
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Job shop scheduling with probabilistic durations

Author(s) Beck, J. Christopher; Wilson, Nic

Editor(s) de Mántaras, Ramon López
Saitta, Lorenza

Publication date 2004-08

Original citation Beck, J. C. and Wilson, N. (2004) 'Job shop scheduling with
probabilistic durations', ECAI'04: Proceedings of the 16th European
Conference on Artificial Intelligence, 22- 27 August, Valencia, Spain:
IOS Press, pp. 652–656.

Type of publication Conference item

Link to publisher's
version

https://dl.acm.org/doi/10.5555/3000001.3000139
Access to the full text of the published version may require a
subscription.

Rights © 2004 IOS Press

Item downloaded
from

http://hdl.handle.net/10468/10748

Downloaded on 2021-11-27T14:01:34Z

https://libguides.ucc.ie/openaccess/impact?suffix=10748&title=Job shop scheduling with probabilistic durations
https://dl.acm.org/doi/10.5555/3000001.3000139
http://hdl.handle.net/10468/10748


Job Shop Scheduling with Probabilistic Durations1

J. Christopher Beck and Nic Wilson2

Abstract. Proactive approaches to scheduling take into account in-
formation about the execution time uncertainty in forming a sched-
ule. In this paper, we investigate proactive approaches for the job
shop scheduling problem where activity durations are random vari-
ables. The main contributions are (i) the introduction of the problem
of finding probabilistic execution guarantees for difficult scheduling
problems; (ii) a method for generating a lower bound on the mini-
mal makespan; (iii) the development of the Monte Carlo approach
for evaluating solutions; and (iv) the design and empirical analysis
of three solution techniques: an approximately complete technique,
found to be computationally feasible only for very small problems,
and two techniques based on finding good solutions to a deterministic
scheduling problem, which scale to much larger problems.

1 INTRODUCTION

Proactive scheduling techniques seek to produce an off-line schedule
that incorporates a model of uncertainty, with the goal of building
robust schedules. In this paper, we address the problem of job shop
scheduling when the durations of the activities are random variables.
Our main objective is to find a solution which has a probability of
execution of at least1 − α (with e.g.,α = 0.05) and which has a
good (ideally, minimal) probabilistic makespan. This is a challenging
problem as simplyevaluatinga solution appears to be hard. To search
for such a solution, we define a Monte Carlo branch-and-bound algo-
rithm. At each node, the search is pruned if we can be almost certain
(based on the Monte Carlo simulation) that the partial solution cannot
be extended to a solution better than our current best solution. Our
empirical results indicate that such a technique is only practical for
very small problems. The other methods we introduce make use of
the highly developed solution methods for the deterministic problem
to generate promising solutions based on deterministic assumptions.
These solutions are then evaluated using Monte Carlo simulation.
We investigate both constructive search and tabu search generation
techniques and our experimental results indicate that these perform
almost as well as the branch-and-bound technique for small problems
and greatly out-perform it on larger problem instances.

A secondary objective is to find a lower bound for the minimal
probabilistic makespan. We show that such a lower bound can be
generated from a lower bound for a particular deterministic problem.

In the next section we define probabilistic job shop scheduling
problems and discuss related work. In Section 3, we present a lower
bound on the minimal makespan. Section 4 describes the use of
Monte Carlo simulation for evaluating solutions. In the following
section, the Monte Carlo branch-and-bound and two heuristic algo-

1 This work has received support from Science Foundation Ireland under
Grant 00/PI.1/C075 and ILOG, SA.

2 Cork Constraint Computation Centre, Department of Computer Science,
University College Cork Cork, Ireland.{c.beck,n.wilson}@4c.ucc.ie

rithms based on transforming a probabilistic problem into a standard
problem are introduced. Section 6 presents our empirical studies.

2 BACKGROUND

The job shop scheduling problem with probabilistic durations is a
natural extension of the standard (deterministic) job shop scheduling
problem (JSP). A JSP involves a setA of activities, where eachAi ∈
A has a positive durationdi.A is partitioned intojobs, and with each
job is associated a total ordering on that set of activities. No activities
that require the same resource can overlap in their execution and once
an activity is started it must be executed for its entire duration. We
represent this formally by another partition ofA: into resource sets.
A solutionconsists of a total ordering on each resource set, which
does not conflict with the jobs ordering, i.e., the union of the resource
orderings and job orderings is an acyclic relation onA. Thus if Ai

andAj are in the same resource set, a solution either ordersAi before
Aj , or Ai afterAj . A partial solutionconsists of a partial ordering
on each resource set which can be extended to a solution.

Let s be a solution. Apath in s (or ans-path) is a sequence of
activities such that ifAi immediately precedesAj in the sequence,
either (i)Ai andAj are in the same job, andAi immediately precedes
Aj in that job, or (ii)Ai andAj are in the same resource set ands
ordersAi beforeAj . The lengthlen(π) of a pathπ (of a solution),
is equal to the sum of the durations of the activities in the path, i.e.,∑

Ai∈π
di. Themakespanmake(s) of a solutions is defined to be

the length of the longests-path. Ans-pathπ is said to be acritical
s-pathif the length ofπ is equal to the makespan of the solution. The
minimum makespanof a job shop scheduling problem is defined to
be the minimum makespanmake(s) over all solutionss.

An independent probabilistic job shop scheduling problemis the
same as the JSP, except that the durationdi associated with an ac-
tivity Ai ∈ A is a random variable;di has distributionPi, expected
valueµi = E[di] and varianceσ2

i = Var[di]. These random vari-
ables are fully independent. The length of a pathπ of a solutions
is now a random variable, which we write aslen(π). The makespan
make(s) of solutions (the length of the longest path ins) is there-
fore also a random variable.

In the probabilistic job shop scheduling problemwe have a joint
probability measureP over the durations vectors. (The intention is
that this will be such that we can efficiently sample with the joint
density function.) Here, for activityAi, distributionPi is defined to
be the appropriate marginal, with expected valueµi and varianceσ2

i .
We fix a valueα ∈ (0, 0.5]; our aim is to find as small a

value of D as possible such that there exists a solutions with
Pr(make(s) ≤ D) ≥ 1 − α, i.e.,Pr(make(s) > D) ≤ α. Call
Dα(s) = inf {D : Pr(make(s) ≤ D) ≥ 1− α} theα-makespan
of s, and letDα (theα-minimum makespan) be the minimum value
of Dα(s) over all solutionss. It can be shown that there exists a



solution s with Pr(make(s) ≤ Dα) ≥ 1 − α (in the case of a
continuous distribution we have equality:Pr(make(s) ≤ Dα) =
1 − α). Furthermore, for anyD′ < Dα, and all solutionss, there
is more thanα chance that the random makespan is more thanD′:
Pr(make(s) > D′) > α.

Evaluating a solution in the deterministic case, i.e., finding the as-
sociated makespan, can be achieved in low degree polynomial time
using a longest path algorithm. The disjunctions of resource con-
straints turn this very easy problem into the NP-complete JSP [6].
PERT networks, on the other hand, generalize this simple longest-
path problem by allowing durations to be independent random vari-
ables, leading to a #P-complete problem [7]. The probabilistic JSP
makes both these generalizations. Consequently, finding the optimal
solutions of a probabilistic JSP looks to be very hard, and so we focus
on methods for finding good solutions.

As well as PERT networks, probabilistic JSPs have some similar-
ity with the problem studied in Daniels & Carrillo [3] which consid-
ers a one-machine scheduling problem with probabilistic durations.
This is shown to be NP-hard even though the underlying determinis-
tic problem can be solved in polynomial time. In [4], informal proac-
tive techniques for difficult problems are presented but to our knowl-
edge no one has sought probabilistic guarantees for difficult underly-
ing scheduling problems.

3 A LOWER BOUND FOR α-MINIMUM
MAKESPAN

In this section we show that a lower bound for theα-minimum
makespanDα can be found by solving a particular deterministic JSP.

The duration of activityAi in the deterministic problem is defined
to beµi + qσi, whereq is a fixed non-negative value. Lets be a
solution, and letπ be ans-path. The deterministic lengthlenq(π) of
π is equal to

∑
Ai∈π

(µi + qσi) =
∑

Ai∈π
µi + q

∑
Ai∈π

σi. Let
makeq be the minimum deterministic makespan over all solutions.
We say thatq is α-sufficient if for any solutions there exists a (de-
terministic) criticals-pathπ with Pr(len(π) > lenq(π)) > α, i.e.,
there is more thanα chance that the random path length is greater
than the deterministic length.

Proposition 1 For a probabilistic JSP, supposeq is α-sufficient, and
let D′ ≤ makeq be a lower bound for the deterministic minimum
makespan. Then for any solutions, Pr(make(s) > D′) > α.
ThereforeD′ is a lower bound for theα-minimum makespanDα.

Findingα-sufficientq-values

In the rest of this section, we assume an independent probabilistic
JSP. Letµπ be E[len(π)], the expected value of the length ofπ,
which is equal to

∑
Ai∈π

µi. Letσ2
π = Var[len(π)], the variance of

the length ofπ, which is equal to
∑

Ai∈π
σ2

i , since we are assuming
that the durations are independent. ForB ≥ 0, writeθB(π) for µπ +

Bσπ =
∑

Ai∈π
µi + B

√∑
Ai∈π

σ2
i . We say thatB is α-sufficient

if for any critical pathπ of any solution,Pr(len(π) > θB(π)) > α,
i.e., there is more thanα chance thatπ is more thanB standard
deviations longer than its expected length.

If each duration is normally distributed, thenlen(π) will be nor-
mally distributed, since it is the sum of independent distributions.
Even if the durations are not normally distributed,len(π) will often
be close to being normally distributed, by the central limit theorem.
So Pr(len(π) > θB(π)) will then be approximately1 − Φ(B),

whereΦ is the unit normal distribution. AB value of slightly less
thanΦ−1(1− α) will be α-sufficient, given approximate normality.

We say thatq is B-sufficient if for any critical pathπ of any so-
lution, lenq(π) ≤ θB(π). Clearly:a sufficient condition forq to be
α-sufficient, is ifq is B-sufficient for someB which isα-sufficient.A
q-valueq is B-sufficient if and only if for any critical pathπ of any

solution
∑

Ai∈π
µi+q

∑
Ai∈π

σi ≤
∑

Ai∈π
µi+B

√∑
Ai∈π

σ2
i ,

that is,q ≤ B√
Lπ

√
AverageAi∈πσ2

i

AverageAi∈πσi
, whereLπ is the number of ac-

tivities in pathπ.
A crude sufficient condition for this isq ≤ B√

L
whereL is an

upper bound for the number of activities in any critical pathπ for
any solution. In particular, we could chooseq = B√

L
. So, given that

the lengths of the paths are approximately normally distributed, aq-

value of a little less thanΦ
−1(1−α)√

L
will be α-sufficient.

The lower bound we have derived can be seen to be quite conser-
vative; we approximate the random variablemake(s) by the random
length of particular path andlenq(π) will tend to be a crude lower
bound forθB(π). The strength of our lower bound method, however,
is that it is computationally feasible for reasonably large problems as
it uses existing well-developed JSP methods.

4 EVALUATING A SOLUTION USING MONTE
CARLO SIMULATION

For a givenD we want to assess if there exists a solution for which
there is a chance at mostα that the random makespan is greater than
D. Our methods will all involve generating (partial) solutions, and
testing this condition.

Evaluating a solution amounts to solving a PERT problem with
uncertain durations, a #P-complete problem. As in other #P-complete
problems such as the computation of Dempster-Shafer Belief [14], a
natural approach to take is Monte Carlo simulation [2]; we do not
try to make an exact computation but instead choose an accuracy
level δ and require that with a high chance our random estimate is
within δ of the true value. The algorithm then has optimal complexity
(low-degree polynomial) but with a potentially high constant factor
corresponding to the number of trials required for the given accuracy.

To evaluate a (partial) solutions using a Monte Carlo simulation:
we perform a (large) numberN of independent trials assigning val-
ues to each random variable. This generates a deterministic problem,
and we can check very efficiently if the corresponding makespan is
greater thanD; if so, we say the the trial succeeds. The proportion
of trials that succeed is then an estimate ofPr(make(s) > D).
For the case of independent probabilistic JSPs we can pick the ran-
dom durations vector by picking, using distributionPi, a value fordi

for each activityAi. For the general case, picking random durations
vector will still be efficient in many situations; for example, if the
distribution is represented by a Bayesian network.

Let T be the proportion of trials that succeed, which is an estimate
of p = Pr(make(s) > D), the chance that a randomly generated
durations vector leads to a makespan (for solutions) greater thanD.
The expected value ofT is equal top. The standard deviation ofT

is
√

p(1−p)
N

. The random variableNT is binomially distributed, and

so (because of the deMoivre-Laplace limit theorem) we can use a
normal distribution to approximateT .

2



When is the solution good enough?

A solution is good enough when we can say with confidence that, for
our fixed valueα, Pr(make(s) > D) ≤ α. Based on the above, we
therefore need the observedT to be at least a little smaller thanα.

We shall use a confidence interval-style approach. LetK ≥ 0.
Recall thatp is an unknown quantity that we want to find infor-
mation about. We say that “p ≥ α is K-implausible given the re-
sult T ” if the following condition holds:p ≥ α implies thatT
is at leastK standard deviations below the expected value, i.e.,
T ≤ p− K√

N

√
p(1− p).

If it were the case thatp ≥ α, and “p ≥ α is K-implausible given
T ”, then an unlikely event would have happened. For example, with
K = 2, (given the normal approximation), such an event will only
happen about once every45 experiments; ifK = 4 such an event
will only happen about once every 32,000 experiments.

If Pr(make(s) > D) ≥ α is K-implausible given the resultT
then we can be confident thatPr(make(s) > D) < α, so thatD
is an upper bound ofDα(s) and hence of theα-minimum makespan
Dα. The confidence level, based on a normal approximation of the
binomial, isΦ(K), whereΦ is the unit normal distribution.

Similarly, for anyα between0 and 0.5, we say thatp ≤ α is
K-implausible given the resultT if the following condition holds:
p ≤ α implies thatT is at leastK standard deviations above the
expected value, i.e.,T ≥ p + K√

N

√
p(1− p).

K-implausibility cannot be tested directly using the definition
sincep is unknown. Fortunately we have the following result.

Proposition 2 With the above definitions:

(i) p ≥ α is K-implausible givenT iff T ≤ α− K√
N

√
α(1− α).

(ii) p ≤ α is K-implausible givenT iff T ≥ α + K√
N

√
α(1− α).

Part (i) of this result shows us how to evaluate a solutions with
respect to a boundD: if we generateT using a Monte Carlo simula-
tion which is at least K√

N

√
α(1− α) less thanα then we can have

confidence thatD is an upper bound forDα(s).

FindingD from a given solution

The Monte Carlo simulation can be adapted to generate a just-
satisfactoryD from a solutions. We simulate the values ofmake(s)
and record the distribution. We decide on a value ofK, correspond-
ing to the desired confidence, and chooseD minimal such that the
associatedT value satisfiesT ≤ α − K√

N

√
α(1− α). Then by

Proposition 2(i),Pr(make(s) > D) ≥ α is K-implausible given
T . We can be confident thatPr(make(s) > D) ≤ α, i.e., that
Dα(s) ≤ D.

5 SEARCHING FOR SOLUTIONS

Recall that our aims in solving the probabilistic JSP are to find an
α-minimum makespan and to find a lower bound on theα-minimum
makespan. Ideally, we would like these two values to be identical.
In practice, due to limits on computational resources this may not be
possible and so we aim to make these two values as close as possible.
As shown in Section 3, a crude lower bound can be found by solving
a deterministic JSP with the appropriate choice of activity durations.
In this section, we present how the Monte Carlo simulation results
presented in the previous section are used in search.

An Approximately Complete Branch-and-Bound Algorithm

Given the ability to establish a newD value from a complete se-
quence of activities in each resource set, and the ability to test if par-
tial sequences will not lead to lowerD values, the obvious choice for
search is a branch-and-bound (B&B). If we are able to cover the en-
tire search space, such an approach is approximately complete with
confidence related to our choice ofK.

The B&B tree is a (rooted) binary tree. Associated with each node
e in the tree is a partial solutionse, which is a solution if the node
is a leaf node. The empty partial solution is associated with the root
node. Also associated with each non-leaf nodee is an activity,Ai,
which has not been ranked in its resource set in partial solutionse.
The two nodes belowe extendse: one ranksAi as the next activity
in its resource set, the other postponesAi to be ranked later [9]. This
branching scheme searches for non-delay schedules [5].

A value of global variableD∗ is always such that we have confi-
dence (corresponding to the choice ofK) that there exists a solution
s with Dα(s) at mostD∗. Whenever we reach a leaf nodee we
find theD associated with a solutionse by Monte Carlo simulation.
We setD∗ := min(D∗, D). VariableD∗ is initialized to some high
value.

At non-leaf nodese we make a check to see if it is worth exploring
the subtree belowe. We perform a Monte Carlo simulation for partial
solutionse using the current value ofD∗; this generates a resultT .
We use proposition 2(ii) to determine ifPr(make(se) > D∗) ≤ α
is K-implausible givenT ; if it is then we backtrack, since we can be
confident that there exists no solution extending the partial solution
se that improves our current best solution. IfK is chosen sufficiently
large then we can be confident that we will not miss a good solution.3

We refer to this algorithm as theMCBBalgorithm.

Heuristic Algorithms

The main computational weakness of the MCBB algorithm is that
the pruning condition depends on simulation at each node. The prun-
ing techniques developed in constraint-based scheduling are ineffec-
tive as they assume deterministic durations and therefore the implicit
lower bounds calculated using, for example, the mean durations, are
too weak. To reduce this dependency, we present two heuristic al-
gorithms that make use of deterministic scheduling problems to pro-
duce candidate solutions that are then evaluated using simulation.

A simple constructive search algorithm can be developed by first
finding a good initial solution to a deterministic problem. Subse-
quently, deterministic solutions,s, as good or better than the ini-
tial solution are enumerated and each one is simulated to determine
Dα(s). We use the same constructive algorithm for both phases. This
algorithm searches only for non-delay schedules by using the same
branching scheme as MCBB but also strong constraint propagation
[12, 8]. For small problems (size10× 10 or smaller), an optimal de-
terministic solution is easily found and proved in the first phase. The
second phase therefore enumerates the optimal, non-delay determin-
istic schedules. For larger problems, a time limit is placed on the first
phase, and the simulated solutions are those which are as good or
better than the best solution found in phase 1. We denote this tech-
nique asNDf as the solutions to be simulated are filtered to be good,

3 Because we are doing a very large number of tests, we need much higher
confidence than for a usual confidence interval; fortunately, the confidence
associated withK is (based on the normal approximation of a binomial,
and the approximation of a tail of a normal distribution) approximately1−

1

K
√

2π
e−

1
2 K2

, and so tends to1 extremely fast asK increases.

3



non-delay deterministic solutions.
We can also use local search to generate a sequence of determin-

istic solutions that are then simulated. Using an implementation of
Nowicki & Smutnicki’s TSAB tabu search algorithm [11], whenever
a solution is found with a deterministic makespan as good or bet-
ter than the best makespan found so far, we simulate it. As with the
NDf algorithm, the solution,s, with the lowestDα(s) is retained.
We denote this technique asTabuf.

For these techniques, it is necessary to assign fixed durations to
each activity. A standard approach is to use the mean duration. How-
ever, in such cases there is no representation of the uncertainty sur-
rounding that duration, and this does not take into account that we
want a high probability (1 − α) of execution. A more general ap-
proach is to heuristically use the formulation for the lower bound on
α-minimum makespans presented in Section 3: the duration of ac-
tivity Ai is defined to beµi + qσi, whereq is a fixed non-negative
value. Since we are no longer limited to producing a lower bound,
we have flexibility in selectingq. Intuitively, we want aq-value that
leads to a situation where good deterministic solutions also have low
values ofDα(s). We experiment with a number ofq-values based on
the analysis in Section 3.

6 EMPIRICAL INVESTIGATIONS

Our empirical investigations examine five sets of probabilistic JSPs
of size{3 × 3, 4 × 4, 6 × 6, 10 × 10, 20 × 20} with three uncer-
tainty levelsuj ∈ {0.1, 0.5, 1}. A deterministic problem is gener-
ated using an existing generator [13] with integer durations drawn
uniformly from the interval [1, 99]. Three probabilistic instances at
different levels of uncertainty are then produced by setting the mean
durationsµi to be the deterministic durations and by uniformly draw-
ing the standard deviationσi of the duration of an activity,Ai, from
the interval [0,ujµi]. The distribution of each duration is approxi-
mately normal. For each problem size, we generate 10 deterministic
problems which are transformed into 30 probabilistic instances.

The smaller problem sizes were chosen to demonstrate the behav-
ior at the apparent size limit of the MCBB algorithm: MCBB is un-
able to completely solve problems within 600 CPU seconds of size
larger than3 × 3. The20 × 20 problems were chosen as determin-
istic problems of that size cannot be generally solved to optimality
using current technology within the 600 CPU seconds. The hardware
used for the experiments is a 1.8GHz Pentium 4 with 512 M of main
memory running Linux RedHat 9.

Given the stochastic nature of the simulation, each algorithm is run
10 times on each problem instance with different random seeds. Each
run has an overall time limit of 600 CPU seconds. Each Monte Carlo
simulation usesN = 1000. We report the mean stochastic makespan
that each algorithm found over each run on each instance.

We experimented with fourq values displayed in Table 1. In
all cases, we setB = 1.645 correspondingα = 0.05. Value q3

was found for each instance by Monte Carlo simulation: simulating
100000 paths ofn activities.

q0 q1 q2 q3

0 B√
2n

q1+q3
2

B√
n

√
AverageAi∈πσ2

i

AverageAi∈πσi

Table 1. Theq-values used in the experiments.

A lower bound for each instance was found usingq1, a simple,

very plausiblyα-sufficientq-value (see Section 3). We solved each
instance using constraint-based tree search incorporating the global
constraint propagation used above and using a texture-based search
heuristic [1]. A maximum time of 600 CPU seconds was given. All
problems smaller than20×20 were easily solved to optimality. None
of the 20 × 20 problems were solved to optimality. Therefore, the
lower bound for those problems is approximate.

An impression of the overall results can be gained by looking at
the bold entries in Table 2. MCBB dominates on small problems, the
two heuristic methods are strong for the medium size problems, and,
for the largest problems, Tabuf is superior. In terms of theq-values,
there is little difference on small problems but for6 × 6 and larger
there is a clear disadvantage forq0. This demonstrates that incorpo-
rating uncertainty information into the deterministic durations for the
heuristic algorithms has benefits.

For the3 × 3 problems, MCBB terminates without timing out.
Therefore, theDα(s) solutions are approximately optimal. The qual-
ity of the lower bound formulation can therefore be assessed by look-
ing at the optimality gap for these problems. This is the difference
between the best mean makespan found and the mean lower bound
expressed as a percentage of the mean lower bound. For low uncer-
tainty, the gap for the3 × 3 problems is only 2.3% but increases
to over 10% for more uncertain problems. We expect the quality of
the lower bound calculation to also worsen somewhat with increased
problem size. Therefore, given that the gap for uncertainty level 0.1
across all problem sizes grows only slightly, we can expect that the
solutions found for low uncertainty across all these problem sizes are
reasonably close to optimal.

In comparing the two heuristic algorithms, when the NDf can enu-
merate all optimal non-delay solutions (i.e., up to10×10) within the
time limit, it is competitive, at least at someq-values with the Tabuf
algorithm. On the20 × 20 problems, Tabuf is able to find solutions
with much lower (deterministic) makespans than NDf. We believe
that the performance difference in terms ofDα(s) is due to better
underlying deterministic makespans found by Tabuf.

Each cell in Table 2 is the mean value over 10 independent runs
of 10 problems. The observed mean standard deviations for each cell
are very small: the maximum over all cells is less than 2.2% of the
corresponding mean value with the mean over all cells being less
than 0.7% of the corresponding mean makespan.

7 FUTURE WORK

There are two directions for future work on the algorithms presented
in this paper. First, MCBB could be improved to make more use of
deterministic techniques and/or to incorporate probabilistic reason-
ing into existing deterministic techniques. For example, a number
of deterministic lower bound formulations for PERT networks exist
in the operations research literature [10] that may be used to eval-
uate partial solutions. Another approach to improving the MCBB
performance is to incorporate explicit reasoning about probability
distributions into standard constraint propagation techniques. Tech-
niques like the longest path calculations and edge-finding make in-
ferences based on the propagation of minimum and maximum values
for temporal variables. We believe that many of these techniques can
be adapted to reason about probabilistic intervals.

A second direction for future work is the improvement of the
heuristic algorithms. The key advantage of these algorithms is that
they make use of deterministic techniques for scheduling. By trans-
forming probabilistic problems to deterministic problems, we can
bring a significant set of existing tools to bear on the problem. Further

4



Problem Unc. Lower q0 q1 q2 q3 Gap
Size Level Bound (q1) MCBB NDf Tabuf NDf Tabuf NDf Tabuf NDf Tabuf (%)

0.1 258 264* 265 266 265 267 265 267 265 267 2.3
3× 3 0.5 301 312* 318 318 317 317 316 316 316 316 3.7

1 375 414* 433 432 425 426 425 424 425 423 10.7
0.1 322 332 331 331 331 331 331 331 331 331 2.8

4× 4 0.5 375 396 401 401 401 399 402 399 402 400 5.6
1 433 492 515 510 504 501 505 502 507 501 13.6

0.1 502 546 516 516 515 515 515 516 515 516 2.6
6× 6 0.5 569 643 619 620 622 619 620 624 620 620 8.8

1 642 794 783 781 765 761 763 764 764 763 18.5
0.1 827 961 873 853 863 856 860 854 862 855 3.1

10× 10 0.5 913 1119 1038 1027 1025 1022 1024 1023 1020 1025 11.7
1 1026 1367 1291 1283 1265 1270 1265 1264 1269 1271 23.2

0.1 1672† 1942 1857 1732 1833 1723 1841 1723 1798 1723 3.1
20× 20 0.5 1789† 2235 2169 2053 2142 2037 2147 2027 2134 2032 13.3

1 1943† 2759 2690 2584 2635 2538 2629 2532 2602 2528 30.1

Table 2. The lower bounds, mean makespans for each algorithm, and the percentage difference between the best solution found and the lower bound. ‘*’
indicates a set of runs for which we have, with high confidence, found close-to-optimal makespans. ‘†’ indicates approximate lower bounds. The mean

makespans within 0.5% of the best mean makespans are shown in bold font.

study is needed to find additional ways to do this transformation. For
example, we can envision a search that adaptively changesq-values
during the search in order to find those that lead to solutions with
betterDα(s) values. A deeper understanding of the relationship be-
tween good deterministic solutions and good probabilistic solutions
is necessary to pursue this work in a principled fashion.

8 CONCLUSION

In this paper, we addressed job shop scheduling when the durations
of the activities are random variables. The objectives are to find a so-
lution which has a high probability of having a good makespan, and
to find a lower bound for the minimal probabilistic makespan. We in-
troduced three approaches to the problem of generating solutions: a
branch-and-bound technique using Monte Carlo simulation to eval-
uate partial solutions, and two heuristic approaches that transform
the probabilistic problem into a deterministic problem which is then
used to generate potential solutions. The quality of these solutions is
evaluated with Monte Carlo simulation. We also showed how a lower
bound for the minimal probabilistic makespan can be generated from
a lower bound for a particular deterministic problem.

Our empirical evaluation demonstrated that the branch-and-bound
is only able to find approximately optimal solutions for very small
problem instances. For larger instances, the heuristic techniques per-
form much more strongly while providing no optimality guarantees.
Based on comparisons with the lower bound, our results indicate that
for large problems with low uncertainty, good quality solutions are
found. At higher levels of uncertainty, the gap between the lower
bounds and the best solutions found is greater, which we suspect is
due to both poorer quality solutions and a weaker lower bound.

Proactive scheduling techniques seek to incorporate models of un-
certainty into an off-line, predictive schedule. The goal of such tech-
niques is to increase the robustness of the schedules produced. This is
important because a schedule is not typically generated or executed
in isolation. Other decisions such as when to deliver raw materials
and how to schedule up- and down-stream factories are all affected
by an individual schedule. Differences between a predictive sched-
ule and its execution can be a significant source of disruption lead-
ing to cascading delays across widely separated entities. The ability,
therefore, to develop schedules that are robust to uncertainty is very

important. This paper represents a step in that direction.

REFERENCES
[1] J. C. Beck and M. S. Fox, ‘Dynamic problem structure analysis as a ba-

sis for constraint-directed scheduling heuristics’,Artificial Intelligence,
117(1), 31–81, (2000).

[2] J. M. Burt and M. B. Garman, ‘Monte carlo techniques for stochastic
network analysis’, inProceedings of the fourth annual conference on
applications of simulation, pp. 146–153, (1970).

[3] R.L. Daniels and J.E. Carrillo, ‘β-robust scheduling for single-machine
systems with uncertain processing times’,IIE Transactions, 29, 977–
985, (1997).

[4] A.J. Davenport, C. Gefflot, and J.C. Beck, ‘Slack-based techniques for
robust schedules’, inProceedings of the Sixth European Conference on
Planning (ECP-2001), (2001).

[5] H-L. Fang,Genetic Algorithms in Timetabling and Scheduling, Ph.D.
dissertation, Department of Artificial Intelligence, University of Edin-
burgh, 1994.

[6] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, New
York, 1979.

[7] J. N. Hagstrom, ‘Computational complexity of PERT problems’,Net-
works, 18, 139–147, (1988).

[8] P. Laborie, ‘Algorithms for propagating resource constraints in AI plan-
ning and scheduling: Existing approaches and new results’,Artificial
Intelligence, 143, 151–188, (January 2003).

[9] C. Le Pape, P. Couronné, D. Vergamini, and V. Gosselin, ‘Time-
versus-capacity compromises in project scheduling’, inProceedings of
the Thirteenth Workshop of the UK Planning Special Interest Group,
(1994).

[10] A. Ludwig, R.H. Möhring, and F. Stork, ‘A computational study on
bounding the makespan distribution in stochastic project networks’,An-
nals of Operations Research, 102, 49–64, (2001).

[11] E. Nowicki and C. Smutnicki, ‘A fast taboo search algorithm for the job
shop problem’,Management Science, 42(6), 797–813, (1996).

[12] W. P. M. Nuijten,Time and resource constrained scheduling: a con-
straint satisfaction approach, Ph.D. dissertation, Department of Math-
ematics and Computing Science, Eindhoven University of Technology,
1994.

[13] J.-P. Watson, L. Barbulescu, L.D. Whitley, and A.E. Howe, ‘Constrast-
ing structured and random permutation flow-shop scheduling problems:
search-space topology and algorithm performance’,INFORMS Journal
on Computing, 14(1), (2002).

[14] N. Wilson, Algorithms for Dempster-Shafer Theory, in: Kohlas, J.,
Moral, S., (eds.) Algorithms for Uncertainty and Defeasible Reason-
ing, Volume 5, Handbook of Defeasible Reasoning, Kluwer Academic
Publishers, 2000.

5


