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Abstract: We demonstrate the first 2.5D integrated, wavelength division multiplexing, silicon 

photonic receiver. The multi-chip module utilizes a silicon interposer to integrate the four-channel 

photonic cascaded microdisk receiver with four electronic transimpedance amplifiers. 

 

1. Introduction 

Exponentially increasing bandwidth demands of data centers and high-performance computers [1] presents a need to 

consider alternative interconnect technologies beyond electrical interconnects. Silicon photonics offers a solution by 

combining high bandwidth, energy efficiency, low attenuation, parallelization through wavelength division 

multiplexing (WDM), and the ability to build on the mature CMOS industry [2]. Applying silicon photonics to data 

center interconnects requires interfacing to electronic systems, as computation originates and terminates in the 

electrical domain. Additionally, photonics requires driving circuitry to amplify electrical signals for modulators and 

from photodiodes. The integration of driving electronics with photonics is a crucial design consideration, impacting 

transceiver bandwidth and energy efficiency. Receiver parasitics reduce swing voltage, introduce noise [3], and 

lower system bandwidth by influencing the transimpedance amplifier’s (TIA) input pole [4].  

 Various multi-chip module (MCM) integration approaches between electronic integrated circuits (EICs) and 

photonic integrated circuits (PICs) have been demonstrated: monolithic [5], 2D [6], 3D [4], and 2.5D [7]. Our MCM 

receiver utilized 2.5D integration, in which the PIC and EIC are flipped side by side on top of an interposer. Our 

interposer was a thinned silicon substrate to provide a platform for electrical connectivity and through silicon vias 

(TSVs) to connect the top and back side of the interposer. 2.5D integration presents a compromise between 

acceptable parasitics and high-density connections with a platform for scalability. The interposer can be fabricated 

with pad pitches comparable to those of PICs and EICs, allowing for dense microbumps or copper pillars with low 

parasitics. The interposer supports flip chipping numerous ICs, providing an avenue for scalability. In this paper, we 

will outline our receiver architecture and report on its performance. 

2.  Receiver Design 

The PIC receiver architecture is composed of four demultiplexing microdisks coupled to a bus waveguide. The 

microdisks have doped heaters to tune their resonances, which are evenly spaced across the free spectral range. The 

drop ports of the demuxes are connected to Germanium photodiodes. The photodiode output is connected to the 

input of a single channel TIA via a pair of stud bumps and a trace on the interposer. Four TIAs are flipped next to 

the PIC to accommodate the WDM four channels. The output of the TIAs are stud bumped to the interposer and 

routed to the backside of the interposer through TSVs. Ball grid array (BGA) connections interface the back of the 

interposer to a PCB, where the signals are routed with microstrip transmission lines to SMAs. The DC signals for 

the PIC heaters and EIC supply voltages are routed in a similar manner, but terminate in DC connectors on the PCB. 

The PIC was fabricated through AIM Photonics using the AIM process design kit (PDK). The interposer was 

fabricated through SUNY CNSE as a custom process. The EICs were commercial bare die Texas Instruments TIAs 

designed to operate up to 11.3 Gbps. The assembled prototype can be seen in Fig. 1a.  

3.  Receiver Results 

The bandwidths for the four channels can be seen in Fig. 2a. The bandwidth was measured by modulating an 

external Mach Zehnder modulator with a sine wave source. For each channel, a tunable laser was set to the 

appropriate microdisk demux’s resonance, and the sine wave source was swept from DC to 20 GHz. The output of 

the TIA was sent to an electrical spectrum analyzer to measure the received tone’s power, and were normalized with 

the bandwidths of the cables and modulator. The measured bandwidths suggest an electrical resonance in the 

assembled receiver prototype at 7.5 GHz. Additionally, channel 1 is about 20 dB below the other channels, 

suggesting that there may be a partial connection in one of the stud bumps or BGA bumps. The BERs for channel 3 

can be seen in Fig. 2b. The BERs were measured by modulating the external Mach Zehnder with PRBs 215-1 data  
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Fig. 1 a) The assembled MCM receiver prototype. b) Eye diagrams for the outputs of the four channels at 7 Gbps 

from a pulse pattern generator. The external laser was set to be dropped by the microdisk demux’s resonance, and 

the output of the TIA was sent to a bit error rate tester. The input power into the prototype was varied with an 

external variable optical attenuator. The optical power into the prototype was measured, and the received power was 

calculated by subtracting the combined 7.4 dB optical loss from the edge coupler and demux microdisk. Error free 

performance (1x10-9) was achieved at 5 Gbps with -10.5 dBm received power. 

a) b)

 
Fig. 2 a) The bandwidths for the both the positive and negative outputs of the four receiver channels. b) The BERs at different data rates for a 

single channel of the receiver prototype. 

4.  Conclusions 

We demonstrated a multi-chip module silicon photonic receiver, with 2.5D integrated PIC and EICs flipped on top 

of a thinned silicon interposer. The WDM receiver featured four channels, with microdisks providing the 

demultiplexing to photodiodes to interface to the single channel bare die TIAs. The receiver design targeted 11.3 

Gbps per channel. Error free performance was demonstrated at 5 Gbps with -10.5 dBm received power. This MCM 

receiver prototype demonstrates a scalable approach for incorporating silicon photonics into datacenters. 
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