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Abstract: In order to make a warden, Willie, unaware of the existence of meaningful communications,
there have been different schemes proposed including covert and stealth communications.
When legitimate users have no channel advantage over Willie, the legitimate users may need
additional secret keys to confuse Willie, if the stealth or covert communication is still possible.
However, secret key generation (SKG) may raise Willie’s attention since it has a public discussion,
which is observable by Willie. To prevent Willie’s attention, we consider the source model for
SKG under a strong secrecy constraint, which has further to fulfill a stealth constraint. Our first
contribution is that, if the stochastic dependence between the observations at Alice and Bob fulfills
the strict more capable criterion with respect to the stochastic dependence between the observations
at Alice and Willie or between Bob and Willie, then a positive stealthy secret key rate is identical
to the one without the stealth constraint. Our second contribution is that, if the random variables
observed at Alice, Bob, and Willie induced by the common random source form a Markov chain, then
the key capacity of the source model SKG with the strong secrecy constraint and the stealth constraint
is equal to the key capacity with the strong secrecy constraint, but without the stealth constraint.
For the case of fast fading models, a sufficient condition for the existence of an equivalent model,
which is degraded, is provided, based on stochastic orders. Furthermore, we present an example to
illustrate our results.

Keywords: secret key generation; source model; stealthy communications; covert communications;
channel resolvability; conceptual wiretap channel; stochastically degraded; stochastic orders

1. Introduction

Consider the following motivating example. Two agents, Alice and Bob, want to establish
a communication that does not raise the curiosity of a warden Willie, whose duty is to monitor if
there is any suspicious activity and also decrypts the data. In order to realize a confidential transmission
for such a scenario, we may adopt the following two steps. The first step is to make Willie unaware of the
existence of the meaningful communication, which is embedded in the messages intended to be delivered
to Bob. In contrast, in a meaningless communication, Bob does not care about the received signal, which is
only used to confuse Willie. If Willie can successfully detect the existence of the meaningful transmission,
then the second step is to use wiretap coding [1] to provide secrecy (or hidability [2]). There are two
main concepts to attain the goal of the first step: (1) communications with a stealth constraint [2,3] and
(2) communications with a covert constraint [2,4,5]. Both concepts make Willie unable to differentiate
between the existence or nonexistence of the meaningful transmission, solely according to the probability
distributions of his observations. More specifically, in the first concept, we transmit meaningful and
meaningless signals non-overlapped in time. Note that the meaningful signal is the one Alice wants
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to communicate with Bob, while the meaningless signal is used to confuse Willie. If well designed,
Willie cannot differentiate between those two signals, because the induced output distributions are close
(the closeness can be defined in several different ways, e.g., by total variational distance, divergence, etc.)
to each other. In the second concept, the meaningful signal can be superimposed on the meaningless
one. Under the stealth constraint, we can have a positive capacity, while the covert transmission rate
is zero, asymptotically. Even though the transmission rate of the second concept is in general zero,
asymptotically, the second order rate is positive following the square root law [5,6].

For the aforementioned two concepts, if the channel between Alice and Bob (denoted by Bob’s channel
in the following) is no better than the channel between Alice and Willie (denoted by Willie’s channel
in the following), we need additional keys to conceal the meaningful signals, e.g., [4,5]. In particular,
these additional keys are used to choose between codebooks to fool Willie. Our motivation is to
design an achievable scheme for the source model secret key generation (SKG) for the above scenario,
i.e., Bob has no channel advantage over Willie, while fulfilling both the security and stealth constraints,
simultaneously. Note that the keys generated from the stealthy SKG can also be used to protect the data
on top of concealing the behavior of transmission, e.g., encryption/one-time pad, etc. Note also that our
design goal is violated if we directly apply common SKG schemes [7]. This is because common SKG
schemes use public communications for several important operations including advantage distillation,
information reconciliation, and privacy amplification ([7] Chapter 4.3).Without subtle modifications,
these operations will raise Willie’s curiosity. To attain our objective, we focus on stealthy SKG, which is
from its counterpart, stealth communications [3]. The main reason not to consider covertness but stealth
for the SKG is that, under the assumption of a noiseless public discussion channel, there is no ambient
noise to hide the discussion signal. Instead, covert SKG may be feasible if there is a noisy public channel.
In addition, in general, the covert SKG suffers a sub-linear rate, e.g., [8], which is inherited from the covert
communications. Recall that a channel-model SKG with a rate-unlimited public channel was considered
in [8]. The authors applied the scheme from covert communication to the key transmission, while a
stealth-like public discussion was used.

The main contributions of this work are summarized in the following:

• We investigate a source-model SKG under strong secrecy with an additional stealth constraint.
• We derive an achievable secret key (SK) rate under the stealth constraint, if I(X; Y) ≥ I(X; Z),

where X, Y, and Z are the observations of the common randomness source at Alice, Bob,
and Willie, respectively. Moreover, if (X, Y, Z) form a Markov chain X − Y − Z, then the SK
capacity with the additional stealth constraint can be achieved without extra cost, compared to
the SKG without the stealth constraint.

• We prove that a sufficient condition to achieve the stealthy SK capacity can be relaxed from
the physically degraded channel to a stochastically degraded one.

• A sufficient condition for the existence of an equivalent degraded model is derived by the usual
stochastic order [9], which is for the fast fading Gaussian Maurer’s (satellite) model [10].

Notation: Lower case bold letters denote deterministic vectors, and upper case normal/bold
letters denote random variables/random vectors (or matrices), which will be defined when they are
first mentioned. We denote the probability mass function (pmf) by P. The entropy of X is denoted
as H(X). The mutual information between two random variables X and Y is denoted by I(X; Y).
The divergence between distributions PX and PY is denoted by D(PX ||PY). X ∼ F denotes that the
random variable X follows the distribution F, while F̄ , 1− F. The subscript i in Xi denotes the ith
symbol, and Xi , [X1, X2, · · · , Xi]. X − Y − Z denotes the Markov chain. d·e denotes the ceiling
operator. All logarithms are to base two. (a)+ , max(a, 0).

The rest of the paper is organized as follows. In Section 2, we introduce the preliminaries and
the considered system model. In Section 3, we derive our main results. Finally, Section 4 concludes
this paper.
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2. Preliminaries and System Model

2.1. Preliminaries

We first introduce some necessary definitions and results to develop our work.

Definition 1. The strong secrecy and the stealth constraints are respectively defined as:

D(PMZn ||PMPZn) ≤ ε,

D(PZn ||QZn) ≤ ε,

for arbitrarily small ε > 0, where M, Zn, PZn , and QZn are transmitted messages, the observed signal at Willie,
and the output distributions at Willie induced by meaningful and meaningless signals, respectively.

The second constraint in the above definition can be explained by hypothesis testing as discussed
in [3]. By this viewpoint, if the second constraint is fulfilled, the adversary’s best strategy is to blindly
guess whether the current transmitted signal is meaningful or meaningless.

Definition 2. Denote a common random source as (X ,Y ,Z , PXYZ), where X , Y , and Z are the alphabets
of the observations at Alice, Bob, and Willie. The random source is stochastically degraded, if the marginal
distributions PY|X and PZ|X are identical to those of another source of common randomness (X ,Y ,Z , PXỸZ̃)

following the physical degradedness, i.e., X− Ỹ− Z̃.

Corollary 1. The same marginal property for one transmitter ([11] Theorem 13.9) Consider a discrete
memoryless multiuser channel including one transmitter and two non-cooperative receivers with input
and output alphabets X and Y × Z , respectively. The capacity region of such a channel depends only on
the conditional marginal distributions PY|X and PZ|X and not on the joint conditional distribution PY,Z|X,
where X ∈ X and Y ∈ Y and Z ∈ Z are the transmit signal and the two receive signals, respectively.

Definition 3. δ-robust typicality ([12] Appendix)
The sequence xn ∈ X n is δ-robust typical for δ > 0:

T(n)
δ (PX) =

{
xn ∈ X n :

∣∣∣∣N(a|xn)

n
− PX(a)

∣∣∣∣ ≤ δPX(a), ∀a ∈ X
}

, (1)

where N(a|xn) is the number of occurrences of a in xn.

Definition 4. ([9] (1.A.3) For random variables A and B, A ≤st B if and only if F̄A(a) ≤ F̄B(a) for all a.

Let A =st A′ denote that A and A′ have the same distribution.

Lemma 1. Coupling [13]: A ≤st B if and only if there exists random variables Â =st A and B̂ =st B such
that Â ≤ B̂ almost surely.

2.2. System Model

The considered system model is shown in Figure 1. We denote the n-time source observations
at Alice, Bob, and Willie by Xn, Yn, and Zn, respectively, which follow the independent and identically
distributed (i.i.d.) joint distribution PXnYnZn = ∏n

i=1 PXiYiZi = ∏n
i=1 PXYZ with alphabets X , Y , Z ,

respectively. The public discussion between Alice and Bob through a noiseless channel is denoted by a
random vector Fn ∈ Fn. We consider the case without rate limitation on the public discussion channel.
Willie can perfectly observe Fn. The joint distributions of the signals that Willie can observe when the
SKG is meaningful and meaningless are denoted by PFnZn and QFnZn , respectively. Alice and Bob aim
at sharing keys K ∈ K satisfying the constraints as follows:
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Pe , Pr(K 6= K̂) ≤ ε, (2)

log |K| − H(K) ≤ ε, (3)

D(PKZn Fn ||PKPZn Fn) ≤ ε, (4)

D(PFnZn ||QFnZn) ≤ ε (5)

for arbitrarily small ε > 0, where (2) is the error probability having different keys at Bob from
Alice, (3) is the keys’ uniformity constraint, while |K| is the number of keys and (4) is the constraint
for the strong secret key, which is an adaptation from the stealth communication in Definition 1.
In particular, K is dual to M, and ZnFn is dual to Zn. The stealth constraint is considered in (5),
which is again an adaptation from Definition 1, i.e., here, FnZn is what Willie can observe, instead of
solely Zn in stealth communications.

A
Alice Bob

Willie

K KF

X Yn nn
Z

PXYZ

^

Is there SKG?

K^

n

Figure 1. The system model of the considered stealthy secret key generation (SKG).

Definition 5. The rate of the keys generated fulfilling (2)–(5) is called the achievable stealthy strong SK rate.

Definition 6. The maximum achievable stealthy strong SK rate is called the stealthy strong SK capacity.

3. Main Results

We show two main result in this section: (1) the stealthy strong SK rate and a condition to attain
the capacity; (2) a scheme to identify the fast fading Gaussian Maurer’s model as a degraded one,
so that the stealth SK capacity can be determined explicitly.

3.1. Stealthy Strong Secret Key Rate and Capacity

Our main result is described by the following theorem followed by discussions.

Theorem 1. If (X, Y, Z) drawn from the common random source (X ,Y ,Z , PXYZ), then the stealthy strong
SK capacity CSK of source model SKG with the stealth constraint can be bounded by:

max{I(X; Y)− I(X; Z), I(Y; X)− I(Y; Z)} ≤ CSK ≤ min{I(X; Y|Z), I(X; Y)}. (6)

Furthermore, if (X, Y, Z) forms a Markov chain X−Y− Z, the stealthy strong SK capacity is:

CSK = I(X; Y)− I(X; Z). (7)



Entropy 2020, 22, 679 5 of 14

3.2. Sufficient Conditions for a Degraded Common Randomness

In this section, we derive a sufficient condition to obtain CSK = I(X; Y)− I(X; Z). In particular,
we show that this sufficient condition, i.e., the common randomness forming a Markov chain X−Y−Z,
can be relaxed to be stochastically degraded. After that, we show that this relaxed condition can
be satisfied under a quite common setting by, e.g., the fast fading Gaussian Maurer’s (satellite)
model [10]. In particular, a central random source S0 emits signals passing through fast fading
additive white Gaussian noise (AWGN) channels, which are observed as X, Y, and Z at Alice, Bob,
and Willie, respectively.

Theorem 2. If a common random source (X ,Y ,Z , PXỸZ̃) is stochastically degraded such that PỸ|X = PY|X
and PZ̃|X = PZ|X , where X−Y− Z, then:

CSK = I(X; Y)− I(X; Z). (8)

The proof is delegated to Appendix C.
Example: Consider the fast fading Gaussian Maurer’s (satellite) model [10] as a special case of

Theorem 2:

X = AXS0 + NX , (9a)

Y = AYS0 + NY, (9b)

Z = AZS0 + NZ, (9c)

where NX , NY, and NZ are independent AWGNs at Bob and Willie, respectively, while both are with
zero mean and unit variance; AX, AY, and AZ follow CDFs FX, FY, and FZ, respectively, and are
the i.i.d. fast fading channel gains from the source S0 to Alice and Willie, respectively. Note that
intuitively, X, Y, and Z have no degradedness relation in general due to the random fading. This is
because, by the definition of degradedness, the trichotomy order of all realizations between the two
fading channels within a codeword length should be the same. We can invoke the same marginal
property [14] to construct an equivalent channel, wherein by imposing the usual stochastic order
constraint, we can identify those fading channels that can be re-ordered in the equivalent channel to
keep the trichotomy order fixed.

If the random channels AX and AZ fulfill F̄A2
X
(x) ≥ F̄A2

Z
(x) for all x, where the subscripts denote

the absolute square of the channel magnitudes, then from Lemma 1, we have equivalent (in the
sense of having the same stealthy SK capacity) observations at Bob and Willie as Ŷ = ÂXS0 + NY
and Ẑ = ÂZS0 + NZ, respectively, where Â2

X ≥ Â2
Z almost surely. Therefore, it is clear that

F̄A2
X
(x) ≥ F̄A2

Z
(x) is a relaxed sufficient condition to guarantee that Z is an equivalently stochastically

degraded version of Y.
Assume that AX and AZ in Equations (9a)–(9c) are fast fading magnitudes following the

Nakagami-m distribution with shape parameters mx and mz and spread parameters wx and wz [15],
respectively. From Theorem 2, we know that Z is a degraded version of X if:

γ

(
mx,

mx

wx
x
)

Γ(mz) ≥ γ

(
mz,

mz

wz
x
)

Γ(mx), ∀x,

where γ(s, x) =
∫ x

0 ts−1e−tdt is the incomplete gamma function and Γ(s) =
∫ ∞

0 ts−1e−tdt
is the ordinary gamma function. An example satisfying the above inequality is (mx, wx) = (1, 3)
and (mz, wz) = (1, 2).
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4. Conclusions

In this work, we analyzed the performance of the secret key generation from a common random
source, which satisfied the additional constraint that the generation of keys should not invoke
the warden Willie’s attention. Our results showed that compared to the normal SKG, the additional
stealth constraint could be fulfilled without extra cost. In particular, the stealthy SK capacity with
strong secrecy constraint is I(X; Y)− I(X; Z), if the common random source satisfies I(X; Y) ≥ I(X; Z).
To emphasize the practical relevance, a sufficient condition was derived to attain the degradedness
by the usual stochastic order for the Gaussian Maurer’s (satellite) model for the source of common
randomness under fast fading. As a final note, we can also use Slepian–Wolf coding with a proper use
of the binning code book to derive the same result.
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Appendix A. Proof of Theorem 1

Our main idea for deriving the lower bound of the SK capacity in the second scheme is by
constructing a conceptual WTC (CWTC) as in [16]. An equivalent wiretap codebook {Un(m, w)}
is constructed, where m = 1, · · · , L0, w = 1, · · · , L1, L0 , 2nR is the number of secure messages,
and L1 , 2nR1 is the number of confusion messages; m and w are uniformly and independently
selected; Un(m, w) ∈ X n, ∀(m, w). In addition, (Zn, Fn, Un) are generated according to PZn FnUn =

∏n
i=1 PZi FiUi = ∏n

i=1 PZi Fi |Ui
PUi , where we consider the equivalent channel from Alice to Willie as:

PZn Fn |Un =
n

∏
i=1

PZi Fi |Ui
, (A1)

where (Zn, Fn) is the equivalent channel output at Willie. Similarly, (Yn, Fn) is the equivalent channel
output at Bob. We choose Un mutually independent of Xn, Yn, and Zn.

In order to analyze the stealth, the respective distributions of the meaningful and meaningless
signals at the equivalent channel output at Willie are:

PZn Fn =
1

L0L1

L0

∑
m=1

L1

∑
w=1

PZn ,Fn |Un(zn, f n|un(m, w)), (A2)

QZn Fn = ∑
un

PZn ,Fn |Un(zn, f n|un)PUn(un). (A3)
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We first decompose the stealth secrecy constraint as follows:

D(PKZn Fn ||PKPZn Fn) +D(PZn Fn ||QZn Fn)

= ∑
K,Zn ,Fn

PKZn Fn

(
log

PKZn Fn

PKPZn Fn
+ log

PZn Fn

QZn Fn

)
= ∑

K,Zn ,Fn
PKZn Fn

(
log

PKZn Fn

PKQZn Fn

)
,D(PKZn Fn ||PKQZn Fn) (A4)
(a)
=D(PK||PK) +D(PZn Fn |K||QZn Fn |PK)

=D(PZn Fn |K||QZn Fn |PK), (A5)

where (a) follows the chain rule of divergence ([17] Th.2.2.2).
We then apply the channel resolvability analysis [18] to the CWTC, in order to find the rate

constraint on the confusion messages, in order to guarantee the validity of the stealth secrecy
constraint (A4).

From the analysis conducted in Appendix B, we know:

EC [D(PZn Fn |K||QZn Fn |PK)]≤EZn FnUn

[
log
(PZn Fn |Un

L1QZn Fn
+1
)]

. (A6)

Recall that L1 = 2dnR1e is the number of confusion messages inside each bin, and we need to design
it such that (A6) is vanishing. The main difference between our proof and that in [3] is that we introduce
an additional channel output at both Bob and Willie by constructing a CWTC for the considered SKG
model, which makes the results from [3] not able to be directly applied.

Now, we reexpress the ratio in the logarithm on the right-hand side (RHS) of (A6) as follows:

PZn Fn |Un

QZn Fn

(a)
=

PZn FnUn

PUn

1
PZn QFn

(b)
=

PZn FnUn

PZnUn

1
QFn

=
PFn |ZnUn

QFn
, (A7)

where (a) is due to the fact that Fn and Zn are independent when a meaningless discussion
is transmitted, which has a pmf denoted by QFn ; (b) comes the fact that Un is independent of Zn

by selection, i.e., PZnUn = PZn PUn .
Note that even though Zn and Fn are independent and Zn and Un are independent by

assumption, that does not mean Zn, Fn, and Un are necessarily generated according to PZn, Fn, Un =

PZn PFn, Un or PZn, Fn, Un = PZn PFn PUn . In fact, since pairwise independence does not imply mutual
independence ([19] Chapter 7.1, 7.2), there exists joint distribution PZn, Fn, Un such that we can invoke
tools from the joint asymptotic equipartition property [20].

Then, we can rewrite (A6) as follows:

EC [D(PZn Fn |K||QZn Fn |PK)] ≤ EZn FnUn

[
log
(PFn |ZnUn

L1QFn
+ 1
)]

. (A8)
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The RHS of (A8) can be discussed in two cases as follows similar to [3], according to whether
(zn, f n, un) are jointly typical or not:

d1 = ∑
(zn , f n , un)∈

Tn
δ (PZn , Fn , Un )

PZn FnUn(zn, f n, un) log

(
PFn |UnZn( f n|unzn)

L1QFn( f n)
+ 1

)
,

d2 = ∑
(zn , f n , un)/∈

Tn
δ (PZn , Fn , Un )

PZn FnUn(zn, f n, un) log

(
PFn |UnZn( f n|unzn)

L1QFn( f n)
+ 1

)
,

where Tn
δ follows the δ-robust typicality [12] definition for the subsequent derivation.

The Chernoff bound and an important upper bound, which will be used later, are restated in
the following.

Lemma A1. (Chernoff bound ([12] Lemma 16) For every a ∈ X , xn ∈ X n, and δ > 0,

P
(

N(a|xn)

n
≤ (1 + δ)PX(a)

)
≤ e−δ2PX(a)n/3. (A9)

Lemma A2. (Upper bound of the probability of a non-typical set ([12] Lemma 17)

P(xn /∈ T(n)
δ ) ≤ 2|SX |e−δ2µXn/3, (A10)

where SX , {x ∈ X : P(x) > 0} and µx , minx∈SX P(x).

Next, we derive the constraint (The constraint that Bob should successfully decode both the secret
and confusion messages is a point-to-point transmission without secrecy, which can be seen from [12].
Therefore, we omit the proof here.) on R1 as follows:

d1
(a)
≤
(

∑
(zn , f n , un)∈
Tn

δ (PZn FnUn )

PZn FnUn(zn, f n, un)

)
log

(
1 +

2−n[H(F|UZ)−δ]

L12−n(1+ε)H(F)

)

(b)
≤ log

(
1 +

2−n[H(F|UZ)−δ]

L12−n(1+ε)H(F)

)
(c)
= log

(
1 + 2−n(R1−I(F;UZ)−ε′)

)
, (A11)

where (a) comes from ([12] Lemma 18, Lemma 20); (b) comes from the fact that the total probability
of the jointly typical set is smaller than one; (c) is from definition of L1 and ε′ , ε[1 + H(F)] =
ε[1 + H(U)]. After that, we have d1 → 0 if n→ ∞ when the following constraint is fulfilled:

R1 > I(UZ; F) + ε′
(a)
= I(UZ; U ⊕ X) + ε′

(b)
= H(U)− H(X|Z) + ε′, (A12)

where (a) comes from a specific use of the public discussion following ([16] Theorem 3) and ⊕
is the modulo addition in X . We can follow the argument in ([21] Appendix B) in order to apply
the crypto lemma in (A12) or (A14) to unbounded X like the Gaussian case. (b) comes from the fact
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that U is uniformly distributed with the crypto lemma. In addition, we can derive that d2 → 0 as
n→ ∞ as follows:

d2
(a)
≤ ∑

(zn ,un , f n)/∈Tn
δ (PZn ,Un ,Fn )

PZn FnUn(zn, f n, un) log
(

1
Qn

Fn( f n)
+ 1
)

(b)
≤ ∑

(zn ,un , f n)/∈Tn
δ (PZn ,Un ,Fn )

PZn FnUn(zn, f n, un) log

(
1

µn
f n

+ 1

)
(c)
≤ ∑

(zn ,un , f n)/∈Tn
δ (PZn ,Un ,Fn )

PZn FnUn(zn, f n, un)n log

(
1

µ f
+ 1

)

(d)
= nPr ((zn, un, f n) /∈ Tn

δ (PZn ,Un ,Fn)) log

(
1

µ f
+ 1

)
(e)
≤ 2n|SZUF|e−δ2µZUFn/3 log

(
1

µ f
+ 1

)
, (A13)

where (a) is due to the fact that PFn |UnZn( f n|unzn) ≤ 1, and therefore, PFn |UnZn( f n|unzn)/L1 ≤ 1; (b) is
by lower bounding Qn

Fn( f n) with µ f = min f n∈SFn QFn( f n), where SFn , { f n ∈ X n : P( f n) > 0};
(c) by simple algebra; (d) is by definition of probability; (e) is by Lemma A2. Note that µ f in (A13)
is a constant, but not a function of n. Therefore, the RHS of (A13) can be easily seen to vanish
exponentially fast, if n→ ∞. Then, from (A11) and (A13), it is clear that (4) and (5) are fulfilled.

By constructing the CWTC, the following rate between Alice and Bob is achievable:

n(R + R1) ≤ I(Un ⊕ Xn, Yn; Un)

= H(Yn, Un ⊕ Xn)− H(Yn, Un ⊕ Xn|Un)

(a)
= H(Yn) + H(Un)−H(Xn, Yn)

= H(Un)−H(Xn|Yn), (A14)

where (a) again comes from the crypto lemma with the selection of Un being independent of Yn. Then,
from (A12) and (A14), the achievable stealthy strong SK rate can be derived as follows:

nR ≤ H(Un)− H(Xn|Yn)− nR1

(a)
< n[H(X|Z)− H(X|Y)]
= n[I(X; Y)− I(X; Z)], (A15)

where (a) is by plugging (A12) with the assumption of a memoryless common randomness, which is
independent and identically distributed (i.i.d.). We can interchange the roles of X and Y to get
I(Y; X)− I(Y; Z), which completes the proof.

Remark A1. In addition to the channel resolvability scheme, we can also attain the proof by a modified SWC
scheme, which is sketched as follows. We can first construct a binary auxiliary random variable S, which selects
the meaningful or meaningless discussion when S = 1 and S = 0, respectively. The stealth constraint is to avoid
Willie successfully guessing the realization of S and can be formulated as I(S; ZnFn) ≤ ε. By the data processing
inequality for divergence [17], we can have the inequality I(S; ZnFn) ≤ D(PKZn Fn ||PKQZn QFn), which is an
effective secrecy constraint of the considered SKG model. It is the counterpart to the one of the wiretap channel
with stealth constraint [3]. We can then construct two binning codebooks for S = 0 and S = 1, where in each
case, there is one corresponding binning codebook, in order to fulfill the secrecy constraint. In the error analysis,
there are two cases: (1) when S = 1, the probability of Alice and Bob having different keys; (2) when S = 0,
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the probability of Bob generating a key that is not null. By vanishing enforcing the average error probability,
we can attain the result in Theorem 1.

Remark A2. In the analysis by the WTC scheme in Appendix A, we derive the stealthy strong SK rate by
combining a tool based one channel resolvability developed in [3] with the CWTC. In particular, we first derive
an upper bound of the averaged stealth secrecy constraint (A5) by the random coding analysis. By enforcing the
upper bound to vanish, we can derive the constraints on the stealthy strong SK rate and the confusion rate in the
codebook design. By this scheme, we can proceed with the derivation based on the result of the wiretap channel.

Appendix B. Proof of (A6)

In the following, we show the tedious derivation for (A6) from channel resolvability [3]:

EC [D(PZn Fn |K ||QZn Fn |PK)]

(a)
= EC [D(PZn Fn |M ||QZn Fn |PM)]

(b)
= EC,M

[
∑

zn ,Fn
PZn ,Fn |M(zn, f n|M = m) log

(
PZn ,Fn |M(zn, f n|M = m)

QZn ,Fn (zn, f n)

)]

(c)
= EC,M

 ∑
zn ,Fn

L1

∑
w=1

1
L1

PZn ,Fn |Un (zn, f n|un(m, w)) log

∑L1
l=1

1
L1

PZn ,Fn |Un (zn, f n|un(m, l))

QZn ,Fn (zn, f n)


(d)
=

1
LL1

EC

[
∑

zn ,Fn

L

∑
m=1

L1

∑
w=1

PZn ,Fn |Un (zn, f n|un(m, w)) log

(
∑L1

l=1 QZn ,Fn |Un (zn, f n|un(m, l))
L1PZn ,Fn (zn, f n)

)]
(e)
=

1
LL1

EC

[
∑

zn ,Fn

L

∑
m=1

L1

∑
w=1

PZn ,Fn |Un (zn, f n|un(m, w)) log
(

Am(zn, f n|un)

B(zn, f n)

)]
( f )
=

1
LL1

∑
un(1,1)

· · · ∑
un(L,L1)

L,L1

∏
m=1,w=1

Pn
U(u

n(m, w))

[
∑

zn ,Fn

L

∑
m=1

L1

∑
w=1

PZn ,Fn |Un (zn, f n|un) log
(

Am(zn, f n|un)

B(zn, f n)

)]

(g)
=

1
LL1

∑
un(1,1)

· · · ∑
un(L,L1)

L,L1

∏
m=1,w=1

Pn
U(u

n(m, w))

∑
zn ,Fn


(PZn ,Fn |Un (·|un(1, 1))+ · · · +PZn ,Fn |Un (·|un(1, L1))) · log

(
A1(zn , f n |un)

B(zn , f n)

)
+

...
. . .

...
(PZn ,Fn |Un (·|un(L, 1)) · · · +PZn ,Fn |Un (·|un(L, L1))) · log

(
AL(zn , f n |un)

B(zn , f n)

)


(h)
=

1
LL1

∑
un(1,1)

· · · ∑
un(L,L1)

∑
zn ,Fn



(
PZn ,Fn ,Un (·, un(1, 1))

L,L1
∏

m 6=1,w 6=1
Pn

U(u
n(m, w)) + · · ·+ PZn ,Fn ,Un (·, un(1, L1))

L,L1
∏

m 6=1,w 6=L1

Pn
U(u

n(m, w))
)
·

log
(

A1(zn , f n |un)
B(zn , f n)

)
+ · · ·(

PZn ,Fn ,Un (·, un(L, 1))
L,L1
∏

m 6=L,w 6=1
Pn

U(u
n(m, w)) + · · ·+ PZn ,Fn ,Un (·, un(L, L1))

L,L1
∏

m 6=L,w 6=L1

Pn
U(u

n(m, w))
)
·

log
(

AL(zn , f n |un)
B(zn , f n)

)
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(i)
=

1
LL1

∑
zn ,Fn


∑

un(1,1)
PZn ,Fn ,Un (·, un(1, 1))EUn\Un(1,1)

[
log
(

A1(zn , f n |un)
B(zn , f n)

)]
+ · · ·+

∑
un(k,l)

PZn ,Fn ,Un (·, un(k, l))EUn\Un(k,l)

[
log
(
Mk(z

n , f n |un)
B(zn , f n)

)]
+ · · ·+

∑
un(L,L1)

PZn ,Fn ,Un (·, un(L, L1))EUn\Un(L,L1)

[
log
(

AL(zn , f n |un)
B(zn , f n)

)]


(j)
=

1
LL1

∑
zn ,Fn

(L,L1)

∑
(a,b)=(1,1)

∑
un(a,b)

PZn ,Fn ,Un (·, un(a, b))EUn\Un(a,b)

[
log
(

Aa(zn, f n|un)

B(zn, f n)

)]
(k)
≤ 1

LL1
∑

zn ,Fn

(L,L1)

∑
(a,b)=(1,1)

∑
un(a,b)

PZn ,Fn ,Un (·, un(a, b)) log
(
EUn\Un(a,b)

[(
Aa(zn, f n|un)

B(zn, f n)

)])

(l)
=

1
LL1

∑
zn ,Fn

(L,L1)

∑
(a,b)=(1,1)

∑
un(a,b)

PZn ,Fn ,Un (·, un(a, b)) log

 PZn ,Fn |Un (·|un(a, b)) + ∑
s 6=b

∑
un(a,s)

PZn ,Fn ,Un (·, un(a, s))

B(zn, f n)


(m)
≤ 1

LL1
∑

zn ,Fn

(L,L1)

∑
(a,b)=(1,1)

∑
un(a,b)

PZn ,Fn ,Un (·, un(a, b)) log


PZn ,Fn |Un (·|un(a, b)) +

(L,L1)

∑
(r,s)=(1,1)

∑
un(r,s)

PZn ,Fn ,Un (·, un(r, s))

B(zn, f n)


(n)
≤ 1

LL1
∑

zn ,Fn

(L,L1)

∑
(a,b)=(1,1)

∑
un(a,b)

PZn ,Fn ,Un (·, un(a, b)) log

(
PZn ,Fn |Un (·|un(a, b))

B(zn, f n)
+ 1

)
(o)
= EZn FnUn

[
log
( PZn Fn |Un

L1QZn Fn
+ 1
)]

, (A16)

where (a) is by constructing a CWTC, such that the key K is interchangeable with the message M; (b)
is by definition of the conditional K-L distance ([17] Definition 2.2); (c) is due to the fact that PZn ,F|M is the
marginalization of PZn ,Fn |Un with respect to w, which is the index of the confusion message; in (d), we
expand the expectation with respect to M; (e) is by defining ∑L1

l=1 PZn ,Fn |Un (zn, f n|un(m, l)) and L1QZn ,Fn (zn, f n)

by Am(zn, f n|un) and B(zn, f n), respectively, to simplify the expression, where m = 1, · · · , L; (f) is by
definition of the expectation over {Un(m, w)}L,L1

m=1,w=1. Since {Un(m, w)} are generated independently
and identically according to Pn

U, the joint distribution of codewords in a codebook is the product of
marginal distributions; in (g), we expand the summation with respect to m and w; in (h), we expand the
product according to the form in step (g); in (i), we collect terms to form the expectation EUn\Un(k,l); in (j),
we collect the terms by introducing additional indices (a, b); in (k), we apply Jensen’s inequality to the
logarithm; (l) is by expanding the expectation EUn\Un(k,l); (m) is by adding the term PZn FnUn (zn, f n, un(a, b));
(n) is by the definition of marginalization over PZn FnUn with respect to Un. In particular, the second
term on the RHS of the numerator in (m) becomes EUn [PZn ,Fn |Un ] = QZn Fn from (A3); (o) is by definition
of the expectation.

Appendix C. Proof of Theorem 2

We sketch the proof as follows in three steps, while the main idea is summarized in Figure A1.
The key is to show that the stochastically degraded source (X, Ỹ, Z̃) implies that the corresponding
CWTC [16] is also stochastically degraded, then the secret key capacity CSK of the source is the same
as the secrecy capacity of a CWTC constructed from a physically degraded source (X, Y, Z). The first
step is to construct the CWTC of the source (X, Y, Z) and prove that, if X−Y− Z, then U −Y′ − Z′, i.e., the
corresponding CWTC is also physically degraded, where U is the conceptual code symbol, uniformly
distributed in X and independent of (X, Y, Z). The equivalently received signals at Bob and Willie in the
CWTC are Y′ , (Y, U ⊕ X) and Z′ , (Z, U ⊕ X), respectively, while U ⊕ X is the signal transmitted through
the public channel. The second step is to construct a stochastically degraded source (X, Ỹ, Z̃) from
(X, Y, Z). After that, we construct the corresponding CWTC of (X, Ỹ, Z̃) as (U, Y′′, Z′′), where Y′′ , (Ỹ, U ⊕ X)

and Z′′ , (Z̃, U ⊕ X). The third step is to show that the CWTC described by (U, Y′′, Z′′) has the same
marginals as the CWTC described by (U, Y′, Z′), i.e., the two CWTC’s have the same secrecy capacity.
In addition to the fact that stochastic degradedness is no stronger than the physical degradedness,
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this results in that the former one should not have a higher secret key capacity than the latter one.
We then know that the sources (X, Y, Z) and (X, Ỹ, Z̃) have the same secret key capacity, which completes
the proof.

Common random source Conceptual WTC

Physically degraded:

Stochastically degraded:

Figure A1. Key steps in the proof of Theorem 2. First is to show that the CWTCalso physically
degraded if the source is physically degraded. Then, we show that the CWTC constructed from
a stochastically degraded source corresponding to the physically degraded source is a stochastically
degraded CWTC with the same marginal as that physically degraded CWTC. Finally, we show that
the secrecy capacity of the second CWTC is indeed the secret key capacity of the stochastically degraded
source. The key and secrecy capacities of the physically degraded source and the corresponding CWTC
are denoted by CSK and CS, respectively, while the key (rate) and secrecy capacities of the stochastic
source and the corresponding CWTC are denoted by C′SK (R′SK) and C′S, respectively.

In the following, we will prove that the stochastically degraded random source (X, Ỹ, Z̃) implies
that the corresponding CWTC [16] is also stochastically degraded, which is constructed by the
corresponding physically degraded source (X, Y, Z). We start from constructing the CWTC of the
random source (X, Y, Z), where the equivalently received signals at Bob and Willie are Y′ , (Y, U⊕ X) and
Z′ , (Z, U ⊕ X), respectively. If X − Y− Z, then U − Y′ − Z′, i.e., the CWTC is also a physically degraded
one, which can be shown as follows:

I(U; Z′|Y′) (a)
=H(Z, U ⊕ X|Y, U ⊕ X)− H(Z, U ⊕ X|Y, U ⊕ X, U)

(b)
=H(Z|Y)− H(Z|Y, U ⊕ X, U)

(c)
=H(Z|Y)− H(Z|Y, X, U) (A17)
(d)
=H(Z|Y)− H(Z|Y, X)

(e)
=0,

where (a) is by the definition of Y′ and Z′; (b) is by the crypto lemma [22], and U is selected to be
independent of Y and Z; (c) is from the fact that given U, we can know X from U ⊕ X; (d) is by the same
reason as (b); (e) is due to X−Y− Z and by the definition of conditional mutual information.

Now, we consider the stochastically degraded source of common randomness (X, Ỹ, Z̃) fulfilling
PỸ|X = PY|X and PZ̃|X = PZ|X. Similar to the first step, we construct the CWTC from (X, Ỹ, Z̃), namely
{(U, Y′′, Z′′), PU,Y′′ ,Z′′ = PU PY′′ ,Z′′ |U}, where Y′′ , (Ỹ, U ⊕ X) and Z′′ , (Z̃, U ⊕ X) are the equivalent channel
outputs at Bob and Willie, respectively. To prove that the two CWTC’s PY′ ,Z′ |U and PY′′ ,Z′′ |U are equivalent,
we can invoke the same marginal property in ([11] Theorem 16.6) to prove that PY′′ |U = PY′ |U and
PZ′′ |U = PZ′ |U, which is shown in the following. By the definitions of Y′′ and Y′, we know that PY′′ |U=u =

PỸ,u⊕X , PỸ,Xu
and PY′ |U=u = PY,u⊕X , PY,Xu , respectively, where we define Xu as u⊕ X. Note that due to the
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closed operation ⊕ in X , the distribution of Xu is a left circular shift of that of X by u. Instead of directly
proving PỸ,Xu

= PY,Xu , we can equivalently prove PỸ|Xu
= PY|Xu , ∀ u, as follows:

PỸ|Xu=x = PỸ|X=x′ = PY|X=x′ = PY|Xu=x , (A18)

where the second equality is due to the assumption of (X, Ỹ, Z̃) forming a stochastically degraded source
from the physically degraded one (X, Y, Z). Therefore, PY′′ |U = PY′ |U . Similarly, we can derive PZ′′ |U = PZ′ |U .
Hence, we prove that the CWTC of a stochastic degraded source is also a degraded CWTC and the
two CWTC’s have the same secrecy capacity.

Note that due to X − Y − Z, we can derive the key capacity CSK from the corresponding CWTC,
not just an achievable key rate. For the source (X, Ỹ, Z̃), till now, we may only claim the achievable
secret key rate, but not the secret key capacity, namely C′SK, is the same as CSK. That is because the
CWTC is in general only an achievable scheme to derive the secret key rate. However, due to the fact
that the stochastic degradedness is more general than the physical degradedness, i.e., less stringent on
characterizing the order between X, Ỹ and Z̃, the stochastic degradedness cannot result in a larger secret
key capacity than the physically degraded one. Therefore, we attain that C′SK = CSK = I(X; Y)− I(X; Z),
which completes the proof.
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