=

View metadata, citation and similar papers at core.ac.uk brought to you byE CORE

provided by DepositOnce

Aaron Schlutter, Andreas Vogelsang

Trace Link Recovery using Semantic
Relation Graphs and Spreading Activation

Conference paper | Accepted manuscript (Postprint)
This version is available at https://doi.org/10.14279/depositonce-10207.2

Ve

Schlutter, A., & Vogelsang, A. (2020). Trace Link Recovery using Semantic Relation Graphs and
Spreading Activation. 2020 IEEE 28th International Requirements Engineering Conference (RE).
https://doi.org/10.1109/re48521.2020.00015

Universitat

servers or lists, or reuse of any copyrighted component of this work in other works. UNIVE RSITATSBIBLIOTHEK Beriin

Terms of Use

© © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including reprinting/republishing this material for 'l Technische
advertising or promotional purposes, creating new collective works, for resale or redistribution to WISSEN IM ZENTRUM

https://core.ac.uk/display/343691049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Trace Link Recovery using Semantic Relation
Graphs and Spreading Activation

Aaron Schlutter
Technische Universitit Berlin
Berlin, Germany
aaron.schlutter @tu-berlin.de

Abstract—Trace Link Recovery tries to identify and link
related existing requirements with each other to support further
engineering tasks. Existing approaches are mainly based on
algebraic Information Retrieval or machine-learning. Machine-
learning approaches usually demand reasonably large and labeled
datasets to train. Algebraic Information Retrieval approaches
like distance between tf-idf scores also work on smaller datasets
without training but are limited in providing explanations for
trace links. In this work, we present a Trace Link Recovery
approach that is based on an explicit representation of the
content of requirements as a semantic relation graph and uses
Spreading Activation to answer trace queries over this graph.
Our approach is fully automated including an NLP pipeline
to transform unrestricted natural language requirements into
a graph. We evaluate our approach on five common datasets.
Depending on the selected configuration, the predictive power
strongly varies. With the best tested configuration, the approach
achieves a mean average precision of 40% and a Lag of 50%.
Even though the predictive power of our approach does not
outperform state-of-the-art approaches, we think that an explicit
knowledge representation is an interesting artifact to explore in
Trace Link Recovery approaches to generate explanations and
refine results.

I. INTRODUCTION

Trace Link Recovery (TLR) is a common problem in
software engineering. While many engineering tasks profit
from explicit links between related development artifacts [1],
[2], these links are laborious to maintain manually and therefore
rarely exist in projects [3]. Automatic TLR approaches aim for
supporting engineers in finding related artifacts and creating
trace links. Most approaches frame TLR as an Information
Retrieval (IR) problem [4]. The IR approach builds upon the
assumption that if engineers refer to the same aspects of the
system, similar language is used across different software
artifacts. Thus, tools suggest trace links based on Natural
Language (NL) content [5].

State-of-the-art approaches use algebraic IR models (e.g.,
vector space models (VSM), Latent Semantic Indexing (LSI)),
or probabilistic models (e.g., Latent Dirichlet Allocation
(LDA)) [5]. More recently, machine-learning approaches have
also been applied successfully [6]. It is hard to compare the
performance of the approaches due to inconsistent use of
evaluation metrics and severe threats to validity regarding
the used datasets [5]. Algebraic and probabilistic as well as
machine-learning approaches rely on implicit models of key
terms in documents (e.g., as points in a vector space or as

Andreas Vogelsang
Technische Universitit Berlin
Berlin, Germany
andreas.vogelsang @tu-berlin.de

probability distribution). Trace links are recovered based on
similarity notions defined over these models. Therefore, it
is hard to analyze and explain why specific trace links are
identified in the model. Another drawback of machine-learning
approaches is the need to train the models on reasonably
large datasets. However, TLR datasets usually consists of
less than 500 artifacts (at least the ones used in scientific
publications [5]).

We follow a different approach and base our TLR ap-
proach on an explicit model of the knowledge represented
in unrestricted NL requirements. Our pipeline translates NL
requirements automatically into a semantic relation graph that
encodes terms and their relations as vertices and edges. We
use Spreading Activation to identify related requirements (i.e.,
trace links). The semantic search algorithm spreads activation
in pulses over the vertices starting from a query vertex. Vertices
with higher activation indicate higher relevance for the query.
To the best of our knowledge, this is the first work that
uses semantic relation graphs and Spreading Activation for
automated TLR.

We applied and evaluated the approach on 5 datasets,
commonly used in TLR research, in terms of mean average
precision and Lag for answer sets of 5, 10, and 30 trace link
candidates. With the best tested configuration, our approach
achieves an average precision around 40% and a Lag around
50%. While this performance does not outperform existing
state-of-the-art approaches, the explicit representation of re-
quirements content as a semantic relation graph allows to
“follow” a trace link through a chain of statements that may
serve as an explanation why the trace link exists. This may help
engineers when examining and vetting the trace link candidates.

II. BACKGROUND

A. Trace Link Recovery

Requirements traceability is defined as “the ability to
describe and follow the life of a requirement, in both a forwards
and backwards direction” [7], i.e., over several phases and
periods of refinement while those phases. A trace link states a
dependency, relation, or similarity between two artifacts, the
source and the target. We do not distinguish the type of links
in the following work as we interpret all of them as some kind
of relation.

Borg et al. [5] present a mapping study of IR approaches
for traceability. They focus on text retrieval and classify 79
publications including their approaches based on the used
retrieval model. Borg et al. treat the IR process as essential,
NLP techniques are interpreted as an optional prerequisite.
They differentiate between algebraic, probabilistic, and statis-
tical language models as well as miscellaneous aspects like
weighting scheme, similarity measures/distance functions, and
enhancement strategies. The majority of classified publications
applied an algebraic model, while most were evaluated in
experiments on benchmarks (without human intervention) and
used precision and recall as metrics.

Our approach does not match any of the retrieval models
or their categories as we do not transfer requirements into a
mathematical (algebraic, probabilistic, or statistical) model nor
do we primarily apply any mathematical operations. We use
several NLP techniques to analyze the requirements, extract
terms and their relations. Subsequently, we transfer the results
into a semantic relation graph and use a semantic search
algorithm to find related artifacts. This includes some of
the miscellaneous aspects of Borg et al. like phrasing, term
frequency, and optionally similarity measures.

B. Knowledge Representation

Knowledge representation focuses on the depiction of
information that enables computers to solve complex problems.
Borgida et al. [8] already noted in 1985 that knowledge
representation is the basis for requirements engineering.

Dermeval et al. [9] report on the use of ontologies in
requirements engineering in their systematic literature review.
They reviewed 67 publications from academic and industrial
application contexts dealing with different types of require-
ments. While only 34% reused existing ontologies, most of
them specified their own ontology. The largest number of
publications rely on textual requirements as the RE modeling
style, especially in the specification phase.

Robeer et al. [10] automatically derive conceptual models
from user stories. The models enable discussion between
stakeholders and show promising accuracy results (precision
and recall between 80-92%). They use heuristics to analyze
the user stories due to semi-structured natural language.

In a former publication [11], we presented an NLP pipeline
that extracts knowledge from requirement documents and
transforms it into a graph representing RDF! triples (subjects
and objects become vertices, predicates become edges). The
two generated sample graphs were not well-connected and
yielded only a subset of fully connected vertices in a main
graph. They used one graph to show the separation of two
subsystems in an exemplary requirement specification.

C. Basics of Spreading Activation

Spreading Activation has its origin in the field of psychology.
It is a theoretical model of how our mind connects information
and tries to find an appropriate context with associated terms

Thttps://www.w3.0rg/TR/2014/REC-rdf11-concepts-20140225/

for a new word. The basic assumption is that terms relevant
to each other are strongly connected by short or many paths,
while less relevant ones are connected less or not at all. This
model is applied to various science areas like IR [12].

The graph algorithm consists basically of three phases. In
the initial phase, the start vertices are activated, i.e., they will
be assigned an initial activation value. While the spreading
phase, this activation is step wise distributed over the graph, i.e.,
the activation of a vertex is transferred to related (connected)
vertices. These steps are called pulses and at the end of each
pulse, a termination condition is checked to stop the pulsation.
In the final phase, a sorted candidate list is created using the
activation values to sort all vertices by relevance.

III. APPROACH: KNOWLEDGE BASE CONSTRUCTION

The main goal while building the semantic relation graph
is to depict semantic parts of common NL (e.g., words and
phrases within sentences, but also documents and corpora)
in vertices and connect these with each other based on their
relation. Up to a certain point the graph structure resembles a
tree structure with multiple roots. The root vertices represent
the specifications, the leafs small parts of NL like single words.
The vertices in between represent combined words like phrases.
This structure supports that single words have a greater distance
(i.e. are less relevant) to a certain specification than phrases or
whole statements. [13]

We use several techniques to extract information from the
requirements and to build the graph. Of course, a graph is not
capable to store every aspect of any kind of information. Our
graph does not meet the conditions of a valid ontology nor an
RDF graph. An ontology or an RDF graph would require at
least some kind of typing of information, which is not always
fully automated achievable from our point of view.

First, we use an NLP pipeline for the semantic content of
the requirements. Second, we analyze the requirements for
given structural characteristics which should be added to the
graph, too. Finally, we combine all information to build the
semantic graph as the knowledge base.

Currently, our approach only supports English, mainly
because there exist a variety of different NLP techniques and
tools that are not available for other languages. Furthermore,
English is a relatively easy language, e.g., it consists only of a
small set of part-of-speech tags, which we have to consider in
the subsequent process.

A. Natural Language Processing Pipeline

Since we consider requirements as NL without any specific
template or similar characteristics, the NLP pipeline consists
of common components without special adjustments or opti-
mizations for a certain kind of requirements specifications and
is therefore able to process any kind of text. The core parts of
our pipeline, Stanford CoreNLP [14] and DeepSRL [15] for
semantic role labeling, are pipelines themselves and will be
described in detail.

We use the basic requirements in Example 1 to demonstrate
the NLP pipelines and the extracted knowledge graph.

https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

Example 1: If the driver pushes the start button, the engine
of the vehicle is started. If he pushes the stop button, the
engine is stopped. The start button is located inside the large
and comfortable cockpit, the main place for the driver seat.

Stanford CoreNLP? is a collection of solutions for com-
mon NLP tasks, which are assembled and coordinated in a
pipeline. We only use parts of it, particularly the tokenization,
sentence splitting, part-of-speech (POS) tagging, lemmatizing
(morphological analysis), dependency parser (grammatical
structure), and coreference resolution (Coref). The first two
tasks determine tokens (words, punctuation marks, etc.) and
sentences in a NL text. Part-of-speech tagging categorizes these
tokens by their grammatical role inside of a sentence, e.g., as
noun, verb, or article.

Next, while lemmatizing, each word is annotated with its
lemma, a base form which depends on the part-of-speech. For
example, the lemma of “studying” (as verb) is “(to) study” (also
a verb) and in comparison the lemma of “students” (noun) is
“student” (also a noun). In contrast to this, stemming of these
words would result in “stud” as the word stem. Therefore, we
use lemmatizing instead of stemming to keep the sense of each
word.

The dependency parser determines the grammatical structure
of a sentence. While the result contains much more information,
we use basically two features: the identification of noun
phrases and the dependencies of coordinating conjunctions.
In Example 1, amongst others, “button” and ‘“cockpit” are
noun phrases (determiners and adjectives removed) and the
coordinating conjunction “and” depend on the both adjectives
“large” and “comfortable”.

Lastly, the coreference resolution is looking for mentions of
the same entities. There are two different kinds of mentions.
In Example 1, the word “he” refers to “the driver” and is
a pronominal reference without any further meaning of the
word “he”. In another example, “he” might refers to a totally
different person. In contrast, “engine” (in the second sentence
from Example 1) also refers to “engine of the vehicle” but is a
nominal reference which contains additional information, i.e.,
the entity engine of the vehicle is also just called engine.

Semantic role labeling (SRL) [16] is a sentence-based
NLP task. At first, all predicates of a sentence are searched.
Subsequent, all arguments for each predicate are associated
with their roles within this sentence. The role of an argument
is represented by its type, e.g., the verb gets V, main arguments
are enumerated by A0, Al etc. and secondary arguments are
prefixed by AM- and their concrete function, e.g., AM-MNR
for manner. In general, the first argument is called the agent,
the second the patient, all other roles depend on the verb.

The first sentence in Example 1 contains two predicates
“push” and “start”. The verb of the predicate “start” (from the
main clause) is [ystarted], the arguments are [5;the engine of
the vehicle] and [am.apvIf the user pushes the button]. Because
this is a passive clause, there is no first argument and “the
engine of the vehicle” is just the receiver/patient of the start

Zhttps://stanfordnlp.github.io/CoreNLP/

A0 Al

first argument second argument

Fig. 1: Graph structure for single SRL predicate

Al

start | AM-ADV

engine of vehicle start button

ush
A0 | P Al

coref

A0 ‘ push }ﬂﬁ stop button

engine

Al stop | AM-ADV

Fig. 2: SRL structure for first two sentences of Example 1

procedure. Also, the whole subordinate clause is labeled as an
adverbial argument, as it describes the circumstances of the
predicate. The verb and arguments of “push” are [ypushes],
[aothe driver] and [a;the start button]. The numbered arguments
would be the same even if the syntax of the sentence would
change, e.g., “If [othe start button] is [ypushed] [aoby the
driver], [...]".

The semantic roles are predefined in the PropBank® database.
Most of the identified propositions have at least one argument,
about two-third also got a second argument [17, Table 1].
We use DeepSRL* as state-of-the-art implementation for SRL
tagging. It uses a deep BiLSTM model to perform SRL and
achieves an F1 score of 97.4% for CoNLL 2005 [17].

B. Structural Information

Besides the semantics in NL, requirements specifications
often contain additional information. Very common is a hierar-
chical structure like single documents for modules, chapters
within these documents and folders arranging the documents.
It can also be concluded that two documents in the same folder
are more relevant to each other than completely foreign ones.

Trace links itself also express some kind of relation be-
tween two or more requirements which should be taken into
consideration.

C. Semantic Graph

As last step, we build a graph which contains all informa-
tion and relations we have found in NL and the additional
information. To support common graph-based algorithms like
Spreading Activation, the graph must be a regular directed
graph without hyperedges (more than 2 vertices connected to
a single edge) nor hypervertices (a single vertex contains a
graph within itself).

The leading structure for NL content is based on SRL
predicates including their verb and arguments. A predicate
is represented by the verb as a vertex in the graph (verb vertex)
and additional vertices for each argument (argument vertex),
as shown in Fig. 1. If an argument contains a predicate itself,

3https://verbs.colorado.edu/~mpalmer/projects/ace.html
“https://github.com/luheng/deep_srl

https://stanfordnlp.github.io/CoreNLP/
https://verbs.colorado.edu/~mpalmer/projects/ace.html
https://github.com/luheng/deep_srl

’ large comfortable cockpit main place driver ‘

main place driver seat
main place

Fig. 3: Graph noun phrase structure for Example 1

driver seat

the graph structure for that predicate is likewise added and
connected via an edge between both verb vertices as shown in
Fig. 2 for Example 1 instead of adding a single argument vertex
containing that predicate. If there is a coreference between
arguments, both argument vertices are either connected for a
nominal one or only a single argument vertex is added for
pronominal as shown in Fig. 2.

If an argument occurs more than once, the same argument
vertex is used for both occurrences. This only applies to
arguments that contain at least one noun, otherwise simple
adjectives (e.g., “down”) would lead as single arguments to a
relation which is undesirable. To support this deduplication of
arguments, the information text of arguments is transformed
into a simplified presentation. For example, articles are removed,
nouns and adjectives are replaced by their lemma and their
simplified POS tag which only differentiates between verbs,
nouns, and adjectives. For instance, “the engine of the vehicle”
is transformed into “engine#n of#fo vehicle#n”.

As with arguments, duplicates may occur with verbs, too.
Since a verb is on a par with its predicate, the arguments are
also taken into account and a verb vertex is only reused if the
lemma of the verb and all argument vertices, except other verb
vertices, are equal. Because of this rule, there are two “push”
verb vertices in Fig. 2 as they have different arguments.

While the arguments of the first two sentences in Example 1
only contain simple phrases, an argument may be a much more
complex phrase. In the last sentence, the whole phrase “the
large and comfortable cockpit, the main place for the driver
seat” is the second argument. The resulting argument vertex
will not lead to a deduplication if the argument of another
predicate is just “cockpit”. To circumvent this issue, we add
additional vertices to the graph based on the given noun phrases
and their dependencies as shown in Fig. 3.

If an argument contains a coordinating conjunction that
depends on noun phrases, the argument is split and for each
part, the corresponding graph structure is added. Otherwise, a
separation would lead to undesirables vertices. In Example 1,
“and” does not depend on a noun phrase and would lead to
two vertices for the split arguments “inside the large” and
“comfortable cockpit, the [...]”.

In addition to the vertices and edges for NL, the additional
information must also be added to the graph. This depends
on the characteristics of the additional information. For each
requirement an identifier vertex should be added which is
connected to all verb vertices, whose predicates are contained
in the requirement. A hierarchical structure may be added as
a tree to the graph, e.g., including identifier vertices for each
module and chapter which are connected to the requirement

CEEONONOXD

|VERBL:> |VERB1||VERB2| |VERB3||VERB4|

ARG

(a) Model Level

]ARGl\]ARGZ\]ARG3\ | ARG

(b) Instance level

Fig. 4: Graph structure

Fig. 5: Exemplary activation spreading from v to w over e

vertices. Trace links may be interpreted as edges between
requirement identifier vertices as well.

The model level of the graph and an exemplary section of
an instance level is shown in Fig. 4. In terms of path length
between ID vertices, there is the strongest relation between
ID1 and ID2 and between ID2 and ID3 with a path length
of 2 and a very strong relation between ID3 and ID4 as their
verb vertices share the same argument vertex ARG3. Without
the edge between ID2 and ID3, there is only a weak relation
between ID1/ID2 and ID3/ID4 because they would be only
connected via the noun phrase vertex NP2.

IV. APPROACH: SEMANTIC SEARCH

We use Spreading Activation as semantic search algorithm to
find, for a given query (trace link source), all related information
(targets). Since the graph includes structural and semantic
vertices, a link may be found by structural or semantic relations.
If all vertices in a graph are connected through paths, each
vertex has a (depictable) relationship to all others. Thus, we
build a candidate list to sort all (reachable) targets for a query
based on their relation.

A. Spreading Activation

There are different ways to configure the spreading of the
activation values. We use the state-of-the-art configuration
options and algorithm by Hartig [18, p. 90 ff.]>, which are based
on several modes. Fig. 5 shows the basic spreading of activation
from one vertex to another including the interim values like
the output activation of sending vertices, the edge activation
of transporting edges, and the input activation of receiving
vertices. At first, a vertex activation is initially assigned to a
query vertex. Algorithm 1 shows how the vertex activation
is spread across the graph. During each pulse, the output
activation (line 5), the edge activation (line 7), the input
activation (line 11) and the vertex activation (line 12) are

5Our Implementation: https://github.com/tub-aset/spreadingactivation

https://github.com/tub-aset/spreadingactivation

Algorithm 1: Spreading Activation
Data: G = (V, E), pmax, 7, d
Result: vertex[v, pmaz] for v e V

1 p<+0;

2 while p < py0. do

3 p—p+1;

4 for v € V : output[v,p — 1] > 7 do

5 output[v, p] < vertex[v,p — 1] * att (d,p) *
br (v);

6 for e € se (v,p) do

7 ‘ edge[v, e, p] < output[v, p] * ew (v,e);
8 end

9 end

10 for v € V do

11 inputfv, p] «+ > edge[w, e, pl;

weV:adj (v, w)
ecE:inz (v, e)

12 vertex[v, p] < act (inputfv, p] +
vertex[v,p — 1]) ;

13 end
14 end
TABLE I: Activation Modes
Mode Function
IDENTITY (ID) act (z) :=x
SIG (S) act (x) ::2*($ —0.5)
LOG2 (L2) act (z) = loga(z + 1)
LOGI10 (L10) act (z) :=logio(z + 1)
LOG2SIG (L2S) act (@) = 2% (= — 0-5)
LOGI0SIG (L10S) act (@) := 2% (1—=rmargrery — 0-5)

calculated for all relevant vertices and edges. There are modes
for activation (TABLE I), attenuation (TABLE II), branching
(TABLE III), and sending (TABLE V, line 6), an edge weight
(TABLE 1V) as well as two factors, the minimum activation 7
(line 4) and the attenuation factor d (line 5), which are included
in the calculation.

Hartig uses different edge weights based on specific edge
types. We are using only a constant edge weight (see TA-
BLE IV) because we assume all edges are equal.

The direction of the spreading is independent of the direction
of the edge due to the fact that in most cases, the semantics
of an edge may be restated the other way around, e.g., “X has
function Y” becomes “Y is a function of X”.

The final vertex activation values are used for sorting the
candidate list but not for classification (e.g., by a threshold),
since they are not limited to an upper or lower bound and not
directly comparable (500 is not twice as important as 250).

B. Result Explanation via Spread Graphs

We use spread graphs and their minimization as proposed by
Michalke et al. [19] to comprehend which parts of the graph
primarily contribute to the activation of the results. While they
use the semantics of RDF graphs to generate an explanation

TABLE II: Attenuation Modes

Mode Function

IGNORE (IG) att (d,p) :=1

FIXED (FX) att (d,p) :==d
INCREASING (IN) att (d,p) :=0.99P = d

TABLE III: Branching Modes

Mode Function

NONE (NO) br (v) =1

DEGREE (DG) br (v) = [ozmrrze)]
FANOUT (FA) br (v) := w
BRANCH (BR) br (v) := L

maz(1,[se(v,p))

based on different patterns, we present excerpts of contributing
requirements specifications to the user as our graph contains
phrases and words that are directly traceable to their origin.

A spread graph is a directed graph illustrating the Spreading
Activation process on the original graph. They utilize the
activation flow and values during Spreading Activation. Each
vertex in a spread graph represents the state of a vertex of
the original graph after a certain pulse. Each edge of a spread
graph represents a corresponding edge in the original graph,
which transports activation from a vertex to another during a
pulse, and therefore connects the representatives of its vertices
in the spread graph.

A minimized spread graph removes unnecessary vertices
from a spread graphs that do not contribute to the activation
of a given result vertex. These vertices can be regarded as
irrelevant to the final activation of the given result vertex
and therefore do not contribute to the result explanation. A
minimized spread graph tracks back the edges of a spread
graph in opposite direction, starting at the given result vertex.

Fig. 6 shows a minimized spread graph for the exemplary
graph of Fig. 4 after a Spreading Activation with 4 pulses. The
given result vertex is ID2 and the starting vertex is ID1. The
transporting vertices in the middle are VERB2, ARG2, and
VERBI. Each of the verb, argument, and noun phrase vertices
can be traced back to their occurrences in the NL requirements.
To generate an explanation for the user, we use these text
occurrences and show a side-by-side view of the source and

TABLE IV: Edge Weight Modes

Mode Function
CONSTANT ew(v,e) :=1
l l
| |
ID1

| |
ARG2 |——{VERBI]

Fig. 6: Minimized Spread Graph between ID2 and IDI

TABLE V: Send Modes

Mode Function

BASIC (B)
RECENT_RECEIVER (RR)
FORWARD (FW)
FORWARD_LOOP (FWL)
FW-RR

FWL-RR

se(v,p) :={e € E:inz(v,e)}

se (v, p)

)
se (v,p) :={e € E: inz(v,e),inputfv,p — 1] > 0}
se (v,p) :={e € E: inz(v,e),edge[v,e,p — 1] = 0}
se (v,p) :={e € E: inz(v,e), (edge[v,e,p — 1] =0) V (Je1 € E, e # e1,edgev,e1,p — 1] > 0)}
se (v,p) := FORWARD N RECENT_RECEIVER
:= FORWARD_LOOP N RECENT_RECEIVER

Fig. 8: Minimized Spread Graph between ID3 and ID1

target requirement and highlight the relevant text passages in
both views as shown in Fig. 7. To indicate a higher relevance
(i.e. a higher activation value) of certain text passages to the
user, the highlighting intensity can vary.

Fig. 8 shows another minimized spread graph for the

exemplary graph of Fig. 4 with the given result vertex ID3.

Next to the verb vertices, the identifier vertex of ID2 is part
of the transporting vertices in the middle. In this case, the
documents have to be chained for comparison to generate an
explanation between ID1 and ID3. This also allows users to

find relations between documents without a direct connection.

V. EVALUATION

We evaluate the approach for TLR on five common datasets
(Infusion Pump, CCHIT-2-WorldVista, GANNT, CM-1, and
WARC of [20]). They come from different domains like health
care, science, or business. For comparison, we use a syntactical
VSM approach with tf-idf values for lemmas and compare
requirements using cosine similarity [21], [22].

TABLE VI gives an overview of the datasets, including
the number of sources and targets, how many of them are
linked, the number of actually defined trace links in the answer
set, and how many would be possible at maximum. We build
semantic relations graphs for each dataset, containing both
high and low level requirement specifications. Next to the
described vertices and edges for verbs, arguments, and noun
phrases, the graphs contain additional identifier vertices for each
requirement specification that are connected to the verb vertices,
because they indicate the strongest semantics. These identifier
vertices are used as query vertex for the initial activation and
to identify target requirements. TABLE VI also contains the

20
15— _8
10 § —_ § ——
5 =— g f] ;
8 8 _— 8 _—
0= \ T T T T
Infusion Pump ~ CCHIT GANNT CM-1 WARC

Fig. 9: Shortest Path Lengths for Graphs

number of vertices and edges and how often there is no path
between a source and a target.

Fig. 9 shows the distribution of existing shortest path lengths
between identifier vertex of each source and target. While the
datasets and graphs vary in size, the average shortest distance
between a source and a target is nearly the same.

To find an appropriate configuration, we used an exploratory
approach and discovered 500 random but valid configurations
based on the configuration parameter ranges in TABLE VII
(see [18, Table 4.13]). A configuration is valid if Spreading
Activation does not terminate before the given number of
pulses for all queries of all datasets. Otherwise, this indicates
too strong restriction to spread activation and would lead to
no results.

A. Metrics

There are several evaluation metrics that depend on different
goals when evaluating TLR. Shin et al. [23] performed
a systematic literature review and defined three different
goals. Goal 1 is to find trace links with high accuracy, e.g.,
to support tasks like coverage analysis. Goal 2 is to find
relevant documents excluding irrelevant documents to reduce
unnecessary effort for human analysts. Goal 3 is to rank
all documents so that the relevant ones are near the top of
the retrieved list, also to reduce human effort. Our approach
supports goal 3, as we build a ranked list of all documents and
generate an explanation for the user, who is manually creating
or checking trace links.

To evaluate the achievement of goal 3, Shin et al. mention
three different metrics, i.e., average precision (AP), Lag, and
AUC (area under the ROC curve). Each metric focuses on
different weighting schemes for the position in the ranked list.
AP assigns a non-proportionally higher weight to a correct link
ranked at the top and thereby rewards correct links at the top.
Lag assigns a non-proportionally higher weight to a correct
link ranked at the bottom of the list, which penalizes those
links. AUC uses the same weight for all correct links but is

TABLE VI: Datasets and corresponding semantic relation graphs

Sources Targets Links Graph
Dataset overall linked overall linked actual possible vertices edges no path
Infusion Pump 126 104 21 20 131 2,646 1,731 3,622 0
CCHIT 116 72 1064 415 587 123,424 9,239 22,669 0
GANNT 17 17 68 68 68 1,156 824 1,755 0
CM-1 235 155 220 150 361 51,700 7,616 18,375 0
WARC 63 60 89 79 136 5,607 1,188 1,975 63
TABLE VII: Configuration Parameter TABLE VIII: Best configurations
Mode Values Per metric Overall Syntactical VSM
Activation {ID, S, L2, L10, L2S, L10S} Dataset ND MAP Lag MAP Lag MAP Lag
Attenuation {IG, FX, IN}
Branching {NO, DG, FA, BR} Infusion 5 0430 0.504 0402 0516 0.530 0.418
Sending {B, RR, FW, FWL, FW-RR, FWL-RR} Pump 10 0.453 0.515 0.429 0.527 0.537 0.420
d [0’8 - i] ’ ’ ’ 30 0469 0517 0440 0.552 0.548 0.447
T [0 —0.15] 5 0111 0661 0077 0709 0251 0.452
Pmazx [10 — 50] CCHIT 10 0.092 0.603 0.065 0.613 0.218 0.393
30 0.097 0.540 0.070 0.574 0.223 0.384
5 0349 0294 0304 0433 0412 0.238
not applicable as it is a classification accuracy metric and not GANNT 10 0388 0283 0350 0421 0454 0.222
. 30 0421 0338 0382 0415 0492 0.329
a rank accuracy metric [24]. While a high value is desired
P . . 5 025 0537 0259 0537 0392 0.432
for AP, Lag indicates how many incorrect links are proposed CM-1 10 0282 0508 0282 0508 0422 0.438
before a correct one and should be as low as possible. 30 0306 0554 0301 0554 0447 0.484
Shin e.t al. shoW five different types of thresholds for Fhe 5 0353 0489 0299 0543 0470 0372
ranked list. Despite the fact that they recommend relative WARC 10 0365 0479 0333 0525 0490 0.396
30 0.388 0.500 0.355 0.548 0.502 0.421

thresholds rather than absolute ones, we use ND (number of
retrieved documents) with the values 5, 10, and 30, which cuts
the list after a fixed number of retrieved documents. We justify
this decision by assuming that the approach should be used in
setups including a lot of requirements documents, but a user is
not capable to check through thousands of potential candidates
and understand the explanations in detail. A relative threshold
such as 10% of the list would yield only 2 results for Infusion
Pump but more than 40 for CCHIT.

The metric values are summarized on average across
all traces, i.e., mean average precision (MAP) for AP. We
calculated the metrics only for source and target artifacts
that are linked to any artifact because our approach does no
classification and provides results for all queries (even for
queries without any correct answer).

B. Results for Datasets

The MAP and Lag for ND 5, 10, and 30 for each dataset are
shown in Fig. 10. While the majority of configurations show
bad to mediocre results, the best ones achieve a MAP around
40% and a Lag around 50% on all ND thresholds, except for
MAP of CCHIT. While Lag of CCHIT is comparable to the
other datasets, the low MAP indicates that the correct results
are not the top results but are shown at a lower position.

An explanation for the low MAP scores on some datasets
is that for some queries, the approach did not list any correct
result within the list of top-N results. For example, all search
results for the CM-1 dataset are shown as heat maps in Fig. 11.
The x-axis lists the 500 configurations, the y-axis contains
155 queries for each linked high-level requirement. The color

scheme indicates the ratio of correct links in the answer list
from light gray for no correct links at all to dark gray for 100%
of all correct links, independent of the position in the result list,
i.e., the darker a column, the better a configuration, and the
darker a row, the easier it is to answer a query correctly. There
are a few queries where, regardless of the configuration, valid
links are found often, e.g., around query 125-140 and 30—40.
This pattern becomes clearer as the ND threshold increases.
In addition, there are some queries where results almost never
contain a valid link, e.g., between 150-155. Comparable to this
vertical patterns, there are comparable horizontal ones with
some of the best configurations around 310 and some of the
worst around 400.

The corresponding heat maps of the other datasets (Fig. 12)
have similar vertical patterns at the same places, especially for
the configurations around 310. This leads us to the assumption
that a configuration has a constant quality for different datasets.
To compare and rank configurations, we calculated a harmonic
mean between MAP and Lag. Each configuration shows
comparable results for all datasets based on its rank of all
configurations. This is evident from the fact that the average
difference between 4 of 5 ranks of a single configuration
is much smaller (around 100) than the total number of all
configurations (500) as shown in Fig. 13.

TABLE VIII shows the best metric values of all configura-
tions for each dataset and threshold, compared per metric,
for the overall best configuration, and for the syntactical

1.0+ + 1.0 = ¥ === 1.0 == v 101 ==

0.8 Y T | 0.8 « T | 0.8 = i | 0.8 - 4+ = | 0.8 — =

|1 TR 17+ 8 T8 e

s il — .4 44 v .4 .44 1

024 P 0.2 0.2 _L_L_ 0.2 1 024 + +

- T T T T T T 0.0- +++ T T T 0.0~ % T T T T T 0.0- %%? T T T - ‘—?“—?”—?I T T T
5 10 30 5 10 30 5 10 30 5 10 30 5 10 30 5 10 30 5 10 30 5 10 30 5 10 30 5 10 30
MAP Lag MAP Lag MAP Lag MAP Lag MAP Lag

(a) Infusion Pump (b) CCHIT (c) GANNT (d) CM-1 (e) WARC

Fig. 10: MAP and Lag at ND 5, 10, and 30

Queries

Configurations

(a) Results at ND 5

Queries

200
Configurations

(b) Results at ND 10

Queries

AT e

200 300
Configurations

(c) Results at ND 30

i o
i ‘<-i;$ i
b e

1 100

500

Fig. 11: Search results for CM-1 dataset

VSM approach. In most cases, the quality of the overall
best configuration is close to that of the individual best
configurations. In contrast, the syntactical approach outperforms
the semantic approach.

C. Limitations

There are mainly two parts of the approach that affect the
performance results, the graph and Spreading Activation, which

400

300

i 100 200

20-...

Lk sk L T

100

200
(b) CCHIT: Results at ND 30
200
(c) GANNT: Results at ND 30

=

60 I P R R

40 TR I TR e E i BiEIHE
1#&&‘&1@&%' e e S e S R]
1 100 200 300 400 500

(d) WARC: Results at ND 30
Fig. 12: Search results for other datasets at certain ND

S00- g i
N —_—
250 —° f
200 —g— : :
150 ' : .
100 ——— ':\
50 N | L ; !
0= T T T
ND 5 ND 10 ND 30

Fig. 13: Rank differences of all configurations

both also depend on each other. As Fig. 11 illustrates, certain
queries never lead to a correct result, which indicates that there
are other targets activated stronger. None of the 500 random
configurations was able to overcome this circumstance.

On one hand, the graph structure might not be optimal. For
example, we merge noun phrase vertices without considering
their adjectives or coreference. But in some cases, the adjective
may impact the meaning, e.g., “large and comfortable cockpit”
vs. (any) “cockpit” in Example 1.

Furthermore, we do not merge or connect semantically
similar vertices. Two or more words/phrases are semantically
similar if they have the same meaning but different syntax.

500
400

e}
300 N Z p
o x @
200 a] J% xX=z %8 MEEFELE
100 s o [
0 -
Activlation AttenllJation Brani:hing Senlding
(a) Modes
1.00 0.15 50
0.95 0.10 40
0.90 30
0.85 0.05 20
0.80 0.00 10
(b) d ©T (d) prmax

Fig. 14: Parameter distributions of all valid configurations

There are different approaches to identify such semantic
similarities. Word embeddings like word2vec [25] or GloVe [26]
rely on the distributional hypothesis [27] that similar words or
phrases are used in similar contexts. Such word embeddings
are build as mathematical vectors with many dimensions to
calculate the distance between words with respect to their
context. This also causes words of opposite meaning to
be related to each other because they occur in the same
context [28]. Another approach is a database that contains
known similarities, e.g., WordNet®. They usually contain only
common similarities and are not aware of technical terms.
On the other hand, the search for relevant information is
challenging, too. There is no easy way to derive an optimal
configuration for a generic Spreading Activation that provides
the best results for all search queries. At least any kind of
restriction within the configuration is needed [29]. A good
configuration depends on the one hand on all parameters that
strongly depend on each other, and on the other hand, on the
graph and its characteristics. Fig. 14 shows the distributions
of all parameter values within the 500 random but valid
configurations. In comparison, Fig. 15 shows the distributions
of parameter values within the top-50 configurations. While the
numerical values d, 7, and p,,4, are almost equally distributed
within the 500, the discrete modes already show a filtering in all

configurations, e.g., LOG10SIG and FANOUT are not present.
In the top-50, there is a clear trend for each numerical value.

For the discrete modes, only IDENTITY is clearly favored
while LOG10, SIG, NONE, and the combined FW-RR and
FWL-RR are completely excluded.

D. Comparison with other TLR Approaches

An objective comparison with other TLR approaches is
hardly possible. Shin et al. [30] analyzed 24 publications on
TLR and observed that some of the used evaluation metrics
are not appropriate for evaluating the task. Only 4 approaches
were evaluated using MAP and only 1 using Lag. 10 out of
24 did not report their summarization method, only one used
average while 4 (or more, as assumed by Shin et al.) used
aggregation. In addition, they observed 7 different threshold

Shttps://wordnet.princeton.edu/

50
[a]
40 =
o
30 Lo a 8 ,
- [a1]
20 * [z . E g
10 g o i
O T T T T
Activation Attenuation Branching Sending
(a) Modes
1.00 0.15 50
0.95 0.10 40
0.90 30
0.85 0.05 20
0.80 0.00 10
(b) d (C) T (d) Pmaz

Fig. 15: Parameter distributions of top 50 configurations

types like PR (recall levels at which precision was measured),
PD (percentage of retrieved documents), and ND, which was
used only once.

We found 10 publications that used at least one of our
datasets and reported AP, MAP, or Lag. The results are
shown in TABLE IX. We have averaged our MAP and Lag
values for each dataset of the overall best configuration (right
column in TABLE VIII) over all ND thresholds of 5, 10, and
30. If the other authors reported more than one metric to
compare several approaches or configurations, we used only
the best one for comparison with our approach. To summarize
the reported AP by Gibiec et al. [32, Figure 5a], we used
average at ND10. Tian et al. [37] used only a subset of CM-1
including 22 high-level and 53 low-level requirements. [37]
and [38] reported their metrics only as figures, so we had
to estimate the values. Cleland-Huang et al. [39] used only
HIPA A-related requirements of the CCHIT dataset (78 of 1064
requirements), traced them to 11 (instead of 116) regulatory
codes and summarized their metrics over 10 datasets (78 CCHIT
requirements of 244 total). Dietrich et al. [40] also used the
CCHIT dataset but considered only 383 requirements.

Since none used the same threshold type or summarization
method, the results are only partially comparable.

VI. DISCUSSION

We achieve moderate results in the evaluation without
any explicit assumptions on the requirements or particular
optimization for TLR. The graph and the algorithm scales
for different sizes of datasets and is (almost) immediately
applicable (i.e., no training needed, only one pass through the
NLP pipeline). Also, the graph adapts immediately to changes
in the data as new requirements are parsed and vertices/edges
are inserted directly into the graph as well as existing vertices/
edges are removed if requirements are removed. Finding an
optimal configuration for the semantic search algorithm is a
non-trivial task. Certain discrete modes are clearly favored and
the chosen values for the numerical parameters in TABLE VII
seem to fit as there are (local) maxima identifiable in Fig. 15.
Therefore, we assume that improvements in the approach will
mainly be found in the adjustment of the graph. Due to the

https://wordnet.princeton.edu/

TABLE IX: Comparison with other publications

Our overall VSM [31] [32] [33] [34] [35] [36] [37] [38] [39] [40]
threshold: ND5-30 ND5-30 PR NDI10 PD100 - PR PR - PR - PD100
sum: avg avg avg - - avg - avg avg avg - - avg
metricc: = MAP Lag MAP Lag MAP AP AP MAP MAP MAP Lag MAP MAP AP AP MAP
Infusion P. 0.42 0.53 0.54 0.43 - - - - - - - - - - - -
CCHIT 0.07 0.63 023 041 0.25 0.20 - - - - - - - - 0.36 0.45
GANNT 0.35 042 045 026 048 - 0.56 0.65 - - - - - - - -
CM-1 0.28 0.53 042 045 0.40 - - - 0.50 0.02 039 023 0.36 0.07 - -
WARC 0.33 054 049 040 0.63 - - - 0.56 - - - - - - -

constant length of shortest paths between sources and targets
(Fig. 9) and the fact that the configurations perform comparable
on different datasets (Fig. 13), we assume that an almost optimal
configuration, once determined, may be reused.

Our approach does not outperform the syntactical VSM. The
reason may be the characteristics of the graph or Spreading
Activation. While VSM only compares single words with
each other, which seems to be adequate, our approach weight
coherent phrases higher due to their shorter path length, which
may lead to more activation for more distant results. We think
that improvements should be sought in the graph in particular,
e.g., by not using the hierarchical structure of nouns, but directly
connecting them to arguments.

Another option to improve the quality may be to combine
both approaches, the syntactical VSM and our Spreading
Activation. For example, use a VSM approach to identify targets
and then rank them by Spreading Activation and generate
explanations based on the filtered sub-graph (cf. [41]).

In addition to Spreading Activation configuration, we plan to
use tf-idf to downgrade vertices with common phrases. While
Spreading Activation is also able to downgrade such vertices,
it has only a local but not a global scope (based on general
corpora, e.g., newspaper), where these phrases are commonly
used but not in our datasets.

While our experiments focus only on small datasets with
a manageable number of possible results, in practice, there
are much larger datasets, so that human interaction (goal 3 of
Shin et al. [23]) may no longer be achieved. In this case, we
have to change the metrics (e.g., not ND 30 but PR 100) and
would therefore possibly choose other configurations (e.g., with
more restrictions to accomplish a discrimination for automation
instead of ranking).

Other semantic approaches often deal with semantic distance
models between single parts (e.g., words or phrases). Mah-
moud et al. [42] uses various semantically enabled IR methods
like VSM including thesaurus or Part-of-Speech, LSI, LDA,
explicit semantic analysis, and normalized Google distance.
They calculate vectors for each word and try to find related
documents based on small distances. Amongst others, the CM-1
dataset was evaluated and achieved a MAP of 20-40% and
a Lag of 10-60% (overall, no ND). Their results show that
explicit semantic methods may outperform latent methods.

Guo et al. [43] also focus on single words, using embeddings
as semantic enhancement to train several RNN to accomplish a
deep learning approach. They focus on automatically generated

trace links and achieve a higher MAP than existing VSM and
LSI approaches on their unpublished dataset.

Guo et al. [44] present a technique to build an ontology semi-
automatically. They focus on term mismatches between related
documents. Compared to the classification technique, which
performs best when sufficient training data is available, the
ontology shows improvements because it aims to add semantics
which enables higher levels of reasoning. The big disadvantage
is the effort to create an ontology. Another benefit of the
ontology is that it forms the basis for textual explanations of
trace links [45].

Hartig et al. [18], [46] use Spreading Activation to find
related hazard analysis and risk assessments (HARA). Initially
they map a given class diagram including information such
as classes, properties, instances, and data values to a Web
Ontology Language’ model. Using this model, an ontology is
automatically created from existing HARA. During the search
phase, they first apply Spreading Activation to the ontology to
find the relevant subnetwork. In a second step, they filter the
results within this subnetwork by the sought-after type sorted
by their assigned activation. To improve their configuration
optimization, they used semantic network skeletons [47]. They
also tried to find optimal configurations using evolutionary
algorithms, but the maximal fitness seems to quickly convert
against an upper limit [18, p. 145 ff.]. There is only evidence
that certain modes or combinations of them are better than
others. Finally, they generate a textual explanation for the user
derived from spread graphs by Michalke et al. [19].

VII. CONCLUSION

In this paper, we present a novel approach for Trace Link
Recovery using semantic relations between parts of natural
language, stored in a semantic relation graph, and searched
by a semantic search algorithm. While the approach is fully
automated, it does not have any prerequisites with regard to
the format or the content of the natural language (except for
English language) and is scalable to various sizes of corpora.
We achieve moderate results on several datasets without any
specific optimization. To improve the user confidence, we are
able to generate an explanation between each query and result
requirement by identifying and highlighting the contributing
text passages.

https://www.w3.org/TR/ow12-overview/

https://www.w3.org/TR/owl2-overview/

[1]

[2]

[3

=

[4

=

[5]

[6]

[7

—

[8

[t}

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

S. Winkler and J. von Pilgrim, “A survey of traceability in require-
ments engineering and model-driven development,” Software & Systems
Modeling (SoSyM), 2010, https://doi.org/10.1007/s10270-009-0145-0.
G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code and doc-
umentation,” Transactions on Software Engineering (TSE), 2002,
https://doi.org/10.1109/TSE.2002.1041053.

M. Heindl and S. Biffl, “A case study on value-based requirements
tracing,” in European Software Engineering Conference (ESEC/FSE),
2005, https://doi.org/10.1145/1081706.1081717.

J. Huffman Hayes, A. Dekhtyar, and J. Osborne, “Improving requirements
tracing via information retrieval,” in Requirements Engineering (RE),
2003, https://doi.org/10.1109/ICRE.2003.1232745.

M. Borg, P. Runeson, and A. Ardo, “Recovering from a decade: A
systematic mapping of information retrieval approaches to software
traceability,” Empirical Software Engineering (EMSE), vol. 19, no. 6, pp.
1565-1616, 2014, https://doi.org/10.1007/s10664-013-9255-y.

C. Mills, “Towards the automatic classification of traceabil-
ity links,” in Automated Software Engineering (ASE), 2017,
https://doi.org/10.1109/ASE.2017.8115723.

O. Gotel and C. W. Finkelstein, “An analysis of the require-
ments traceability problem,” in Requirements Engineering (RE), 1994,
https://doi.org/10.1109/ICRE.1994.292398.

A. Borgida, S. Greenspan, and J. Mylopoulos, “Knowledge Representa-
tion as the Basis for Requirements Specifications,” pp. 152-169, 1985,
https://doi.org/10.1007/978-3-642-70840-4_13.

D. Dermeval, J. Vilela, I. 1. Bittencourt, J. Castro, S. Isotani, P. Brito,
and A. Silva, “Applications of ontologies in requirements engineering: A
systematic review of the literature,” in Requirements Engineering (RE).
Springer, 2016, pp. 405-437, https://doi.org/10.1007/s00766-015-0222-6.
M. Robeer, G. Lucassen, J. M. E. M. van der Werf, F. Dalpiaz, and
S. Brinkkemper, “Automated Extraction of Conceptual Models from
User Stories via NLP,” in Requirements Engineering (RE). 1EEE, 2016,
pp. 196-205, https://doi.org/10.1109/RE.2016.40.

A. Schlutter and A. Vogelsang, “Knowledge Representation of Require-
ments Documents Using Natural Language Processing,” in Natural
Language Processing for Requirements Engineering (NLP4RE). RWTH
Aachen, 2018, https://doi.org/10.14279/depositonce-7776.

F. Crestani, “Application of spreading activation techniques in information
retrieval,” Artificial Intelligence Review, vol. 11, no. 6, pp. 453-482,
1997, https://doi.org/10.1023/A:1006569829653.

A. Schlutter and A. Vogelsang, “Knowledge Extraction from Natural
Language Requirements into a Semantic Relation Graph,” in Knowledge
Graph for Software Engineering (KG4SE). Association for Computing
Machinery (ACM), 2020, https://doi.org/10.14279/depositonce-9772.2.
C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The stanford CoreNLP natural language processing
toolkit,” in System Demonstrations. Association for Computational
Linguistics (ACL), 2014, pp. 55-60.

L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep Semantic
Role Labeling: What Works and What’s Next,” in Association for
Computational Linguistics. Association for Computational Linguistics
(ACL), 2017, pp. 473-483, https://doi.org/10.18653/v1/p17-1044.

X. Carreras and L. Marques, “Introduction to the CoNLL-2004 shared
task: Semantic role labeling,” in Computational Natural Language
Learning (CoNLL). Association for Computational Linguistics (ACL),
2004, pp. 89-97.

X. Carreras and L. Marquez, “Introduction to the CoNLL-2005 shared
task: Semantic role labeling,” in Computational Natural Language
Learning (CoNLL). Association for Computational Linguistics (ACL),
2005, pp. 152-164.

K. Hartig, “Entwicklung eines Information-Retrieval-Systems zur Un-
terstiitzung von Gefdhrdungs- und Risikoanalysen,” Ph.D. dissertation,
Technische Universitit Berlin, 2019, https://doi.org/10.14279/depositonce-
8408.

V. N. Michalke and K. Hartig, “Explanation Retrieval in Semantic
Networks,” in Knowledge Discovery, Knowledge Engineering and
Knowledge Management (IC3K). SciTePress, 2016, pp. 291-298,
https://doi.org/10.14279/depositonce-7136.

J. Huffman Hayes, J. Payne, and M. Leppelmeier, “Toward Improved
Artificial Intelligence in Requirements Engineering: Metadata for Tracing

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

Datasets,” in Artificial Intelligence for Requirements Engineering (AIRE).
IEEE, 2019, pp. 256-262, https://doi.org/10.1109/REW.2019.00052.

G. Salton, Automatic Text Processing: The Transformation, Analysis, and
Retrieval of Information by Computer. USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

A. Singhal, “Modern Information Retrieval: A Brief Overview,” IEEE
Computer Society Technical Committee on Data Engineering (TCDE),
vol. 24, no. 4, pp. 35-43, 2001, http://singhal.info/ieee2001.pdf.

Y. Shin, J. Huffman Hayes, and J. Cleland-Huang, “Guidelines
for Benchmarking Automated Software Traceability Techniques,”
in Symposium on Software and Systems Traceability (SST), 2015,
https://doi.org/10.1109/SST.2015.13.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl,
“Evaluating collaborative filtering recommender systems,” Transactions
on Information Systems, 2004, https://doi.org/10.1145/963770.963772.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” Computing Research Repository
(CoRR), 2013, https://arxiv.org/abs/1301.3781.

J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing. Association for Computational Linguistics (ACL), 2014,
pp. 1532-1543, https://doi.org/10.3115/v1/d14-1162.

M. Sahlgren, “The distributional hypothesis,” Italian Journal of Linguis-
tics, vol. 20, no. 1, pp. 33-54, 2008.

N. Mrksié, D. o Séaghdha, B. Thomson, M. Gasi¢, L. M. Rojas-Barahona,
P-H. Su, D. Vandyke, T.-H. Wen, and S. J. Young, “Counter-fitting word
vectors to linguistic constraints,” in Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics
(ACL), 2016, pp. 142148, https://doi.org/10.18653/v1/N16-1018.

M. R. Berthold, U. Brandes, T. Kétter, M. Mader, U. Nagel, and K. Thiel,
“Pure spreading activation is pointless,” in Conference on information and
knowledge management (CIKM). Association for Computing Machinery
(ACM), 2009, pp. 1915-1918, https://doi.org/10.1145/1645953.1646264.
Y. Shin, J. Huffman Hayes, and J. Cleland-Huang, “A Framework for
Evaluating Traceability Benchmark Metrics,” Technical Reports, no. 21,
2012, https://via.library.depaul.edu/tr/21/.

D. Farrar and J. Huffman Hayes, “A Comparison of Stemming Techniques
in Tracing,” in Symposium on Software and Systems Traceability (SST).
IEEE, 2019, pp. 37-44, https://doi.org/10.1109/SST.2019.00017.

M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards min-
ing replacement queries for hard-to-retrieve traces,” in Automated
Software Engineering (ASE). ACM Press, 2010, p. 245,
https://doi.org/10.1145/1858996.1859046.

H. Kuang, H. Gao, H. Hu, X. Ma, J. Lu, P. Mader, and A. Egyed,
“Using Frugal User Feedback with Closeness Analysis on Code to
Improve IR-Based Traceability Recovery,” in International Conference
on Program Comprehension (ICPC). IEEE, 2019, pp. 369-379,
https://doi.org/10.1109/ICPC.2019.00055.

W. Li and J. H. Hayes, “Traceability Challenge 2013: Query+ en-
hancement for semantic tracing (QUEST): Software verification and
validation research laboratory (SVVRL) of the University of Kentucky,”
in Traceability in Emerging Forms of Software Engineering (TEFSE).
IEEE, 2013, pp. 95-99, https://doi.org/10.1109/TEFSE.2013.6620162.
A. Mahmoud, N. Niu, and S. Xu, “A semantic relatedness ap-
proach for traceability link recovery,” in International Conference
on Program Comprehension (ICPC). IEEE, 2012, pp. 183-192,
https://doi.org/10.1109/ICPC.2012.6240487.

H. Sultanov, J. H. Hayes, and W.-K. Kong, “Application of swarm
techniques to requirements tracing,” in Requirements Engineering (RE),
2011, pp. 209-226, https://doi.org/10.1007/s00766-011-0121-4.

Q. Tian, Q. Cao, and Q. Sun, “Adapting Word Embeddings
to Traceability Recovery,” in [Information Systems and Com-
puter Aided Education (ICISCAE). IEEE, 2018, pp. 255-261,
https://doi.org/10.1109/ICISCAE.2018.8666883.

X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated
requirements trace retrieval: a study of term-based enhancement methods,”
Empirical Software Engineering (EMSE), vol. 15, no. 2, pp. 119-146,
2010, https://doi.org/10.1007/s10664-009-9114-z.

J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, “A ma-
chine learning approach for tracing regulatory codes to product specific re-
quirements,” in International Conference on Software Engineering (ICSE).
ACM Press, 2010, p. 155, https://doi.org/10.1145/1806799.1806825.

>

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. Dietrich, J. Cleland-Huang, and Y. Shin, “Learning effective query
transformations for enhanced requirements trace retrieval,” in Auto-
mated Software Engineering (ASE). IEEE, 2013, pp. 586-591,
https://doi.org/10.1109/ASE.2013.6693117.

M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Mider,
“Traceability in the Wild: Automatically Augmenting Incomplete
Trace Links,” in International Conference on Software Engineering
(ICSE). New York, New York, USA: ACM Press, 2018, pp. 834-845,
https://doi.org/10.1145/3180155.3180207.

A. Mahmoud and N. Niu, “On the role of semantics in automated
requirements tracing,” in Requirements Engineering (RE). Springer,
2015, pp. 281-300, https://doi.org/10.1007/s00766-013-0199-y.

J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced
Software Traceability Using Deep Learning Techniques,” in International
Conference on Software Engineering (ICSE). 1EEE, 2017, pp. 3-14,
https://doi.org/10.1109/ICSE.2017.9.

J. Guo, M. Gibiec, and J. Cleland-Huang, “Tackling the term-
mismatch problem in automated trace retrieval,” Empirical Soft-
ware Engineering (EMSE), vol. 22, no. 3, pp. 1103-1142, 2017,
https://doi.org/10.1007/s10664-016-9479-8.

J. Guo, N. Monaikul, and J. Cleland-Huang, “Trace links ex-
plained: An automated approach for generating rationales,” in
Requirements Engineering (RE). IEEE, 2015, pp. 202-207,
https://doi.org/10.1109/RE.2015.7320423.

K. Hartig and T. Karbe, “Recommendation-based decision support
for hazard analysis and risk assessment,” in Conference on Informa-
tion, Process, and Knowledge Management (eKNOW). International
Academy, Research and Industry Association (IARIA), 2016, pp. 108—
111, https://doi.org/10.14279/depositonce-6974.

, “Semantic Network Skeleton - A Tool to Analyze Spreading
Activation Effects,” in International Conference on Information, Process,
and Knowledge Management (eKNOW). 1ARIA, 2016, pp. 126-131,
https://doi.org/10.14279/depositonce-6973.

	Introduction
	Background
	Trace Link Recovery
	Knowledge Representation
	Basics of Spreading Activation

	Approach: Knowledge Base Construction
	Natural Language Processing Pipeline
	Structural Information
	Semantic Graph

	Approach: Semantic Search
	Spreading Activation
	Result Explanation via Spread Graphs

	Evaluation
	Metrics
	Results for Datasets
	Limitations
	Comparison with other TLR Approaches

	Discussion
	Conclusion
	References

