psychometric function (Wichmann & Hill, 2001). The
full experimental design contained 4 standards 3 8
comparison values (four above and four below the
standard) 3 80 repeats resulting in 2,560 trials in total.
This amount was the same as in the simulations. The
presentation was randomized and the total number of
trials was subdivided into 40 blocks of 64 trials each.
Observers completed all trials in three to four sessions
of maximum one hour duration. Experiment 2 was run
on a different day from Experiment 1 and subsequent
to it.

There are obvious differences in stimulus spacing as
well as in the number of trials between both methods,
and both factors might affect the shape of the
respective fitted functions, scales, or psychometric
functions. However, there is no principled way to
equate these aspects across the procedures, and we
would argue that they had little effect on the present
results. We performed goodness-of-fit analyses for both
procedures which showed that the fitted functions
captured the data, and which also indicate that the
stimulus choice was reasonable.

Results

The objective of the experiments was to compare
sensitivity estimates from a forced-choice and an
MLDS procedure at different positions along the
perceptual scale. Before we report these results, we will
show that the thresholds from the forced-choice task
were comparable to those reported in earlier studies of
slant-from-texture discrimination (Rosas et al., 2004).

The procedure in the forced-choice task (Experiment
2) was identical to that employed by Rosas et al. (2004).
To capture sensitivity they computed an ‘‘area’’
measure, which was defined as the region between the
two psychometric functions fitted separately for smaller
and larger comparison values enclosed by the 60% and
80% percent performance levels (see Figure 3B). This
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‘‘area’’ is small when the psychometric functions are
steep, i.e. when sensitivity to slant differences is high,
and conversely, it is large when sensitivity is low. Thus,
the calculated area measure is inversely related to the
sensitivity at a particular standard slant.

We computed the area measure for each standard
value and each observer. The results are shown in
Figure 6. In order to average across observers, the area
measure was normalized relative to the highest value
for each observer individually, because observers had
different overall sensitivity to slant (interobserver
variability). In all observers the area measure was
maximal for a standard slant of 268, indicating lowest
sensitivity. For comparison Figure 6 also shows the
mean normalized area of the five observers reported in
Rosas et al. (2004, p. 1523). Apart from the variability

between observers, sensitivity increased with slant,
which is in accordance with the data reported by Rosas
et al. (2004).

Threshold comparison

Thresholds for MLDS and 2-IFC were obtained in
the same way as in the simulations. Figure 7 shows the
data of one single observer. Thresholds from both
methods are plotted against each other for performance
levels of d 0 ¼60.5, 1, 2 and for the four standard
values tested (panels). Data points lying on the main
diagonal indicate a quantitative agreement between
thresholds. This was observed for thresholds obtained
at standard slants of 378, 538, and 668. For a standard
slant of 268, a correspondence between thresholds from
both methods was observed for comparisons that were
larger than the standard. For comparisons that were
below the standard MLDS, thresholds were smaller
than 2-IFC thresholds. For some combinations of
performance levels and standard values thresholds
from either or both methods could not be calculated
(see Simulations, Thresholds that could not be obtained
section).

As described for the simulations, we classified
thresholds to be in agreement when one of the
confidence intervals of either method crossed the
identity line (as in Figure 3C). Observers differed
substantially in their proportion of agreement between
thresholds. We sorted them according to the amount of
agreement in descending order (Figure 8). There was
agreement in 15 out of 16 data points (94%) for
observer O1 in Figure 7; 11 of 14 (79%) for observer
O2; 15 of 22 (68%) for observer O3; 10 of 18 (56%) for
observer O4; 10 of 19 (53%) for observer O5; 10 of 21
(48%) for observer O6; 5 of 20 (25%) for observer O7;
and 2 of 14 (14%) for observer O8. For observers O7

Figure 6. Sensitivity obtained from psychometric functions in

Experiment 2. The ‘‘area’’ enclosed by the two psychometric

functions and the 60% and 80% percentage correct (y axis, see

Figure 3B for a depiction) is plotted for the different standards

(x axis). Areas were normalized for each observer with respect

to the maximum and aggregated across observers. Data from

Rosas et al. (2004) is shown as reference (mean 6 SEM).

Figure 7. Threshold comparison for one observer (O1). Estimates of threshold from MLDS in Experiment 1 (x axis) and from the

psychometric functions obtained in a 2-IFC procedure in Experiment 2 (y axis) are shown for each standard (different panels) and d’

performance level, for comparisons above (þ, warm colors) and below (�, cold colors) the standard. Thresholds are expressed as

relative values to the standard. Error-bars denote the 95% CI of the point estimate.
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and O8, the data points fell above the diagonal line for
comparisons above the standard (Figure 8, red
markers), and below the diagonal line for comparisons
below the standard (blue markers). This pattern of
results indicates that for these two observers’ thresholds
obtained with MLDS were consistently smaller than
thresholds obtained with 2-IFC. In other words,
MLDS estimated a higher sensitivity than the 2-IFC
procedure; the opposite case did not occur. Taking all
observers and standard levels together, 78 out of 144
(54%) estimated thresholds agreed between the two
methods.

Thresholds that could not be obtained

Thresholds could not be obtained from either
method for stimulus comparisons that involved the
lowest standard value (268) and/or comparison slant
values below 308. For example, for the observer
depicted in Figure 7, thresholds from MLDS could not
be obtained for performance levels of d 0 ¼ 1, 2 for
comparisons below the standard slant of 268. The
reason for this discrepancy was a shallow slope in the
scale reflecting low sensitivity at that particular
stimulus level.

As in the simulations, we counted the number of
cases in which either one or both of the methods did
not produce a threshold for our experimental results. A
total of 22 cases occurred in which either one of both
thresholds could not be obtained. Four out of the 22
cases were cases in which thresholds from MLDS were
missing (at standard of 268 and 378), eleven were cases
in which thresholds from 2-IFC were missing (standard
268 and 378) and seven were cases in which both
thresholds were missing (all for a standard of 268). So
the methods consistently estimated low sensitivity in
32% of the cases for which thresholds could not be
obtained.

Variability of threshold estimates

We also derived the variability of the threshold
estimates for the experimental data. We found that the
variability was lower for MLDS than for 2-IFC,
consistent with the simulations. Figure 9 shows the
widths of the confidence intervals for the thresholds
obtained with each method from all observers. As in
Figure 5A, confidence intervals were smaller for
thresholds from MLDS than for thresholds from 2-
IFC. Overall for 142 of the 144 threshold comparisons
(98.6%), the width of the confidence interval was
smaller for thresholds from MLDS (separate compar-
isons for each observer can be found in Supplementary
Figure S7).

General discussion

The goal of the present study was to test whether
judgments of stimulus appearance and judgments of
stimulus discriminability are mutually consistent, which
would suggest that both types of judgments rely on a
common perceptual representation of the stimulus
dimension under study. The evidence on this question is
mixed (e.g., Hillis & Brainard, 2007; Krueger, 1989;
Ross, 1997), but comparing suprathreshold judgments
in a MLDS procedure and near-threshold judgments in
a forced-choice procedure, Devinck and Knoblauch
(2012) have reported that the two can be linked within
a common signal detection framework. Using slant-
from-texture stimuli, we conducted two experiments
that independently measured the sensitivity to differ-
ences in slant. In the first experiment observers judged
suprathreshold stimulus differences, and we derived
thresholds from perceptual scales using the MLDS
framework (Maloney & Yang, 2003). In the second
experiment we measured sensitivity in a conventional
two-alternative, forced-choice procedure and we de-
rived thresholds from psychometric functions. For
some observers there was agreement between thresh-
olds obtained with both methods, but across observers
the methods agreed in only 54% of the cases. For two
observers (O7 and O8), sensitivity estimates from the
MLDS procedure were consistently higher than those
from the forced-choice procedure.

The observed lack of correspondence between the
estimates could imply that the two tasks do indeed
probe different perceptual representations of a stimu-
lus. Alternatively, the lack of correspondence might
result from violations of the model assumptions, and
hence would not be informative about the relationship
between appearance and discrimination tasks.

Violations of model assumptions

The equivalence between MLD scales and the 2-IFC
procedure used in the present work relies on a number
of theoretical assumptions concerning the sensory
representation and the decision model. In the following
we will describe the effect of violations of one or more
of these assumptions on the estimated scales and the
consequences for the estimation procedure.

Goodness of fit

The MLDS framework provides goodness of fit
procedures that test the plausibility of the data being
produced by a difference scaling model (Knoblauch &
Maloney, 2008). In our data, the goodness of fit of the
difference scales was insufficient for five out of eight

Journal of Vision (2017) 17(1):37, 1–18 Aguilar, Wichmann, & Maertens 11

Downloaded from jov.arvojournals.org on 11/20/2020

http://jov.arvojournals.org/data/Journals/JOV/935953/jovi-17-01-17_s02.pdf
http://jov.arvojournals.org/data/Journals/JOV/935953/jovi-17-01-17_s02.pdf


Figure 8. Threshold comparison for seven observers (O2–O8). Similar to Figure 7, thresholds relative to the standard obtained from

the two methods are compared by observer (rows), standard (columns), and performance level (d 0), for comparison values above (þ,
warm colors) and below (�, cold colors) the standard. Observers are sorted by percentage of threshold agreement between the two

methods in descending order.
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observers when the default parameter values were used.
We followed the refitting procedure suggested by
Knoblauch and Maloney (2008, pp. 219–222) for these
cases to modify the model specification. The procedure
includes the estimation of ‘‘guess’’ and ‘‘lapse’’ rates,
and a split of the raw data into two parts that were
evaluated separately (detailed description of the good-
ness of fit procedure is provided in the Supplementary
material). After the refitting procedure we obtained an
appropriate goodness of fit for all observers, and we
derived thresholds from the refitted scales. The
thresholds that were derived from the adjusted scales
were not markedly different from the original ones. In
particular, the disagreement between thresholds that we
observed in three observers was present with or without
the goodness of fit adjustment. Thus, the model
violations that were detected by the goodness of fit
routines did not have much of an effect on the shape of
the scale, at least for the present data.

Reconciling MLDS with 2-IFC thresholds

The assumption of independence between different
levels of the sensory representation (assumption 2) is
not and cannot be tested by the goodness of fit routine.
If this assumption is violated, it would affect the noise
and it would require an adjustment of the scaling factor
that transforms the original MLDS scale into a scale in
units of d 0. The independence assumption would be
violated when the sensory representations cannot be
characterized as independent realizations of a Gaussian
random variable but are instead correlated with each
other. We tested the effect of these kinds of correlations
in the sensory representation in simulations. Correlated
sensory variables do indeed affect the threshold
estimates. To illustrate the effect, we show that the
magnitude of the correlation can be chosen so as to
elicit a correspondence between thresholds derived

from MLD scales and from 2-IFC. Figure 10 shows the
thresholds for observer O8 for a simulated case in
which the sensory representations are highly correlated
(q¼ 0.9). As a consequence of this correlation, we give
up the independence assumption and would have to
rescale the perceptual scale by a factor of 0.6 (instead of
the theoretical factor of two). In this scenario the
resulting thresholds from MLDS correspond better
with the thresholds from 2-IFC. Thus, an alternative
transformation that accounts for a model violation can
‘‘produce’’ a higher agreement between the two types of
thresholds. We are not aware of any method to test the
assumption of independence empirically, and it is
therefore not possible to evaluate which of the many
possible transformations is closest to the true sensory
representation.

A similar issue arises when we scrutinize the effect of
violating the assumed decision rule (assumption 4).
Based on the assumption that the sensory representa-
tion function is monotonically increasing, the decision
rule can be expressed as a double difference operation
(D variable in Figure 2B) instead of an absolute value
operation (D variable in Figure 2A). This change from
an absolute to a relative difference operation can have
noticeable effects when the sensory representations are
random variables (as assumed here) instead of fixed
values. To explore the effect of the differencing
operation, we simulated an observer that judged the
triads by using either one of the two decision rules. To
analyze the effect on the estimated noise, we applied
MLDS to each of the two types of simulated responses,
and found that the absolute difference operation
produced higher noise estimates than the double
difference operation. This difference increases progres-
sively as the underlying sensory noise increases. Thus,
the two decision rules can produce different results (see
Supplementary material for simulations and details).

It is not possible to determine empirically whether or
when observers apply an absolute or a relative
differencing rule, they might even change the rule with
varying difficulty of the judgment. One should be aware
that a deviation from the assumed decision rule or a
violation of the independence assumption may both
affect the noise estimate although in opposite direc-
tions. Thus, the combined contributions of both factors
can produce various types of deviation from the true
scaling factor, and this deviation affects the scale and
the derived sensitivity estimate.

Variability of thresholds estimated by MLDS

As in the simulations, we observed that the
variability of thresholds derived from MLDS was
smaller than the variability of thresholds derived from
2-IFC (Figure 5 and Figure 9). Again, this is

Figure 9. Comparison of the variability in the threshold

estimation. The width of the confidence intervals from Figure 7

and Figure 8 are plotted against each other, for all observers

and standard values.
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counterintuitive because MLDS requires a smaller
amount of data for the threshold derivation. However,
the smaller variability must be interpreted with care,
because our simulations revealed that the coverage of
MLDS-derived threshold might be insufficient and the
width of the confidence intervals might be underesti-
mated. This should be considered for hypotheses tests
as it may lead to Type-I errors.

However, apart from the coverage problem associ-
ated with our threshold derivation, MLDS provides an
efficient method to acquire sensitivity estimates. In the
present Experiment 1 we ran the MLDS procedure with
840 trials which took about 45 min per observer. In
contrast, the 2-IFC procedure in Experiment 2 required
2,560 trials and lasted 3 hr. Thus, the difference in both
the amount of data and the required acquisition time
might be up to three to four times more for 2-IFC than
for MLDS. MLDS thus provides an efficient alterna-
tive to forced-choice procedures to obtain a rough
estimate of sensitivity.

Conclusions

In the present experiment we investigated the
question of equivalence of thresholds derived from an
MLD scale and thresholds derived from a forced-
choice procedure. Using simulations, we established
upper bounds for a possible agreement considering the
theoretical model assumptions, the finite amount of
collected data and the necessary software pipeline.
Experimentally, we found varying degrees of corre-
spondence between the methods for different observers.
Out of a total of 144 threshold estimates, the methods’
sensitivity estimates differed in 66 cases. We discuss
that the equivalence of thresholds (or lack thereof)
might either indicate a corresponding equivalence
between the underlying perceptual representations (or
lack thereof) as has been argued by Devinck and

Knoblauch (2012), or alternatively, it might result from
violations of the model assumptions.

An important point that has been made by one of the
reviewers is that we gave the 2-AFC method the benefit
of history. In the present analysis we used the 2-AFC
method as a standard of reference against which we
compared the sensitivity estimates derived with MLDS.
Accordingly, we tested the effect of model violations on
threshold agreement only for the assumptions under-
lying MLDS. However, considering the present data
and the numerous benefits associated with the exper-
imental procedures of MLDS, it might be warranted to
try to elaborate the first principles case of which of the
two methods we would trust more if we started out de
novo.

Our positive evaluation of the MLDS method is
corroborated by recent results from Kingdom (2016)
who used MLDS to decide between competing theories
of internal noise in contrast transduction. In summary,
we conclude that MLDS, as state-of-the-art scaling
method, seems to have great potential to be used
beyond the purpose that it was originally designed for.

Keywords: MLDS, appearance, discrimination, signal
detection theory, slant from texture, near-threshold
performance, psychometric function
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Footnotes

1 Which, in turn, is analogous to Thurstone’s case V
of the Law of Comparative Judgment (Thurstone,
1927).

2 Although MLDS assumes a monotonically in-
creasing function for the decision model, there is no
restriction of monotononicity imposed for the coeffi-
cients found by the GLM solver. Thus, nonmonotonic
scales from MLDS are possible outcomes (see O2 and
O3 in Supplemental Figure S3).

3 This restricted case can be derived from the MLDS
model only because: (i) the decision variable after the
differencing is assumed to be Gaussian, for which the
simplest case is when it is produced by underlying
Gaussian distributed representations; and (ii) equal-
variance is the simplest case to relate the variance of
each representation with the variance of the decision
variable. Other models (e.g. unequal-variance) cannot
be derived as they would be underconstrained.
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Appendix

MLDS with the method of triads

In the method of triads variant of MLDS (Maloney
& Yang, 2003), three stimuli are presented for
comparison in one triad (s1, s2, s3). The task is to decide
which of the two adjoining pairs, (s1, s2) or (s2, s3),
comprises the larger interval. The stimuli are assumed
to produce discrete responses on a singular sensory
representation (Ws), and these sensory responses are
used to compute a decision variable D. It is further
assumed that the decision variable D is corrupted by
additive noise e ; N(0, r2).

D ¼ Ws3 �Ws2j j � Ws2 �Ws1j j þ � ðA1Þ
When D . 0, the model evaluates the interval in pair
(s2, s3) as larger, (s1, s2) otherwise. The p different
stimuli are chosen from the stimulus dimension, giving
a total number of n¼ p!/((p – 3)! 3 3!) unique triads to
be judged.

The current implementation of MLDS performs the
estimation of the perceptual scale using a generalized
linear model (GLM) for logistic regression (Knoblauch
& Maloney, 2008, 2012; Maloney & Yang, 2003). The
method assumes that the sensory representation
function is monotonically increasing, thus avoiding the
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absolute value operation in Equation A1 and leading to
a decision variable that can be rewritten as a linear
combination of the sensory variables

D ¼ Ws3 �Ws2ð Þ � Ws2 �Ws1ð Þ þ �
¼ Ws3 � 2Ws2 þWs1 þ � ðA2Þ

We simulated the output of an absolute (Equation
A1) and a simple difference (Equation A2) decision rule
for different noise levels and found that the respective
estimates differed only in any relevant way for noise
levels that were much higher than what we observed
experimentally, thus allowing us to work with the much
easier to handle difference decision rule (see Supple-
mentary material for details)

The GLM takes the responses of an observer (Y)
from a triad experiment and the stimulus design matrix
(X), and it estimates a set of coefficients b that best
account for the data. Formally, this model is described
by

gðE½Y�Þ ¼ Xb ðA3Þ
where Y is a vector of length n with entries 0 or 1,
indicating the observer’s response (for first vs. second
pair, respectively). X is the design matrix of size n 3 p,
whereby n is the total number of triads and p is the
number of stimulus levels sampled as well as the
number of estimated points on the perceptual scale.
Each row in matrix X contains nonzero entries (1,-2,
and 1) in the columns corresponding to the stimulus
values for the presented triad values (s1, s2, and s3), and
zero entries in the remaining p – 3 columns. The
coefficient vector b̂ is of length p, and it contains the
scale estimates.

The link function g() is required to establish the
relationship between the linear predictors X b and the
mean response variable E½Y�; where Y is binomially
distributed with n ¼1 (also known as a Bernoulli
process). We used the default link function for MLDS,
that is, the inverse of the Gaussian cumulative
distribution function (U–1), as it has been shown to be
robust against distribution changes and deviations
from the equal variance assumption (Maloney & Yang,
2003). The coefficients b̂ are estimated by maximum
likelihood using standard GLM solvers (Knoblauch &
Maloney, 2008).2

Difference scales and signal detection theory

The difference scale that is estimated by MLDS
using the GLM implementation consists of the
coefficients b̂ in Equation A3. They constitute an
‘‘unconstrained scale’’ (Knoblauch & Maloney, 2012)
which—by design has a lowest value of zero (b̂1 ¼ 0)
and a highest value (b̂p) that is equal to the inverse of
the noise parameter (e) in the decision process,

b̂p ¼
1

r̂
ðA4Þ

whereby r̂ is the estimate of r in Equation A2.
A difference scale with that type of parametrization

can be converted to a normed scale that is defined in
units of d 0, when the following assumptions are met.
First, it is assumed that the decision process is not
stochastic but deterministic. This would attribute all of
the observed noise to the sensory representation, ws,
which is a Gaussian random variable with mean Ws.
Second, it is assumed that the noise is constant, i.e.
independent of the stimulus level. Finally, it is assumed
that the sensory representations are independent of
each other. It follows from these assumptions that the
ws are independent Gaussian random variables with
equal variance.3 Then, the noise parameters can be
‘‘carried’’ to the sensory representation, by rewriting
the decision model (Equation A2) in this way

wsi
;N Wsi ;

r2

4

� �
ðA5Þ

D ¼ ðws3
� ws2

Þ � ðws2
� ws1

Þ ðA6Þ
The variance of the decision variable D is r2

(Equation A2). When rewriting the model equations,
the variance of each sensory representation ws must be
adjusted so that Equation A2 still holds. Because the
decision variable D is computed as a linear combination
of four independent, Gaussian random variables, its
variance is four times the variance of each individual
variable wsi

: Therefore each individual variance in the
sensory representation needs to be ‘‘corrected’’ by a
factor of 1/4.

Yet, MLDS provides the noise estimate r̂ (Equation
A4) as an estimate of parameter r of the decision
variable and not of the sensory representation directly.
By knowing the above explained relationship between
the variance in the sensory representation and in the
decision variable, the difference scale can be adjusted
so as to represent the variance in the sensory
representation. The r̂ estimated by MLDS corre-
sponds to the double of the variance present in the
sensory representation ws (Equation A5). Thus, the
conversion is accomplished by multiplying the original
scale by a factor of two (see also Devinck &
Knoblauch, 2012). Formally, the new transformed
scale maximum is two times the maximum of the
original scale

b̂p

0

¼ 1
r̂
2

¼ 2
1

r̂
¼ 2b̂p

This new scale b̂ 0 is in ‘‘d 0 units,’’ i.e., an interval
difference of one in the scale dimension should
represent a performance of d 0 of one, when all
assumptions are met.
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Estimation of variability in MLDS

Variability of the difference scale

The variability of the scale estimation (see Appendix,
MLDS with the method of triads section) can be
studied using bootstrapping techniques (Knoblauch &
Maloney, 2008, 2012), with the goal of estimating the
variability of the coefficient b̂. For that purpose,
Equation A3 is rearranged in order to compute the
mean response probability for each triad from the fitted
data E½Y� ¼ g�1ðXb̂Þ: The obtained vector E½Y� con-
tains the expected probability of a Bernoulli variable
(Y) for each triad, in other words, the mean probability
of binary responses given the presented stimulus values
in each triad. These probabilities are used to simulate a
Bernoulli response in each triad, which is in turn used
to estimate a new set of coefficients b̂�j ; j ¼ 1:::p; i.e.,
scâle�i using the same GLM procedure described above.
The coefficients b̂�ij; j ¼ 1. . .p are the i-th bootstrap
sample, and many bootstrap samples are drawn by
repeating the simulation procedure many times (Ns ¼
10,000), obtaining a matrix S of Ns 3 p entries.

Si;j ¼
b̂�1;1 � � � b̂�1;p
..
. . .

. ..
.

b̂�Ns;1
� � � b̂�Ns;p

0
BB@

1
CCA ¼

scâle�1
..
.

scâle�Ns

0
B@

1
CA

Confidence intervals for the j-th scale value ½b̂ðaÞj ; b̂ð1�aÞ
j �;

j ¼ 1...p were obtained by taking the ‘‘bias-corrected
and accelerated’’ (BCa; Efron & Tibshirani, 1993)
percentiles corresponding to a 95% CI.

In other words, the confidence intervals for each
scale estimate were obtained from the distribution of
bootstrap samples along each individual column of the
matrix S.

Variability of threshold estimation

The same matrix S can be used to obtain the
variability of the threshold estimation. The same fitting
and readout procedure applied to the point estimate of
the scale (see Simulations, MLDS thresholds section)
was applied to each bootstrap sample b̂�ij; j ¼ 1...p. We
fitted a spline to each scale bootstrap sample, i.e. to
each row in matrix S, and from this scale we readout a
bootstrap threshold. By repeating to all i ¼ 1.Ns

bootstrap samples, a distribution of thresholds boot-
strap samples is calculated, and confidence intervals
½ĥðaÞ; ĥð1�aÞ�st;djMLDS were obtained by taking the ‘‘bias-
corrected and accelerated’’ (BCa; Efron & Tibshirani,
1993) percentiles corresponding to a 95% confidence
interval.
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