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Abstract:  

Waste transport plays an important role in the decarbonization of the transport sector. In this paper diesel-powered 

(dWCV) and electric waste collections vehicles (eWCV) and their operation are analysed regarding energy demand 

and total cost of ownership (TCO) integrating Well-to-Wheel emission costs. Further, an open-source simulation tool 

with a route synthetization approach is presented using extensive real-life operational data of five different route types. 

Determined WCV energy demand varies greatly between vehicle topologies and analysed route types. eWCV show a 

mean distance-specific energy demand of 1.85 kWh·km-1, while values for dWCV increase to 5.43 kWh·km-1 

respectively. The factors route distance and number of waste containers collected show the highest influence on 

results. Therefore, battery capacity should be sized according to specific route types. eWCV show higher TCO than 

dWCV under current economic constraints but fuel price level and annual vehicle mileage show a high influence on 

economic feasibility. Taking the planned emissions price mechanism of the German Government into account, 

economic scenarios could be identified, which make eWCV advantageous yet in 2021. In technical terms, there is 

nothing to stop for the electrification of WCV, and with suitable political instruments eWCV could become profitable 

in the short-term. 

 

1 Introduction 

With the introduction of its Energy Concept 

(Energiekonzept) the German Government aims to 

achieve an environmentally friendly, reliable and 

affordable energy supply by 2050 [1]. This includes 

the planned energy transition (Energiewende) with the 

expansion of renewable energies and transition of the 

mobility sector, in particular the development and 

integration of e-mobility. Traffic caused by the service 

sector is of crucial importance for the decarbonization 

of the transport sector. Public transport as well as 

supply and waste transport are particularly qualified 

for an electrification due to their well-planned route 

typology. According to the Federal Motor Vehicle 

Transport Authority (Kraftfahrt-Bundesamt, KBA), 

13,301 waste collection vehicles (WCV) had been 

approved in Germany by January 1, 2018 [2]. The 

Berlin municipal waste management company 

(Berliner Stadtreinigung, BSR) is in the process of 

decarbonizing its vehicle fleet by replacing diesel-

powered WCV (dWCV) with fully battery electric 

powered WCF (eWCV), with its first pilot eWCV in 

testing since 2019 [3, 4]. Other municipal waste 

management companies are taking similar measures, 

e.g. in the city of Vienna or Gothenburg [5, 6]. 

For the assessment of new vehicle drive systems such 

as eWCV, an energy demand simulation can give 
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detailed information on the fuel consumption and its 

influencing parameters as well as the feasibility and 

possible constraints of new topologies. This type of 

simulation is based on detailed models of the vehicle 

drive system, vehicle hydraulic system components 

for compacting and lifting of waste and the vehicle 

route profile, which can be determined using GPS data 

tracking or synthetic approaches. Energy demand of 

WCV is also required for the analysis of the economic 

aspects of such new systems. Here, the total cost of 

ownership (TCO) is a widely used approach that takes 

into account all costs that occur during a vehicle’s 

lifetime. 

In general, WCV and waste collection have not been 

simulated to a great extent. This is mainly because 

deterministic models are sufficiently accurate to plan 

WCV operation [7]. But they fall short for the 

simulation of new vehicle topologies such as the 

electrification of drivetrains or hydraulic system 

components. During the mid-90’s, several studies 

were published by Everett et al. concerning the 

simulation of WCV and waste collection routes, which 

considered the influence of collection time and 

journey time [8, 9, 10]. As a result, Wilson and Baetz 

conclude that several variables are necessary for an 

accurate simulation, e. g. the distance between 

collection stops and towards the waste treatment 

facility as well as the amount of waste collected. They 

also mention the influence of the nature of the waste 

collection area regarding population density and 

building structure as well as of the respective waste 

collection policy and management. The latter include 

for example service frequency, work rules or vehicle 

capacity and, if given can be considered within models 

to achieve a high accuracy [7]. Therefore, Wilson and 

Baetz introduce a model that uses derived probability 

distributions to estimate the necessary time to service 

a route with given parameters. The model does not 

give any information on energy consumption [7]. 

Sonesson published a model to calculate service time 

as well as fuel consumption with the objective to be as 

general as possible. Thereby, various service areas 

with different numbers of stops and varying distance 

between the stops can be considered [11]. Larsen et al. 

also estimated the diesel consumption for different 

area types and found a high variety connected to the 

respective area and the amount of waste collected [12]. 

Nguyen and Wilson use GPS tracking to estimate the 

diesel consumption of WCV, but the changing amount 

of waste that needs to be transported is not considered 

[13]. 

Hybrid options for commercial vehicles have been 

discussed since the beginning of the 21st century, with 

the overall objective of increasing fuel usage 

efficiency. Wu et al. introduced power management 

strategies for hybrid delivery trucks that use 

recuperated braking energy stored in a hydraulic 

accumulator. According to them this recuperation can 

increase fuel efficiency by more than 25 % [14]. The 

concept of hybrid hydraulic vehicles has been pursued 

by Bender in several studies. Bender et al. developed 

a method to predict drive cycles, which can be used to 

optimise the usage of recuperated energy [15, 16]. This 

was developed further for application to WCV in [17], 

using GPS and the data given by the standard vehicle 

controller area network bus. In all articles mentioned 

above detailed vehicle models are not given. While 

hybrid hydraulic systems for WCV do not seem to be 

considered further, the idea of energy recuperation has 

been preserved. Together with CO2 reduction efforts, 

this led to the development of hybrid electric WCV. 

This technology uses a battery to either operate just the 

hydraulic of the WCV body, or both hydraulic and 

vehicle drive [18, 19]. According to an investigation 

of an electric 18 t truck by the ETH Zurich and IWF, 

up to 100 % of braking in urban traffic can be 

performed by recuperation [20]. Due to the frequent 

starts and stops during the operation, WCV are very 

suitable for the recuperation of braking energy [21]. 

Until now, only few studies have been published that 

examine fully electrified WCV. At the research 

campus Mobility2Grid, an overall concept for the 

electrification of public buses and waste disposal 

traffic has been developed [22]. As part of this 

initiative, Gräbener developed and evaluated the 

options for electrification of WCV as an example for 

service sector vehicles [21]. However, both, the report 

and the dissertation, do not include a simulation of the 

vehicle behaviour in daily operation. Ewert et al. 

analysed the energy consumption of eWCV in Berlin 

using a multi-agent-based simulation [23]. An energy 

demand simulation is not presented in detail in the 

paper. Nagel et al. modelled waste collection by 

eWCV using a synthetic waste collection calendar but 

only assumed mean energy demand values without 

conducting any detailed simulation [24]. Erdinç et al. 

conducted an energy demand simulation of a 16 t 

eWCV in Istanbul, but only for a comparably short 

distance of 7 km and 75 waste containers [25]. 

Even more scarce than detailed and open-source 

energy demand simulations of eWCV are economic 

assessments of such vehicles. Due to their new market 

integration, investment costs for eWCV are not yet 

published in list prices. Costs assumptions lie in the 

range of 400,000 € to 600,000 € for eWCV and 

200,000 € to 250,000 € for dWCV [26, 27, 28, 29]. 

Ewert et al. determined the TCO of a dWCV and 

eWCV fleet in Berlin, stating that an electrification of 

the WCV fleet increases the TCO by 16-30 %. This 

shows the importance of further research in 

economically viable options for real-life 

implementation of eWCV. 

The focus of this paper is the development of an open-

source energy demand simulation for dWCV and 

eWCV, which includes a route synthetization using 

real-life operational data provided by a waste 



 

management company situated in Berlin, Germany 1. 

Different route types with varying collection areas are 

considered. The total and specific energy demand of 

dWCV and eWCV, as well as the influence of route 

type on eWCV energy demand is analysed. A TCO 

analysis takes current economic constraints into 

account and identifies possible pathways under 

consideration of the planned emissions price 

mechanism of the German Federal Government to 

make eWCV economically profitable. Therewith, our 

work brings following major contributions for the 

simulation and determination of the energy demand in 

daily operation and TCO of electric- and diesel-driven 

waste collection vehicles: 

• Detailed energy demand simulation connected 

with a route synthetization approach, which 

makes it possible to forecast energy demand of 

diesel- and electric-driven waste collection 

vehicles. 

• Innovative combination of energy demand and 

TCO calculation taking emission price 

mechanisms into account. 

• Analysis of 387 real-life operation tours to point 

out possible electrification pathways of waste 

transport vehicles. 

• Open-source concept of the developed 

simulation tool and its sharing via a freeware 

platform. 

The current paper builds on the experiences made in 

the study ‘Netzdienliche Integration hybrider 

Entsorgungsfahrzeuge’ (Grid-beneficial Integration of 

Hybrid Waste Collection Vehicles). 

2 Methodology 

The methodology section presents implemented 

models of the energy demand simulation, the route 

synthetization and used equations for the TCO 

calculation. 

The developed energy demand simulation including 

route synthetization and the route optimization is 

published under the Creative Commons Attribution-

ShareAlike 4.0 International License and can be 

downloaded from GitHub 2, 3. 

 Energy demand simulation 

The energy demand of an eWCV and the reference 

dWCV is modelled through a power flow simulation 

with a resolution of one second. Due to short 

computing times and low complexity requirements of 

such kind of models, the methodology of backward 

simulation is used. Therefore, a model for vehicle 

driving resistance, drivetrain and body and, in the case 

of an eWCV, an additional model for battery, battery 

 
1 Data collected in the study ‘Grid-beneficial Integration of Hybrid Waste 

Collection Vehicles’. 
2 https://github.com/fabmid/Refuse-Collection-Vehicle-Energy-Demand-

Simulation  
3 https://github.com/fabmid/Refuse-Collection-Vehicle-Route-Optimization  

management and charging infrastructure is developed. 

The vehicle route model provides speed, acceleration 

and duty cycle information and is based on real-life 

operational data from a waste management company. 

Driving resistance model 

The necessary drive power is determined using the 

driving resistance model, which is based on following 

equations [30, 31, 21]: 

𝐹𝑎𝑖𝑟(𝑡) =
1

2
· 𝜌 · 𝐴 · 𝑐𝑑 · 𝑣(𝑡)

2 (1) 

𝐹𝑟𝑜𝑙𝑙(𝑡) = 𝑐𝑟𝑜𝑡 · 𝑚𝑣(𝑡) · 𝑔 · 𝑐𝑟 · cos⁡(𝑎𝑙𝑝ℎ𝑎) 
(2) 

𝐹𝑠𝑙𝑜𝑝𝑒(𝑡) = 𝑐𝑟𝑜𝑡 · 𝑚𝑣(𝑡) · 𝑔 · 𝑠𝑖𝑛⁡(𝑎𝑙𝑝ℎ𝑎) 
(3) 

𝐹𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) = 𝑐𝑟𝑜𝑡 · 𝑚𝑣(𝑡) · 𝑎 
(4) 

𝑃𝑑𝑟𝑖𝑣𝑒(𝑡) = (𝐹𝑎𝑖𝑟(𝑡) + 𝐹𝑟𝑜𝑙𝑙(𝑡) + 𝐹𝑠𝑙𝑜𝑝𝑒(𝑡)

+ 𝐹𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)) · 𝑣(𝑡) 
(5) 

where 𝐹𝑎𝑖𝑟  is the aerodynamic drag force, 𝐹𝑟𝑜𝑙𝑙  is the 

rolling friction force, 𝐹𝑠𝑙𝑜𝑝𝑒  is the hill climbing force, 

𝐹𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the acceleration resistance force, 𝜌 is 

the air density [kg·m-3], 𝐴 is the vehicle front surface 

area [m2], 𝑐𝑑 is the drag coefficient, 𝑣 is the vehicle 

speed [m·s-1], 𝑐𝑟𝑜𝑡 is the coefficient of rotating masses, 

𝑚𝑣 is the vehicle cumulated mass [kg], 𝑔 is the gravity 

of earth [m·s-2], 𝑐𝑟⁡is the rolling resistance coefficient, 

𝑎𝑙𝑝ℎ𝑎 the road slope [°], 𝑎 the vehicle acceleration in 

[m·s-2], 𝑃𝑑𝑟𝑖𝑣𝑒  the vehicle mechanical power demand 

[W] and 𝑡 the timestep. 

Drivetrain model 

The vehicle motor input power is calculated with a 

simple drivetrain model, consisting of static 

efficiencies of all drivetrain components of the eWCV 

or dWCV. The electric motor can act additionally as a 

generator, which converts the mechanical braking 

energy into electrical energy according to the braking 

force recovery (recuperation). Braking is performed 

using the resistance of the generator instead of the 

conventional wheel brakes. For the definition of 

potential recuperation energy of an eWCV in the case 

of negative mechanical power, a generator mode is 

considered as well [20]. The drivetrain model is 

defined by the following equations: 

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛 ⁡= 𝜂𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 · 𝜂𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛

· 𝜂𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 (6) 

𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟(𝑡) =
𝑃𝑑𝑟𝑖𝑣𝑒(𝑡)

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡; 𝑓𝑜𝑟⁡𝑃𝑑𝑟𝑖𝑣𝑒(𝑡) ≥ 0 (7) 

𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑡) = 𝑃𝑑𝑟𝑖𝑣𝑒(𝑡)

· 𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛⁡⁡⁡⁡⁡⁡⁡; 𝑓𝑜𝑟⁡𝑃𝑑𝑟𝑖𝑣𝑒(𝑡) < 0 
(8) 

where 𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛 is the total drivetrain efficiency, 

𝜂𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟/𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  the motor efficiency and in 
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case of an electric motor the generator efficiency, 

𝜂𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 the efficiency of transmission, 

𝜂𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 ⁡the DC-DC converter efficiency for the 

eWCV, 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟  the traction motor input power 

[W], 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  the generator electric output 

power of the traction motor [W] and 𝑡 the timestep. 

Body model 

There is a great variety of WCV body types, of which 

the majority are rear-loading systems. Rear-loaders 

with press plate system are currently used 

predominantly in the Berlin area. The modeling of the 

body system is therefore limited to such a system. 

For each waste collection stop of the vehicle a duty 

cycle is considered that defines the power by the body 

system for lifting and compacting purpose. For 

simplification and due to lack of real-life data, a static 

energy demand per duty cycle and waste container of 

90 Wh with a mean body input power and a mean body 

efficiency (compare Table 1) is defined. This 

assumption is based on the obtained mean values of a 

detailed study of the efficiency and energy demand of 

a press plate system using real-life data of 524 duty 

cycles given by Wysocki et al. in [32]. Authors present 

a detailed statistical analysis with energy demand, 

power and efficiency for the lifting and compacting 

process. Further Sandkühler et al. state that the mean 

power output lies at 10 kW and is highly dependent on 

the working style of the refuse collector [18]. For the 

present study no differentiation of container sizes and 

the mass of compacted waste is implemented. We 

neglect efficiency and power differences between 

lifting and compacting phase, and possible 

improvements gained through new development of 

full electric body systems. The body model is defined 

by the following equation: 

𝑃𝑏𝑜𝑑𝑦(𝑡) = 𝑛𝑤𝑎𝑠𝑡𝑒⁡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ·
𝑃𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛

𝜂𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛

 (9) 

where 𝑃𝑏𝑜𝑑𝑦(𝑡) is the body input power for lifting and 

compacting purpose [W], 𝑃𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛  is the static mean 

body output power, 𝜂𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛  is the mean body 

efficiency, 𝑛𝑤𝑎𝑠𝑡𝑒⁡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟  is the number of collected 

container per stop (which is equal to the number of 

duty cycles per stop), and 𝑡 the timestep. 

This leads to the definition of the overall power 

demand per time step of the eWCV and dWCV: 

𝑃𝑑𝑊𝐶𝑉,𝑖𝑛(𝑡) = 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟(𝑡) + 𝑃𝑏𝑜𝑑𝑦(𝑡)

+ 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 
(10) 

𝑃𝑒𝑊𝐶𝑉,𝑖𝑛(𝑡) = 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟(𝑡) − 𝑃𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(𝑡)

+ 𝑃𝑏𝑜𝑑𝑦(𝑡) + 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 
(11) 

where 𝑃𝑑𝑊𝐶𝑉,𝑖𝑛 is the power demand of the dWCV 

[W] covered by the fuel input, 𝑃𝑒𝑊𝐶𝑉,𝑖𝑛 is the power 

demand of the eWCV [W] covered by the battery, 

𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠  is the static power demand of auxiliary 

components (such as heating / cooling or light) [W] 

and 𝑡 the timestep 

Table 1 gives an overview of the parameter 

assumptions made for the driving resistance, drivetrain 

and body model. 

Battery 

For the eWCV, the vehicle power demand is supplied 

through the battery system. An empirical lithium-ion 

battery model has been adapted for the present case. It 

defines: 

- Dissipation of charging and discharging process 

- State of Charge (SoC) 

- Charging and discharging limits 

The dissipation is modelled through a stationary 

equivalent circuit model, taking into account the 

power dependency. The SoC model follows an off-line 

book-keeping method using an energy balance with 

charging and discharging dissipation and self-

discharge effect.  

Table 1: Parameters for the driving resistance, drivetrain and body model. 

Parameter Symbol Unit dWCV eWCV Source 

Drag coefficient 𝑐𝑑 [1] 0.63 0.63 [30] 

Rolling resistance coefficient 𝑐𝑟 [1] 0.007 0.007 [30]  

Road slope 𝛼 [°] 0.0 0.0  

Coefficient of rotating masses 𝑐𝑟𝑜𝑡 [1] 1.10 1.10 [33] 

Vehicle weight (empty/full)  𝑚 [kg] 15.25/26.0 17.25/26.0 [34] 

Vehicle front area 𝐴 [m2] 8.58 8.58 [19] 

Traction motor efficiency 𝜂𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑚𝑜𝑡𝑜𝑟 [1] 0.39 0.90 [30, 31, 33] 

Traction generator efficiency 𝜂𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛,𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 [1] - 0.90 [30, 33] 

Transmission efficiency 𝜂𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 [1] 0.95 0.99 [31] 

Converter efficiency 𝜂𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟  [1] - 0.95 [31] 

Body mean power output 𝑃𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛 [kW] 10 10 [18, 32] 

Body mean efficiency 𝜂𝑏𝑜𝑑𝑦,𝑚𝑒𝑎𝑛 [kW] 0.7885 0.30 [18, 32] 

Power auxiliaries 𝑃𝑎𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑖𝑒𝑠 [kW] 2.0 2.0 [35] 

Traction motor power max - [kW] 235 260 [34, 36] 

Traction motor idle energy - [ldiesel∙h-1] 3.00 - [34] 

Body operation time per container  [s∙cont-1] 32 32 [32] 



 

The models are parametrized with the data sheet of the 

lithium iron phosphate cell by Thunder Sky LYP and 

information provided by a WCV manufacturer [37]. A 

detailed description of the battery model can be found 

in [38]. The influence of battery temperature on 

battery performance is not considered, as battery C-

rates in WCV are low due to high battery capacities 

and therefore temperature does not play a major role. 

The nominal battery capacity is set to 200 kWh, while 

the useable capacity is set to 66 % of the nominal 

capacity, using defined charge and discharge 

boundaries [34]. The power dependency of the battery 

charge and discharge efficiency is reflected by the 

coefficients 𝑎 and 𝑏. These are obtained from a simple 

equivalent circuit model approach using a power-

dependent resistance and are parametrized with the 

charge and discharge terminal voltage curves for 

different C-Rates using the approach by Tremblay et 

al. [39]. The battery model is defined by the following 

equations: 

𝐼𝐹⁡𝑃𝑒𝑊𝐶𝑉,𝑖𝑛(𝑡) < 0⁡𝑎𝑛𝑑⁡𝐹𝑂𝑅⁡0.34 ≤ 𝑆𝑜𝐶(𝑡) ≤ 1.0: 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑎 · 𝑎𝑏𝑠(𝑃𝑒𝑊𝐶𝑉,𝑖𝑛(𝑡)) + 1 

(12) 

𝐼𝐹⁡𝑃𝑒𝑊𝐶𝑉,𝑖𝑛(𝑡) > 0⁡𝑎𝑛𝑑⁡𝐹𝑂𝑅⁡0.34 ≤ 𝑆𝑜𝐶 ≤ 1.0: 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) = 𝑏 · 𝑃𝑒𝑊𝐶𝑉,𝑖𝑛(𝑡) + 1 

(13) 

where 𝑆𝑜𝐶 is the battery State of Charge, 

𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑐ℎ𝑎𝑟𝑔𝑒  the battery charge power including 

charge losses [W], 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  the battery 

discharge power including discharge losses [W], the 

coefficient 𝑎 = −0.0224 the power dependency of the 

battery charge efficiency, the coefficient 𝑏 =
−0.0281 the power dependency of the battery 

discharge efficiency and 𝑡 the timestep. 

Charging infrastructure 

For the definition of the overall energy demand of the 

eWCV, the charging infrastructure for the battery 

charging process needs to be considered as well. The 

implemented model is parametrized for a conductive 

bi-directional AC charge in Mode-3 with an Electric 

Vehicle Supply Equipment (EVSE) and an on-board 

AC charger. The charger power is set to a total power 

output of 22 kW. The charging efficiency is fitted to 

data of a simple wall box from GE and data from a bi-

directional AC charger by Kwon et al. [40, 41]. The 

obtained nominal efficiency of the charger is 91.9 % 

and is in accordance with the literature [42, 43]. 

Thereby, the overall energy demand of the eWCV and 

dWCV is defined with a timestep of one second: 

𝐸𝑑𝑊𝐶𝑉 =∑ 𝑃𝑑𝑊𝐶𝑉,𝑖𝑛(𝑡) ·
1

3600

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

 (14) 

𝐸𝑒𝑊𝐶𝑉

=∑
𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒(𝑡) −⁡𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑐ℎ𝑎𝑟𝑔𝑒(𝑡)

𝜂𝑏𝑎𝑡𝑡𝑒𝑟𝑦 · 𝜂𝑏𝑎𝑡𝑡𝑒𝑟𝑦⁡𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 · 𝜂𝑐ℎ𝑎𝑟𝑔𝑒𝑟

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

·
1

3600
 

(15) 

 Route synthetization 

For the definition of the vehicle mechanical power 

demand, its speed and acceleration profiles need to be 

defined. Further information about the number of 

collected waste container, number of stops and mass 

of collected waste are important input parameters for 

the body model. 

Real-time data acquisition of the vehicle speed and 

acceleration profiles via GPS tracking can only be 

integrated in few cases, as it is associated with a high 

measurement effort and is often conflicting with data 

protection guidelines. Instead, the current study uses 

operational data from three vehicles in one-shift 

operation for a timeframe of six months, which were 

provided by a waste management company situated in 

Berlin, Germany and form the basis for the following 

synthetic route modeling approach. They cover five 

different route types, which consist of 387 different 

day tours collecting one single waste fraction. The 

operational data consist of customer billing addresses, 

the number of waste containers per billing address and 

the mean collected waste mass per vehicle. The 

operational data covers typical routes of an urban 

waste collection fleet, which are clustered into 

following types: 

- Tour 1 – High-rise building area 

- Tour 2 – Single family house area 

- Tour 3 – City center area 

- Tour 4 – Mixed building area (long distance tour) 

- Tour 5 – Mixed building area (short distance 

tour) 

For simplicity and due to data limitations, no 

distinction is made for the collected mass per container 

and between different container sizes. Influence of 

traffic or individual driving styles is also not 

considered with this modeling method. The 

operational routine of a day route is divided into 

transfer drive from / to the recycling hub to / from the 

collecting area and the collection drive itself. It is 

comparable to the approach given by Nguyen and 

Wilson, who divide the waste collection trip into three 

steps, each with different consumption behaviour: ‘(1) 

travelling outside collection areas; (2) idling in front 

of each household while waste is loaded, while 

preparing at the garage in the morning or at the end 

of the day and while queuing to unload waste at 

transfer stations; and (3) while travelling within an 

assigned collection area’ [13, p. 291]. For the energy 

demand simulation, the distance of each drive phases 

is needed to synthesize the route profile. As the given 

billing addresses are not in real-life route order a route 

optimization is conducted to identify route phase 

distances for each individual day tour. Tour start and 

end point is at the recycling hub where the collected 

waste fraction is dumped.  

Many different Vehicle Routing Problems (VRP) 

exist, from which the current problem presents a 

simple Traveling Salesmen Problem (TSP). Vehicle 



 

visiting points are fixed and constraints such as vehicle 

capacity or time windows are not taken in account, as 

it is assumed that operational data considered this 

already. Optimization is conducted with the objective 

of shortest paths for the vehicles. In contrast Ewert et 

al. generate a synthetic demand which draws on more 

general data, e. g. spatial information and not 

operational data, and therefore need to define a time- 

and weight-constrained routing problem [23]. 

The following equations represent a simplified general 

mathematical definition of the TSP problem. For 

simplification multiple constraints, which guarantee 

the validity of identified routes, are not presented. 

Given is a set of 𝑛 route stops enumerated 

0,1,2, … , 𝑛˗1 which shall be approached with the 

distance between each pair of route stops 𝑖 and 𝑗 
defined as 𝑐𝑖𝑗 . The decision variable is further defined 

as 𝑦𝑖𝑗 with the following objective function: 

𝑦𝑖𝑗

= {
1, 𝑖𝑓⁡𝑟𝑜𝑢𝑡𝑒⁡𝑠𝑡𝑜𝑝⁡𝑗⁡𝑖𝑠⁡𝑣𝑖𝑠𝑖𝑡𝑒𝑑⁡𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑙𝑦⁡𝑎𝑓𝑡𝑒𝑟⁡𝑠𝑡𝑜𝑝⁡𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(16) 

min⁡∑∑𝑐𝑖𝑗
𝑗𝑖

· 𝑦𝑖𝑗  (17) 

For solving the TSP, the Open-source Routing 

Machine (OSRM)4 and the Vehicle Routing Open-

source Optimization Machine (Vroom)5 are used. 

OSRM is a C++ routing engine based on 

OpenStreetMap data to compute route distances, 

Vroom works on top of it and provides the routing 

optimization. There is a full OSRM integration 

provided by Vroom. This infrastructure is not limited 

to TSP and can also solve Capacitated Vehicle Routing 

Problem (CVRP) and Vehicle Routing Problem with 

Time Windows (VRPTW). Vroom solvers are based 

on Christofides heuristic (TSP) and Solomon I1 

heuristics (CVRP and VRPTW) [44, 45, 46]. TSP 

heuristic is based on The Nearest Neighbour Method 

[47]. For the present study the software package 

Docker Desktop was used to implement an own local 

server infrastructure with OSRM and VROOM web 

API in order to overcome OSRM server restrictions. 

After setting the billing addresses into optimal route 

order the driving distance of each drive phase could be 

determined (the transfer drive from the recycling hub 

to the collecting area, the collection drive and the 

transfer drive from the collecting area to the recycling 

hub). In the following, speed, acceleration and body 

profiles are synthesized. Standard travel profiles are 

used for the transfer drives. The Worldwide 

harmonized Light vehicles Test Procedure class 1 is 

used, which was developed for the determination of 

exhaust gas emissions and fuel / electricity demand 

[48]. The standard profile covers a distance of 

3323.8 m and involves values for vehicle speed and 

acceleration with a resolution of one second. In case of 

a longer identified transfer drive of the WCV of a day 

 
4 http://project-osrm.org/  

tour than the standard profile, a multiplicate of the 

profile is used. In case of a shorter transfer drive only 

a subsection is used. 

For the collection drives first of all the number of 

WCV stops per day tour is identified. The minimum 

distance for an individual start/stop of the WCV 

between two billing addresses is set to 30 m. If two 

addresses are closer to each other than this distance, 

they are served together as one WCV stop. This is also 

within the range of the mean distance between two 

stops as determined by Knoke [19]. The waiting time 

of the vehicle for the collection and transport of waste 

container to the vehicle body is fixed and set to 40 s. 

A speed trapezoidal model is assumed between to 

WCV stops, which is a common and proved approach 

[49]. Constant acceleration / deceleration of 0.60 m s- 2 

and a maximum speed of 30 km h-1 are used [18]. For 

simplification and the reduction of computing time, 

the stops in the final synthesis of the speed and 

acceleration profiles are divided evenly over the entire 

collection phase. The body profile defines the time of 

body deployment during a WCV stop, which is 

dependent on the number of waste container per stop 

and based on the assumption of a static energy demand 

of 90 Wh per duty cycle and waste container and a 

static body output power. 

 Total cost of ownership 

The TCO analysis follows a standard methodology to 

summarize all occurring costs of a vehicle during its 

lifetime. This study uses the approach described in 

[50] adding the framework of Well-to-Wheel 

greenhouse gas (GHG) emissions costs. As the costs 

are related to different moments in time they need to 

be transferred to their present value. 

To calculate the present value of one-time costs and 

recurring costs occurring in the future following 

equations are used: 

𝑃𝑉𝑜𝑛𝑒−𝑡𝑖𝑚𝑒(𝐶(𝑡)) = 𝐶(𝑡) ·
1

(1 + 𝑟)𝑇
 (18) 

𝑃𝑉𝑟𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔(𝐶(0)) = 𝐶(0) ·
(1 + 𝑟)𝑇 − 1

𝑟 · (1 + 𝑟)𝑇
 (19) 

where 𝑃𝑉𝑜𝑛𝑒−𝑡𝑖𝑚𝑒 is the present value of future one-

time costs [€] with 𝐶(𝑡) being the one-time costs at the 

time 𝑡, 𝑃𝑉𝑟𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔  is the present value of future 

recurring costs [€] with 𝐶(0) being the amount of 

annual recurring costs [€], r is the real discount rate 

and 𝑇 the time in years. 

The current study considers investment costs, 

maintenance and operation costs and residual costs. A 

nominal interest rate of 5 % and inflation rate of 2 % 

is assumed, which leads to a real discount rate of 

2.9 %. This is a conservative assumption, as current 

economic parameters show more lucrative conditions. 

Nevertheless, it shall represent long-term and risk-

5 http://vroom-project.org/  

http://project-osrm.org/
http://vroom-project.org/


 

included financing interest rates of companies and is 

in agreement with current studies [51]. WCV 

investment costs are set within the boundaries of cited 

literature [26, 27, 28, 29]. Table 2 gives an overview 

of all considered cost assumptions. In comparison, 

Ewert et al. assume an interest rate of 4 % and a 

vehicle lifetime of 10 years, but did not consider that 

eWCV maintenance are likely to be lower than for 

dWCV [23]. 

The annual mileage and distance-specific energy 

demand of eWCV and dWCV is based on the mean 

value of the energy demand simulation of all daily 

routes and projected to an annual operation. The final 

TCO is calculated according to following equations: 

 
𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 = 𝐶𝐶⁡𝑊𝐶𝑉 − 𝐶𝐶⁡𝑠𝑢𝑏𝑠𝑖𝑑𝑦.⁡⁡𝑊𝐶𝑉 + 𝐶𝐶⁡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 

(20) 

𝑃𝑉𝑜𝑚𝑐⁡ = 𝑃𝑉𝑟𝑒𝑐𝑢𝑟𝑟𝑖𝑛𝑔(𝑜𝑚𝑐𝐹𝑢𝑒𝑙 · 𝐸𝑊𝐶𝑉) + 𝑜𝑚𝑐𝑊𝐶𝑉

· 𝑀𝑊𝐶𝑉 + 𝑜𝑚𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 𝑜𝑚𝑐𝑇𝑎𝑥
+ 𝑜𝑚𝑐𝐼𝑛𝑠𝑢𝑟 

(21) 

𝑃𝑉𝑅𝐸𝑆⁡ = 𝑃𝑉𝑜𝑛𝑒−𝑡𝑖𝑚𝑒(𝐶𝐶⁡𝑊𝐶𝑉 · 𝑑𝑒𝑝𝑊𝐶𝑉
𝑇 ) 

(22) 

𝑇𝐶𝑂 = 𝑃𝑉𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 + 𝑃𝑉𝑜𝑚𝑐⁡ − 𝑃𝑉𝑅𝐸𝑆⁡ 
(23) 

where 𝐶𝐶⁡𝑊𝐶𝑉 is investment costs for the WCV [€], 

𝐶𝐶⁡𝑠𝑢𝑏𝑠𝑖𝑑𝑦.⁡⁡𝑊𝐶𝑉 the state subsidy for the vehicle 

purchase [€], 𝐶𝐶⁡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 the investment costs for the 

22 kW AC charging infrastructure [€], 𝑜𝑚𝑐𝐹𝑢𝑒𝑙  the 

energy costs [€·kWh-1], 𝐸𝑊𝐶𝑉 the annual WCV energy 

demand [kWh], 𝑜𝑚𝑐𝑊𝐶𝑉 the specific WCV 

maintenance cost [[€·km- 1], 𝑀𝑊𝐶𝑉  the WCV annual 

mileage [km] and 𝑜𝑚𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 𝑜𝑚𝑐𝑇𝑎𝑥 + 𝑜𝑚𝑐𝐼𝑛𝑠𝑢𝑟  

the annual costs for charging maintenance, taxes and 

insurance [€·a-1]. 

 

Two methods are implemented for the TCO evaluation 

of eWCV and dWCV. First, the simple difference in 

the TCO between eWCV and dWCV is calculated, 

according to the following equation: 

 
△ 𝑇𝐶𝑂 = 𝑇𝐶𝑂𝑒𝑊𝐶𝑉 − 𝑇𝐶𝑂𝑑⁡𝑊𝐶𝑉 

(24) 

Second, the virtual costs of the saved Well-to-Wheel 

greenhouse gas (GHG) emissions are calculated 

according to the following equations: 

 
𝐸𝑀𝑊𝐶𝑉 = 𝑒𝑚𝑓𝑢𝑒𝑙 · 𝐸𝑊𝐶𝑉 · 𝑇 

(25) 

𝐶𝑜𝑠𝑡𝑠𝐶𝑂2,𝑒𝑞𝑠𝑎𝑣𝑒𝑑 =
𝑇𝐶𝑂𝑒𝑊𝐶𝑉 − 𝑇𝐶𝑂𝑑𝑊𝐶𝑉

(𝐸𝑀𝑑𝑊𝐶𝑉 − 𝐸𝑀𝑒𝑊𝐶𝑉)⁡
 (26) 

where 𝐸𝑀𝑊𝐶𝑉 are the overall Well-to-Wheel GHG 

emissions resulting from WCV fuel demand during the 

considered timeframe, 𝑒𝑚𝑓𝑢𝑒𝑙  are the specific Well-to-

Wheel GHG emissions of the WCV fuel [g 

CO2,eq·kWh-1 ], 𝑇 the time in years and 

𝐶𝑜𝑠𝑡𝑠𝐶𝑂2,𝑒𝑞𝑠𝑎𝑣𝑒𝑑 are the virtual costs of the saved 

GHG emissions through the implementation of an 

eWCV. 

 

As eWCV investment costs and the considered 

specific Well-to-Wheel GHG emissions of the 

electricity used have a high impact on the TCO 

analysis two further scenarios are defined according to 

Table 3. Specific GHG emission for diesel are 

calculated to be 566 g CO2,eq·kWh-1 based on [55, 56, 

57]. For the year 2018, GHG emissions for electricity 

in Germany are estimated at 473 g CO2,eq·kWh-1 [23]. 

Both emission factors are considered for the scenario 

Base using the economic assumption highlighted in 

Table 2. Scenario 1 assumes eWCV charging with 

renewable energy electricity, which results in specific 

GHG emissions of 25 g CO2,eq·kWh-1 [23]. Scenario 2 

considers reduced eWCV investment costs of 

420,000 €, which corresponds to the factor 2 of the 

dWCV investment costs. 

 

Table 2: Parameters for the TCO calculation for the eWCV and dWCV of the base scenario as given in [34], [52], [53], [54]. 

Parameter  Unit dWCV eWCV 

Investment costs WCV  𝐶𝐶⁡𝑊𝐶𝑉 [€] 550,000 210,000 

Investment costs charging 𝐶𝐶⁡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 [€] - 1,000 

State subsidy WCV 𝐶𝐶⁡𝑠𝑢𝑏𝑠𝑖𝑑𝑦.⁡⁡𝑊𝐶𝑉 [€] - 40,000 

Annual depreciation WCV 𝑑𝑒𝑝𝑊𝐶𝑉 [%·a-1] 82.7 78.6 

Fuel (diesel/electricity) costs 𝑜𝑚𝑐𝐹𝑢𝑒𝑙  [€·kWh-1] 0.179 0.105 

Spec. energy demand WCV 𝐸𝑊𝐶𝑉 [kWh·km-1] 5.0512 1.7322 

Maintenance costs WCV 𝑜𝑚𝑐𝑊𝐶𝑉  [€·km-1] 0.50 0.325 

Mileage WCV 𝑀𝑊𝐶𝑉 [km·a-1] 13,010 13,010 

Maintenance costs charging  𝑜𝑚𝑐𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 [€·a-1] - 350 

Tax costs  𝑜𝑚𝑐𝑇𝑎𝑥 [€·a-1] 556 - 

Insurance costs 𝑜𝑚𝑐𝐼𝑛𝑠𝑢𝑟  [€·a-1] 2,000 2,000 

Real discount rate 𝑟 [1] 0.029 0.029 

Lifetime / TCO observation period 𝑇 [a] 10 10 

 

 



 

Table 3: Parameters for the TCO analysis of the scenario 1 and 2. 

Parameter  Unit 
Scenario 

Base 
Scenario 1 Scenario 2 

Investment costs eWCV  𝐶𝐶⁡𝑒𝑊𝐶𝑉 [€] 550,000 550,000 420,000 

Investment costs dWCV  𝐶𝐶⁡𝑑𝑊𝐶𝑉 [€] 210,000 210,000 210,000 

Specific GHG emissions electricity 𝑒𝑚⁡𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑡𝑦  [kg CO2,eq·kWh-1 ] 0.473 0.025 0.473 

Specific GHG emissions diesel 𝑒𝑚⁡𝑑𝑖𝑒𝑠𝑒𝑙  [kg CO2,eq·kWh-1 ] 0.556 0.556 0.556 

3 Results and discussion 

The results and discussion section presents the 

obtained results of the route synthetization, the energy 

demand simulation and the TCO of the analysed 387 

different waste collection day tours. Each simulation 

run comprises of one day tour for a full 8 hours shift 

with a temporal resolution of one second. 

Route Synthetization 

Based on the route optimization of the billing 

addresses the optimal address order could be 

identified and the individual route driving distances 

for the transfer and collection drive phase can be 

determined for the synthetization of the speed, 

acceleration and body profiles. Figure 1 show maps 

of sample day tours of the identified routes of all five 

examined route types. Maps are generated using the 

tool OSMnx for the representation of street networks 

[58]. Blue lines represent the route phase of transfer 

drive, while red lines the collection drive, 

respectively. The red circle shows the location of the 

recycling hub. 

 
 

 

Figure 1: Sample day tours of the identified routes of all examined tour types, in the upper left map Tour 1 is located at the top of 

the map, while Tour 3 in the middle. 



 

 

Figure 2: Total route distance, number of stops, number of waste containers and waste mass for each tour type (Boxplot: x is 

representing arithmetic mean and black line median value). 

An overview of the characteristics and main 

parameters identified for the five route types is shown 

in Figure 2. The total distance (sum of transfer and 

collection drive), the number of stops and waste 

containers and the assumed collected waste mass per 

day route are presented. The average ratio of the 

transfer and collection drive distance is 6 % / 94 % 

(Tour 1), 24 % / 76 % (Tour 2), 42 % / 58 % (Tour 3), 

9 % / 91 % (Tour 4), 15 % / 85 % (Tour 5). Across all 

tour types the average is 20 % / 80 %. It is obvious that 

the presented tour types differ in their characteristics. 

Tour 1 is characterized by very short transfer drive and 

a high number of waste containers and waste mass 

collected, while Tour 2 shows a long transfer drive and 

a low number of collected waste containers and overall 

waste mass. 

Energy Demand Simulation 

Figure 3 shows the distribution of the specific and total 

energy demand of the eWCV and dWCV without any 

distinction between the examined route types. For the 

eWCV, the energy losses through the charging 

infrastructure are included and thus represents the 

electricity demand from the grid, while for the dWCV 

the energy content of the diesel demand is presented. 

The mean absolute and specific values of the two 

vehicle types are 87 kWh / 1.85 kWh·km-

1 / 16.22 kWh·t-1 for the eWCV and 

255 kWh / 5.43 kWh·km-1 / 47.14 kWh·t-1 for the 

dWCV. Based on these results the total energy demand 

of the simulated eWCV lies around 66 % below that of 

the dWCV. This difference is due to the higher 

efficiency of the electrified drivetrain and vehicle 

body and recuperation potential. The variation of the 

energy demand within each vehicle type represented 

through the boxplots reflects the high impact of route 

type specification on the energy demand.  

The average diesel demand stated by the waste 

disposal company for the considered day routes in this 

study is around 52 l·100 km-1 / 5.04 kWh·km-1 for the 

dWCV fleet, which is only 7 % below the mean 

simulation result of 56 l·100 km-1 / 5.43 kWh·km-1. A 

more detailed validation process with a day route 

specific diesel consumption is not possible due to data 

limitations. Reference studies for the energy demand 

of eWCV and dWCV also show comparable values to 

the presented results. Larsen et al. measured a mass-

specific diesel consumption between 1.4 and 10.1 l 

diesel·twaste
-1, which differs according to analyzed 

collection schemes. A WCV manufacturer states a 

mean energy demand of 50-60 l·100 km-1 / 5.15-

6.19 kWh·km-1 for a dWCV and 2.03-2.64 kWh·km-1 

for eWCV [34]. Nagel et al., who also cite a WCV 

manufacturer, state a mean value of eWCV of 

1 kWh·km-1 [26], Erdinç et al. give 0.86 kWh·km-1 

[25], while Gräbener found a value of 2.23 kWh·km-1 

[22]. While it is obvious that cited literature values are 

within the range of the presented energy demand 

simulation results, eWCV studies lack a more detailed 

description of the energy demand distribution. It also 

becomes clear that mean values for the energy demand 

of WCV has limited significance for a feasibility 

analysis, as vehicle performance shows large 

fluctuation within and between different route types. 

 

Figure 3: Specific and total energy demand of the examined WCV types. 



 

 

Figure 4: Absolute, distance-specific and waste mass-specific total energy demand of eWCV. 

Figure 4 shows the total energy demand and the 

distance-specific and waste mass-specific energy 

demand of the eWCV on all routes examined. In 

combination with the underlying route parameters, the 

influence of the total route distance and the number of 

collected mass containers on the total and specific 

energy demand can be analyzed. Route 4 shows a high 

total energy demand and is characterized by a high 

tour distance and number of containers, while route 5 

shows a low total energy demand with short tour 

distance and small number of containers. In regard to 

the specific energy demands, route 2 shows the overall 

minimal distance-specific value with 1.08 kWh·km-1 

and the maximum mass-specific energy with 

26.02 kWh·kg-1, while route 1 includes the overall 

maximum distance-specific value with 2.96 kWh·km-

1 and the minimal mass-specific with 9.29 kWh·kg-1. 

Route 2 shows high travel distances and a low number 

of waste containers, while route 1 comprises short 

travel distances and a high number of waste containers 

and collected waste mass. This reveals that the total 

and specific energy demand of a WCV is highly 

influenced by these two route factors, and can 

therefore vary widely between different day tours. 

Larsen et al. also highlighted a variation in energy 

demand connected to the respective area, the route 

distance and the amount of waste collected [12]. 

Figure 5 presents the distribution of the total energy 

requirement across the different route phases (transfer 

and collection drive) as well as the operation mode 

(body aggregates and propulsion) of all examined 

route types for the eWCV. These performance factors 

also correlate strongly with the structure of the route 

data. The mean share of energy used for the transfer 

drive is 12 % and 88 % for the collection drive. In case 

of dominating transfer drive route types (route 2 and 

3), the share of energy used for transfer drive 

increases, although never exceeding 26 %. The mean 

share of energy used for body aggregates is 39 % and 

61 % for propulsion. It rises to 56 % (route 1) in case 

of a high number of waste container and mass 

collected in combination with a short travel distance. 

[30] gives a ratio for the work aggregate of 32 % of the 

total energy demand, which is in correlation with the 

presented results. Consequently, the energy demand is 

dominated by the collection drive. eWCV show 

promising advantages to minimize energy demand, as 

they have the potential to recuperate braking energy 

and show improved motor efficiency during the 

collection phase with a high number of start/stop 

movements. Further energy savings could be 

implemented with improved body configurations, 

which is currently considered by some eWCV 

manufacturers [34]. 

Figure 6 displays the total energy demand of all 

vehicle day tours and its variation compared to the 

base case, dependent on three sensitivity parameters. 

Analyzed parameters are the drivetrain efficiency 

(equation (6)), battery efficiency (values only 

decreased and no power dependency considered, 

compare equation (12) and (13)) and duty cycle energy 

demand. The change in total energy demand shows a 

linear correlation on the analyzed parameter range, 

while the resulting distribution of the day tours is not 

affected by the parameter variation. The duty cycle 

energy demand shows a minor influence, with a 

maximum change in the total energy demand of 

8.7 %.The drivetrain efficiency shows a maximum 

change in the total energy demand of 6.4 % and the 

battery of 11.6 %. The battery efficiency has the 

highest impact, as the battery powers the vehicle 

traction and body. 

 

The energy demand simulation shows a maximum 

battery capacity usage of the eWCV including 

recuperated energy of all examined day tours of 

111 kWh, while the mean value lies at 80 kWh. 

Recuperation energy has a mean share of 25 %. Nagel 

et al. show a maximum energy demand of 142 kWh 

[24]. The considered 200 kWh battery with the 

assumed charge/discharge boundaries leaves a 

theoretical rest capacity of 104 kWh at the End of Life 

with a State of Health of 80 %. 7 % of all considered 

routes, i.e. all routes of route type 4, could therefore 

not be operated according to the above assumptions. 

Battery capacity usage therefore needs to be analyzed 

in dependency on the operated eWCV routes to 

guarantee an interruption-free operation. eWCV with  



 

 

Figure 5: Division of total energy demand according to route phase (left) and operation mode (right) of eWCV.

a higher battery capacity are available, and the cited 

WCV manufacturer plans to increase battery capacity 

to 264 kWh with their 2nd battery version [34]. 

Charging times for the eWCV battery with the 

considered 22 kW charger (20.1 kW charging power 

after losses of charger, BMS and battery) fluctuate 

between 2.5 and 5.5 h due to the different energy 

demands of the examined routes. Vehicle loading 

times play an important role in the management of 

potential future eWCV fleets. The routes considered in 

the present study are processed in one-shift operation. 

This means that the vehicles are only in use for 

approximately eight hours a day, which leaves enough 

time to charge the battery overnight. In the case of a 

two-shift operation, the vehicle batteries must either be 

dimensioned large enough to accomplish both shifts, 

or an intermediate fast-charge mode would be 

necessary. Further studies should be conducted 

regarding the ageing of the vehicle battery and its 

performance in respect to its usage cycles and charging 

concepts, which is not the objective of this study. 

The presented results of the energy demand 

calculation are in the range of literature values, and 

dWCV results could be validated with real-life mean 

diesel consumption of dWCV. Nevertheless, further 

validation with real-life data such as diesel 

consumption of specific day routes or route profile 

data (e.g. velocity, acceleration, engine speed) could 

increase overall accuracy of the presented method, this 

is the case in the approach taken by Bender et al. [17] 

and will be the objective of future research.  

In comparison to generic energy demand simulation 

approaches using a tour synthetization with 

demographic properties and the spatial street layout 

(compare Ewert et al. [23]), the presented method 

relies on vehicle and route specific operational data. 

Possible optimization uncertainties for the generation 

of optimal operational points are therefore reduced. 

GPS based route synthetization (compare Erdinç et al. 

[25]) can achieve even higher accuracy but are limited 

by the number of analysed routes due to high 

measurement effort.  

 

Figure 6: Sensitivity analysis with variation of drivetrain efficiency, battery efficiency and duty cycle energy demand. Total 

energy demand is presented in boxplots combined with blue violin plots showing the distribution of all day tours, total energy 

demand variation in percentage is shown with red circles. 

Total cost of ownership 

Absolute values for the TCO calculation of the 

scenario Base are 567,239 € for eWCV with annual 

CO2,eq Well-to-Wheel emissions of 11.4 t CO2,eq·a-1, 

while TCO calculations for dWCV show 325,854 € 

with 39.3 t CO2,eq·a-1. Literature values using a 

comparable approach to analyze TCO of WCV could 

not be located. Therefore, the values cannot be set in 

comparison to other calculations. Figure 7 presents the 

difference in the TCO between eWCV and dWCV as 

a function of electricity price, diesel price and annual 

mileage, without considering possible Well-to-Wheel 

CO2,eq emission costs. While the TCO values for 

eWCV are above those for dWCV, the spread between  



 

 

Figure 7: Difference in TCO between eWCV and dWCV as a function of diesel price, electricity price and annual mileage 

without the consideration of possible emission costs. 

both shows high sensitivity regarding diesel price and 

annual mileage. The lowest difference is achieved with 

a high annual mileage and diesel price. However, even 

with a mileage of 30,000 km (approximately 

corresponding to two-shift operation) and a diesel 

price of 2.00 €·l-1, a TCO difference of 38,064 € 

remains. 

Due to the high sensitivity of diesel price and mileage, 

these two factors are examined further. Figure 8 shows 

the virtual costs of saved Well-to-Wheel CO2,eq 

emissions through the electrification of a dWCV for 

all three scenarios (compare Table 2 and Table 3) as a 

function of these two sensitivity factors. In its Climate 

Protection Program 2030 (Klimaschutzprogramm 

2030), the German government defines a fixed CO2,eq 

emission price of 25 €·t-1 in 2021, which shall rise to 

55 €·t-1 in 2025 and is indicated in the figure with the 

dashed black line [59]. The base scenario reveals that 

with current economic constraints no economic use 

case can be identified. Even in the case of diesel prices 

rising to approximately 2.00 €·l-1 and an annual 

mileage of 30,000 km, identified costs for saved CO2,eq 

emissions of 58 €·t-1 are still above the 2025 price. 

Using the parameter given in Scenario 1, eWCV can, 

at least in the mid-term, become an economical 

advantageous solution with costs for saved CO2,eq 

emissions amounting to 42 €·t-1. The greatest potential 

for economic feasibility is given in Scenario 2, under 

which the 2021 CO2 emission price of 25 €·t-1 is 

achieved even with a diesel price of about 1.30 €·l-1 

and an annual mileage of 30,000 km. A CO2 emission 

price mechanism shows high potential for economic 

regulation to create economical advantageous 

pathways towards an electrification of WCV. With 

current economic constraints, the electrification of 

WCV is accompanied by slightly higher costs. Cost 

benefits become achievable with the implementation 

of an effective emission cost mechanism, an increasing 

share of renewable electricity, and reduced eWCV 

investment costs, for example via potential future mass 

market production or state subsidies.  

The presented innovative TCO approach shows 

compared to the standard TCO methodology (compare 

Ewert et al. [23]) additional costs associated with the 

analysed fuel switch and directly integrates emission 

price mechanisms. Therefore, necessary measures per 

vehicle can be better identified and used by decision 

makers. The presented energy demand simulation and 

TCO method is therefore a simple and accurate 

possibility for WCV fleet operators to analyse their 

fleet and possible fuel switch scenarios.  

 

Figure 8: Difference in TCO between eWCV and dWCV as a function of mileage for all three considered scenarios, black dashed 

line indicates CO2,eq emission price of 55 €·t-1.



 

4 Conclusion 

Electrification of WCV can be a promising solution for 

the decarbonization of the municipal waste transport 

sector. Through a simulation-based approach of 387 

real-life WCV operation tours, this study shows that 

relevant energy savings can be achieved with the 

implementation of eWCV. The total and specific 

energy demand varies between and within route types 

and is highly influenced by route distance and number 

of containers and thus by overall waste mass collected. 

Further, it is dominated by the collection drive, where 

eWCV have promising advantages through the 

possibility of recuperation and improved motor 

efficiency. For this reason, mean energy demand 

values have only limited validity. Vehicle battery 

capacity needs to be carefully dimensioned according 

to operating routes and fleet management. In general, 

however, currently available eWCV configurations 

can fully serve the examined one-shift route profiles. 

For eWCV range expansion further energy savings are 

necessary, which could be achieved through improved 

body configurations or by adapting container 

collection as the relaunch of collection points. In 

Particular, two-shift operation needs to be further 

analysed for an optimal fleet hub management, which 

includes charging infrastructure and time scheduling. 

As two-shift operation is not always considered by 

waste management companies, the transition to this 

system might increase the economic feasibility of 

eWCV in case of an extensive vehicle usage. Noise 

emissions of eWCV are considerably lower than for 

dWCV; this offers more options to spread the 

collection periods over the day, which is in favour of a 

two-shift operation [60]. Influence of different waste 

fractions on energy demand were not analysed. As 

studies show, these have a high relevance for the 

energy demand analysis [12]. 

The economic analysis shows that the TCO of eWCV 

are higher than for dWCV under current economic 

constraints, but that economical advantageous 

pathways for an electrification of WCV are possible. 

High sensitivity regarding fuel price and vehicle 

annual mileage could be identified. Combined with an 

effective emission price mechanism, reduced eWCV 

investment costs or CO2,eq electricity emissions can 

bring the TCO of eWCV below that of dWCV. 

Manufacturers of eWCV and batteries could likely cut 

down investment prices through mass market entry, 

while political instruments such as subsidies and other 

price mechanisms should be implemented even further 

to open economic electrification pathways in the short-

term. This also includes the structure of the electricity 

price in Germany concerning taxes and fees, especially 

for renewable energies. Regardless of the development 

of price mechanisms, costs savings can be achieved 

using the available possibilities to participate in the 

electricity balancing market as well as opportunities 

given by the waste treatment processes. Further 

research in this topic has been conducted and will be 

published in the near future. 

The proposed methodology is a practical approach for 

forecasting energy demand and costs of eWCV and 

can give decision makers valuable information 

concerning moving from diesel- to electric-driven 

WCV. Nevertheless, the energy demand simulation 

uses several assumptions for technical parameters, 

which can vary dependent on WCV and battery 

products and further technology development. The 

sensitivity analysis shows the influence of some 

parameter but cannot provide an extensive analysis. 

But the open-source approach of this methodology 

shall give the scientific community the chance to 

incorporate future results and technical knowledge in 

order to reduce uncertainty in the assumptions made. 

The simulation results can only be validated with a 

mean real-life diesel consumption. This could be 

improved by validating the simulation and optimize 

parameter assumptions with real-life measurements 

for dWCV and eWCV, which is the objective of future 

research. It is intended, that a future project shall build 

on the results of the study ‘Grid-beneficial Integration 

of Hybrid Waste Collection Vehicles’ and involves 

real-life testing of eWCV and vehicle-to-grid and grid-

to-vehicle application. Beside this the developed 

simulation tool shall be extended with fuel cell driven 

WCV in order to compare current decarbonization 

pathways for WCV. 

At this point, this study can deliver a valuable 

contribution to the simulation and determination of 

WCV energy demand in daily operation based on an 

open-source energy demand simulation including a 

route synthetization approach. It can be used as basis 

for further scientific or industry studies on the 

electrification of WCV fleets.  
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