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Job Shop Scheduling with Probabilistic Durations

J. Christopher Beck and Nic Wilson?

Abstract. Proactive approaches to scheduling take into account infithms based on transforming a probabilistic problem into a standard
formation about the execution time uncertainty in forming a sched{problem are introduced. Section 6 presents our empirical studies.
ule. In this paper, we investigate proactive approaches for the job

shop scheduling problem where activity durations are random vari-

ables. The main contributions are (i) the introduction of the problem2 BACKGROUND

of finding probabilistic execution guarantees for difficult scheduling . . . I . .
problems: (ii) a method for generating a lower bound on the mini_The job shop scheduling problem with probabilistic durations is a

mal makespan; (iii) the development of the Monte Carlo aloloroacrpatural extension of the standard (deterministic) job shop scheduling

for evaluating solutions; and (iv) the design and empirical analysisproblem (JSP). A JSP involves a sébf activities, where each; €

of three solution techniques: an approximately complete techniqueA h_ets a pos_ltlve duratiod;. A IS partitioned mtqobs_, E.".]d with eac_h_ .
found to be computationally feasible only for very small probIems,Jbb is ass_omated a total ordering on that set_of acgvmes. No activities
and two techniques based on finding good solutions to a deterministltgalt require the same resource can overlap in Fhelr e>.<ecut|on.and once
scheduling problem, which scale to much larger problems. an activity is started it must be execut_e_d for |§s entire duration. We
represent this formally by another partitiondf into resource sets
A solutionconsists of a total ordering on each resource set, which
1 INTRODUCTION does not conflict with the jobs ordering, i.e., the union of the resource
orderings and job orderings is an acyclic relation.4nThus if A;

Proactive scheduling techniques seek to produce an off-line SChedU%dAj are in the same resource set, a solution either ordlebgfore
that incorporates a model of uncertainty, with the goal of building 4, or A, after A;. A partial solutionconsists of a partial ordering
robust schedules. In this paper, we address the problem of job shegh each resource set which can be extended to a solution.
scheduling when the durations of the activities are random variables. | et s be a solution. Apath in s (or ans-path) is a sequence of
Our main objective is to find a solution which has a probability of activities such that if4; immediately preceded; in the sequence,
execution of at least — a (with e.g.,a = 0.05) and which has a  eijther (i) A; andA; are in the same job, ant}; immediately precedes
gOOd (|dea”y, m|n|mal) probabilistic makespan. Thisisa Cha”engingAj in that job, or (") Al andAj are in the same resource set and
problem as simplgvaluatinga solution appears to be hard. To search grders A; beforeA;. The lengthlen(r) of a pathr (of a solution),
for such a solution, we define a Monte Carlo branch-and-bound alggs equal to the sum of the durations of the activities in the path, i.e.,
rithm. At each node, the search is pruned if we can be almost certaiEA_ _d;. Themakespamake(s) of a solutions is defined to be
(based on the Monte Carlo simulation) that the partial solution cannothe fength of the longest-path. Ans-path is said to be aritical
be extended to a solution better than our current best solution. OW-pathif the length ofr is equal to the makespan of the solution. The
empirical results indicate that such a technique is only practical foiinimum makespaof a job shop scheduling problem is defined to
very small problems. The other methods we introduce make use qfe the minimum makespanake(s) over all solutionss.
the highly developed solution methods for the deterministic problem  An independent probabilistic job shop scheduling problerthe
to generate promising solutions based on deterministic assumptionsame as the JSP, except that the duraipassociated with an ac-
These solutions are then evaluated using Monte Carlo simulatiorjvity 4; € A is a random variablad; has distributionP;, expected
We investigate both constructive search and tabu search generatiQgiue ;; = E[d;] and variancesr? = Var[d;]. These random vari-
techniques and our experimental results indicate that these perforgples are fully independent. The length of a patbf a solutions
almost as well as the branch-and-bound technique for small problemg now a random variable, which we write B (). The makespan
and greatly out-perform it on larger problem instances. make(s) of solutions (the length of the longest path i) is there-

A secondary objective is to find a lower bound for the minimal fgre also a random variable.
probabilistic makespan. We show that such a lower bound can be |n the probabilistic job shop scheduling problewe have a joint
generated from a lower bound for a particular deterministic problemprobability measure® over the durations vectors. (The intention is

In the next section we define probabilistic job shop schedulingthat this will be such that we can efficiently sample with the joint
problems and discuss related work. In Section 3, we present a lowgfensity function.) Here, for activityl;, distribution P; is defined to
bound on the minimal makespan. Section 4 describes the use %fethe appropriate marginal, with expected valuand Variance—fl
Monte Carlo simulation for eVaIUating solutions. In the fO”OWing We fix a valuea € (0705}’ our aim is to find as small a
section, the Monte Carlo branch-and-bound and two heuristic algogalue of D as possible such that there exists a solutiowith
1 This work has received support from Science Foundation Ireland undeFr(make.(s) < D) >1-a,ie, Pr(make(s) > D) < o. Cal

Grant 00/P1.1/C075 and ILOG, SA. Dao(s) = inf{D : Pr(make(s) < D) > 1 — a} thea-makespan

2 Cork Constraint Computation Centre, Department of Computer Sciencedf s, and letD,, (the a-minimum makesparbe the minimum value
University College Cork Cork, Irelandc.beck,n.wilsop@4c.ucc.ie of D.(s) over all solutionss. It can be shown that there exists a




solution s with Pr(make(s) < D,) > 1 — « (in the case of a where® is the unit normal distribution. A3 value of slightly less

continuous distribution we have equaliyr(make(s) < D) = than®~* (1 — ) will be a-sufficient, given approximate normality.
1 — «). Furthermore, for anyD’ < D,, and all solutionss, there We say thayy is B-sufficient if for any critical pathr of any so-
is more thany chance that the random makespan is more than  lution, len,(7) < 6 (). Clearly:a sufficient condition for to be
Pr(make(s) > D) > a. a-sufficient, is ifg is B-sufficient for somé3 which isa-sufficientA

Evaluating a solution in the deterministic case, i.e., finding the asg-valueq is B-sufficient if and only if for any critical pattr of any
so_ciated makespan, can bg achieved ir_l !ow d_egree polynomial timﬁ)lutionzmﬁ pitq ZAiew o; < ZAZE” pi+B /ZAieﬂ o2,
using a longest path algorithm. The disjunctions of resource con-
straints turn this very easy problem into the NP-complete JSP [6]that is,g < B
PERT networks, on the other hand, generalize this simple longest- = VIx Average, ..o
path problem by allowing durations to be independent random varitivities in pathr.
ables, leading to a #P-complete problem [7]. The probabilistic JSP A crude sufficient condition for this ig < % whereL is an
makes both these generalizations. Consequently, finding the optim#PPer bound for the number of activities in any critical pattor
solutions of a probabilistic JSP looks to be very hard, and so we focu@ny solution. In particular, we could chooge= Z-. So, given that
on methods for finding good solutions. the lengths of the paths are approximately normally distributed, a

As well as PERT networks, probabilistic JSPs have some similarvalue of a little less thaﬁrl(%‘” will be a-sufficient.
ity with the problem studied in Daniels & Carrillo [3] which consid- ~ The lower bound we have derived can be seen to be quite conser-
ers a one-machine scheduling problem with probabilistic durationsvative; we approximate the random variabkake(s) by the random
This is shown to be NP-hard even though the underlying determinislength of particular path antén,(7) will tend to be a crude lower
tic problem can be solved in polynomial time. In [4], informal proac- bound forfz (7). The strength of our lower bound method, however,
tive techniques for difficult problems are presented but to our knowlds that it is computationally feasible for reasonably large problems as
edge no one has sought probabilistic guarantees for difficult underlyit uses existing well-developed JSP methods.
ing scheduling problems.

Average, o2

, whereL . is the number of ac-

3 ALOWER BOUND FOR a-MINIMUM
MAKESPAN 4 EVALUATING A SOLUTION USING MONTE

CARLO SIMULATION

In this section we show that a lower bound for theminimum
makesparD,, can be found by solving a particular deterministic JSP.
The duration of activity4; in the deterministic problem is defined

to be u; + goi, wheregq is a fixed non-negative value. Letbe a
solution, and letr be ans-path. The deterministic lengthn, (7) of

m is equal toZAiew('ui +qoi) = ZAiew i + qEAier o;. Let
make, be the minimum deterministic makespan over all solutions.
We say thay is o-sufficient if for any solutions there exists a (de-
terministic) criticals-path with Pr(len(w) > leny(7)) > «, i.e.,
there is more thamx chance that the random path length is greater
than the deterministic length.

For a givenD we want to assess if there exists a solution for which
there is a chance at mastthat the random makespan is greater than
D. Our methods will all involve generating (partial) solutions, and
testing this condition.

Evaluating a solution amounts to solving a PERT problem with
uncertain durations, a #P-complete problem. As in other #P-complete
problems such as the computation of Dempster-Shafer Belief [14], a
natural approach to take is Monte Carlo simulation [2]; we do not
try to make an exact computation but instead choose an accuracy
level 6 and require that with a high chance our random estimate is
within § of the true value. The algorithm then has optimal complexity
(low-degree polynomial) but with a potentially high constant factor
corresponding to the number of trials required for the given accuracy.

To evaluate a (partial) solutiaonusing a Monte Carlo simulation:
we perform a (large) numbéy of independent trials assigning val-
Finding a-sufficientg-values ues to each random variable. This generates a deterministic problem,

In the rest of this section, we assume an independent probabilistiand we can check very efficiently if the corresponding makespan is
’ reater thanD; if so, we say the the trial succeeds. The proportion
JSP. Letu, be E[len(r)], the expected value of the length of g Y prop

L ' 2 X of trials that succeed is then an estimatePefmake(s) > D).
whichis equaltd) , . ui. Letor = Var[len(m)], the variance of £ 0 cace of independent probabilistic JSPs we can pick the ran-

the length ofr, which is equal tdy_ , o7, since we are assuming  gom durations vector by picking, using distributi&n a value ford;

that the durations are independent. Bop> 0, write 05 () for - +  for each activityA;. For the general case, picking random durations

Box =", . pi+By/> . .. 0% We say that is a-sufficient vector vx_/iII s_till be efficient in many siFuations; for example, if the
X i distribution is represented by a Bayesian network.

Let T be the proportion of trials that succeed, which is an estimate
of p = Pr(make(s) > D), the chance that a randomly generated
durations vector leads to a makespan (for solutipgreater tharD.

The expected value d@F is equal top. The standard deviation Gf

Proposition 1 For a probabilistic JSP, supposgs a-sufficient, and
let D' < make, be a lower bound for the deterministic minimum
makespan. Then for any solutien Pr(make(s) > D) > «
ThereforeD' is a lower bound for the:-minimum makespaf,, .

if for any critical pathr of any solutionPr(len(w) > 65(7)) > «,
i.e., there is more than chance thatr is more thanB standard
deviations longer than its expected length.

If each duration is normally distributed, théen () will be nor-
mally distributed, since it is the sum of independent distributions.
Even if the durations are not normally distributéein () will often  is 1/ 2422, The random variabla/ T is binomially distributed, and
be close to being normally distributed, by the central limit theorem.so (because of the deMoivre-Laplace limit theorem) we can use a
So Pr(len(w) > 6p(m)) will then be approximately — ®(B), normal distribution to approximatg.



When is the solution good enough? An Approximately Complete Branch-and-Bound Algorithm

A solution is good enough when we can say with confidence that, fosiven the ability to establish a neWw value from a complete se-
our fixed valuen, Pr(make(s) > D) < . Based on the above, we quence of activities in each resource set, and the ability to test if par-

therefore need the observ&do be at least a little smaller than

We shall use a confidence interval-style approach. Ket> 0.
Recall thatp is an unknown quantity that we want to find infor-
mation about. We say thap“> « is K-implausible given the re-
sult 7" if the following condition holds:p > « implies thatT
is at least K standard deviations below the expected value.,
T<p-J=vp(1-p) o o

If it were the case that > «, and p > « is K-implausible given

tial sequences will not lead to lowér values, the obvious choice for
search is a branch-and-bound (B&B). If we are able to cover the en-
tire search space, such an approach is approximately complete with
confidence related to our choice &f.

The B&B tree is a (rooted) binary tree. Associated with each node
e in the tree is a partial solutiog., which is a solution if the node
is a leaf node. The empty partial solution is associated with the root
node. Also associated with each non-leaf neds an activity, A;,

T”, then an unlikely event would have happened. For example, withwvhich has not been ranked in its resource set in partial solution
K = 2, (given the normal approximation), such an event will only The two nodes below extends.: one ranks4; as the next activity

happen about once evety experiments; ifK = 4 such an event
will only happen about once every 32,000 experiments.

If Pr(make(s) > D) > ais K-implausible given the resulf
then we can be confident thBt:(make(s) > D) < «, so thatD
is an upper bound ab.,(s) and hence of the.-minimum makespan

in its resource set, the other postporkgo be ranked later [9]. This
branching scheme searches for non-delay schedules [5].

A value of global variableD* is always such that we have confi-
dence (corresponding to the choicefof that there exists a solution
s with D, (s) at mostD*. Whenever we reach a leaf nodewe

D,. The confidence level, based on a normal approximation of thdind the D associated with a solution. by Monte Carlo simulation.

binomial, is®(K), where® is the unit normal distribution.
Similarly, for any o between0 and 0.5, we say thap < «is

K-implausible given the resuff’ if the following condition holds:

p < « implies thatT is at leastK standard deviations above the

expected value, i.€T; > p + \/—Kﬁ\/p(l —p).

K-implausibility cannot be tested directly using the definition

sincep is unknown. Fortunately we have the following result.

Proposition 2 With the above definitions:

(i) p> ais K-implausible giverT iff T < o — % a(l—a).

(i) p < ais K-implausible giveriff T > a + J=+/a(1 — a).

Part (i) of this result shows us how to evaluate a solutiomith
respect to a bound: if we generatél” using a Monte Carlo simula-
tion which is at Ieast\/—Kﬁ a(1 — «) less tharmx then we can have
confidence thab is an upper bound fab.,(s).

Finding D from a given solution

We setD* := min(D*, D). Variable D" is initialized to some high
value.

At non-leaf nodeg we make a check to see if it is worth exploring
the subtree below. We perform a Monte Carlo simulation for partial
solutions. using the current value dD*; this generates a resut.

We use proposition 2(ii) to determineBfr(make(s.) > D*) < «

is K-implausible giverl’; if it is then we backtrack, since we can be
confident that there exists no solution extending the partial solution
se that improves our current best solutionHfis chosen sufficiently
large then we can be confident that we will not miss a good soldtion.

We refer to this algorithm as tHdCBBalgorithm.

Heuristic Algorithms

The main computational weakness of the MCBB algorithm is that

the pruning condition depends on simulation at each node. The prun-
ing techniques developed in constraint-based scheduling are ineffec-
tive as they assume deterministic durations and therefore the implicit
lower bounds calculated using, for example, the mean durations, are
too weak. To reduce this dependency, we present two heuristic al-
gorithms that make use of deterministic scheduling problems to pro-

The Monte Carlo simulation can be adapted to generate a justjyce candidate solutions that are then evaluated using simulation.

satisfactoryD from a solutions. We simulate the values afiake(s)
and record the distribution. We decide on a valudsgfcorrespond-
ing to the desired confidence, and chodseninimal such that the
associated” value satisfies’ < o — \/—Kﬁw/a(l — «). Then by
Proposition 2(i),Pr(make(s) > D) > « is K-implausible given
T. We can be confident th&r(make(s) > D) < «, i.e., that
D.(s) < D.

5 SEARCHING FOR SOLUTIONS

Recall that our aims in solving the probabilistic JSP are to find a

a-minimum makespan and to find a lower bound ondhinimum

makespan. Ideally, we would like these two values to be identical

A simple constructive search algorithm can be developed by first
finding a good initial solution to a deterministic problem. Subse-
guently, deterministic solutions,, as good or better than the ini-
tial solution are enumerated and each one is simulated to determine
D..(s). We use the same constructive algorithm for both phases. This
algorithm searches only for non-delay schedules by using the same
branching scheme as MCBB but also strong constraint propagation
[12, 8]. For small problems (sizE) x 10 or smaller), an optimal de-
terministic solution is easily found and proved in the first phase. The
second phase therefore enumerates the optimal, non-delay determin-

r{'stic schedules. For larger problems, a time limit is placed on the first

phase, and the simulated solutions are those which are as good or

Ibetter than the best solution found in phase 1. We denote this tech-

In practice, due to limits on computational resources this may not pLave asNDf as the solutions to be simulated are filtered to be good,

possible arld Sowe aimto make these two values as close as pos.s'biq_%ecause we are doing a very large number of tests, we need much higher
As shown in Section 3, a crude lower bound can be found by solving confidence than for a usual confidence interval; fortunately, the confidence
a deterministic JSP with the appropriate choice of activity durations. associated with is (based on the normal approximation of a binomial,

In this section, we present how the Monte Carlo simulation results 2nd the approximation of a tail of a normal distribution) approximatety

. . . . 1 —3K? i
presented in the previous section are used in search. ®VaR€ : andsotends thextremely fast a increases.




non-delay deterministic solutions. very plausiblya-sufficientg-value (see Section 3). We solved each

We can also use local search to generate a sequence of determinstance using constraint-based tree search incorporating the global
istic solutions that are then simulated. Using an implementation otonstraint propagation used above and using a texture-based search
Nowicki & Smutnicki's TSAB tabu search algorithm [11], whenever heuristic [1]. A maximum time of 600 CPU seconds was given. All
a solution is found with a deterministic makespan as good or betproblems smaller tha20 x 20 were easily solved to optimality. None
ter than the best makespan found so far, we simulate it. As with thef the 20 x 20 problems were solved to optimality. Therefore, the
NDf algorithm, the solutiongs, with the lowestD,(s) is retained.  lower bound for those problems is approximate.

We denote this technique aabuf An impression of the overall results can be gained by looking at

For these techniques, it is necessary to assign fixed durations the bold entries in Table 2. MCBB dominates on small problems, the
each activity. A standard approach is to use the mean duration. Howtwo heuristic methods are strong for the medium size problems, and,
ever, in such cases there is no representation of the uncertainty sdor the largest problems, Tabuf is superior. In terms of¢halues,
rounding that duration, and this does not take into account that wehere is little difference on small problems but fbix 6 and larger
want a high probability { — «) of execution. A more general ap- there is a clear disadvantage fpr. This demonstrates that incorpo-
proach is to heuristically use the formulation for the lower bound onrating uncertainty information into the deterministic durations for the
a-minimum makespans presented in Section 3: the duration of adieuristic algorithms has benefits.
tivity A; is defined to bg:; + qo;, whereq is a fixed non-negative For the3 x 3 problems, MCBB terminates without timing out.
value. Since we are no longer limited to producing a lower bound;Therefore, theD..(s) solutions are approximately optimal. The qual-
we have flexibility in selecting. Intuitively, we want ag-value that ity of the lower bound formulation can therefore be assessed by look-
leads to a situation where good deterministic solutions also have lowng at the optimality gap for these problems. This is the difference
values ofD,, (s). We experiment with a number gfvalues based on between the best mean makespan found and the mean lower bound
the analysis in Section 3. expressed as a percentage of the mean lower bound. For low uncer-
tainty, the gap for the& x 3 problems is only 2.3% but increases
6 EMPIRICAL INVESTIGATIONS to over 10% for more un_certain problems. We expect the guality of

the lower bound calculation to also worsen somewhat with increased
Our empirical investigations examine five sets of probabilistic JSPgroblem size. Therefore, given that the gap for uncertainty level 0.1
of size {3 x 3,4 x 4,6 x 6,10 x 10,20 x 20} with three uncer- across all problem sizes grows only slightly, we can expect that the
tainty levelsu; € {0.1,0.5,1}. A deterministic problem is gener- solutions found for low uncertainty across all these problem sizes are
ated using an existing generator [13] with integer durations drawnieasonably close to optimal.
uniformly from the interval [1, 99]. Three probabilistic instances at  In comparing the two heuristic algorithms, when the NDf can enu-
different levels of uncertainty are then produced by setting the meamerate all optimal non-delay solutions (i.e., ud @ox 10) within the
durationsu; to be the deterministic durations and by uniformly draw- time limit, it is competitive, at least at songevalues with the Tabuf
ing the standard deviatian; of the duration of an activity4;, from algorithm. On the20 x 20 problems, Tabuf is able to find solutions
the interval [O,u;p;]. The distribution of each duration is approxi- with much lower (deterministic) makespans than NDf. We believe
mately normal. For each problem size, we generate 10 deterministitat the performance difference in termsiof,(s) is due to better
problems which are transformed into 30 probabilistic instances.  underlying deterministic makespans found by Tabuf.

The smaller problem sizes were chosen to demonstrate the behav-Each cell in Table 2 is the mean value over 10 independent runs
ior at the apparent size limit of the MCBB algorithm: MCBB is un- of 10 problems. The observed mean standard deviations for each cell
able to completely solve problems within 600 CPU seconds of sizére very small: the maximum over all cells is less than 2.2% of the
larger thar3 x 3. The20 x 20 problems were chosen as determin- corresponding mean value with the mean over all cells being less
istic problems of that size cannot be generally solved to optimalitythan 0.7% of the corresponding mean makespan.
using current technology within the 600 CPU seconds. The hardware
used for the experiments is a 1.8GHz Pentium 4 with 512 M of mai
memory running Linux RedHat 9. n7 FUTURE WORK

Given the stochastic nature of the simulation, each algorithm is rufrhere are two directions for future work on the algorithms presented
10 times on each problem instance with different random seeds. Eagh this paper. First, MCBB could be improved to make more use of
run has an overall time limit of 600 CPU seconds. Each Monte Carlgjeterministic techniques and/or to incorporate probabilistic reason-
simulation usesV = 1000. We report the mean stochastic makespaning into existing deterministic techniques. For example, a number
that each algorithm found over each run on each instance. of deterministic lower bound formulations for PERT networks exist

We experimented with foug values displayed in Table 1. In i the operations research literature [10] that may be used to eval-
all cases, we seB = 1.645 correspondingx = 0.05. Valuegs  yate partial solutions. Another approach to improving the MCBB
was found for each instance by Monte Carlo simulation: simuIatingpencormance is to incorporate explicit reasoning about probability

100000 paths of activities. distributions into standard constraint propagation techniques. Tech-
niques like the longest path calculations and edge-finding make in-
qo | ¢ g2 g3 ferences based on the propagation of minimum and maximum values
0| B | atas | B \/AverageAiHag for temporal variables. We believe that many of these techniques can
v 2 v Average, ..o be adapted to reason about probabilistic intervals.
Table 1. Theg-values used in the experiments. A second direction for future work is the improvement of the

heuristic algorithms. The key advantage of these algorithms is that

they make use of deterministic techniques for scheduling. By trans-

forming probabilistic problems to deterministic problems, we can
A lower bound for each instance was found using a simple,  bring a significant set of existing tools to bear on the problem. Further



Gap

Problem || Unc. Lower qo q1 q2 q3
Size Level || Bound 1) || MCBB || NDf | Tabuf || NDf | Tabuf || NDf [ Tabuf || NDf | Tabuf || (%)
0.1 258 264* 265 | 266 265 | 267 265 | 267 265 | 267 2.3
3x3 0.5 301 312* 318 318 317 317 316 316 316 316 3.7
1 375 414~ 433 432 425 426 425 424 425 423 10.7
0.1 322 332 331 331 331 331 331 331 331 331 2.8
4x4 0.5 375 396 401 401 401 399 402 399 402 400 5.6
1 433 492 515 510 504 501 505 502 507 501 13.6
0.1 502 546 516 | 516 515 | 515 515 | 516 515 | 516 2.6
6x6 0.5 569 643 619 | 620 622 | 619 620 | 624 620 | 620 8.8
1 642 794 783 781 765 761 763 764 764 763 185
0.1 827 961 873 | 853 863 | 856 860 | 854 862 | 855 3.1
10 x 10 0.5 913 1119 || 1038 | 1027 || 1025 | 1022 || 1024 | 1023 || 1020 | 1025 || 11.7
1 1026 1367 || 1291 | 1283 || 1265 | 1270 || 1265 | 1264 || 1269 | 1271 || 23.2
0.1 1672 1942 1857 | 1732 || 1833 | 1723 || 1841 | 1723 || 1798 | 1723 3.1
20 x 20 0.5 1789 2235 2169 | 2053 || 2142 | 2037 || 2147 | 2027 || 2134 | 2032 || 13.3
1 1943 2759 2690 | 2584 || 2635 | 2538 || 2629 | 2532 || 2602 | 2528 || 30.1

Table 2. The lower bounds, mean makespans for each algorithm, and the percentage difference between the best solution found and the lower bound. *’

indicates a set of runs for which we have, with high confidence, found close-to-optimal makegpadicates approximate lower bounds. The mean
makespans within 0.5% of the best mean makespans are shown in bold font.

study is needed to find additional ways to do this transformation. Foirmportant. This paper represents a step in that direction.

example, we can envision a search that adaptively chapgabkies

during the search in order to find those that lead to solutions WitREFERENCES
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and how to schedule up- and down-stream factories are all affected
by an individual schedule. Differences between a predictive schedi4]
ule and its execution can be a significant source of disruption lead-
ing to cascading delays across widely separated entities. The ability,
therefore, to develop schedules that are robust to uncertainty is very
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