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Abstract 

We report the in-situ self-assembly of TTF, TTF•+ and  or into p-type semiconductors on the surface 

of Pt microparticles dispersed in water/acetonitrile mixtures. The visible light photoactivation of these self-

assemblies leads to water oxidation forming O2 and H+, with an efficiency of 100 % with respect to the initial 

concentration of TTF•+. TTF•+ is then completely reduced to TTF upon photo-reduction with water. The Pt 

microparticles act as floating microelectrodes whose Fermi level is imposed by the different redox species in 

solution; here predominantly TTF, TTF•+ and HTTF+, which furthermore showed no signs of decomposition in 

solution. 

 

Keywords: Water Oxidation, Self-assembly, Tetrathiafulvalene, Redox Electrocatalysis, Photocatalysis. 
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 2 

Introduction 

Inspired by the design of the ‘Z-scheme’ in Nature, photocatalytic or photoelectrochemical water splitting, 

also referred to as artificial photosynthesis, remains an attractive alternative to convert solar energy into 

chemical energy. 1-9 If much progress has been made on the photo-reduction of protons to hydrogen, a major 

deadlock is still the photo-oxidation of water to oxygen under visible light irradiation.5  

The literature on water oxidation in aqueous media is extensive.	 10-18 A common strategy to photochemically 

evolve O2 involves either the direct absorption of visible light by a semiconductor, or the coordination of a 

molecular photosensitizer to the surface of a wide band gap semiconductor, such as TiO2.	 3, 5, 9 After photo-

excitation, holes and electrons then migrate to the surface of the semiconductor and take part in the water 

oxidation reaction. 5, 9 In order to avoid recombination and increase efficiency, the carriers should be separated 

as far (or as long) as possible on the surface of a photocatalyst, where four successive charge separation events 

are required to release O2. 3, 5, 9 Combining efficient visible light absorption, stable charge separation, and fast 

water oxidation catalysis is yet extremely challenging.  

Significant progress has been achieved in the field of sensitisation of semiconductors using a wide range of 

metal complexes, organic dyes and porphyrins. 9 Ruthenium–polypyridyl complexes are extensively studied 

photosensitizers for water-splitting photo-anodes, due to their suitable redox potentials, good electrochemical 

stability, high molar absorptivity, long-lived excited-state lifetimes and broad coverage in the visible region. In 

addition, replacement of the ancillary ligands has proven to enhance significantly their performance. 9 

Porphyrins have also been used to study photoinduced electron transfer to catalytic electron mediators. The 

absorption spectra of porphyrins are usually much broader than that of the Ru complexes, extending towards 

the near-IR, with high molar extinction coefficients. 9  The self-assembly of porphyrins is a reliable approach 

for the immobilization of zinc porphyrins on TiO2.9 Metal-free organic sensitizers are also potential candidates 

to replace expensive Ru-based complexes, exhibiting very high molar extinction coefficients (in the order of 

100’000 M−1·cm−1). Such sensitizers usually incorporate a donor group and an acceptor group (D-A), the later 

often anchored to the surface of the semiconductor. 9  One disadvantage of porphyrins and organic sensitizers 

is their tendency to aggregate, resulting in lower efficiencies due to faster recombination. Such problem can be 

partially overcome by introducing co-adsorbates or, bulky substituents in the synthesis of porphyrins. 9   
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 3 

Photocatalytic-based junctions have also been widely studied for efficient water oxidation in both, suspension 

and photoelectrochemical devices.	5 Among the most widely reported junction-based systems one can find:	5 

BiVO4-based junctions (BiVO4-WO3,	 19-21 BiVO4-SnO2-WO3,	 20 Co-Pi-BiVO4-WO3,	 22 CuWO4,	 23 BiVO4-

ZnO24-25, BiVO4-TiO2
26), α-Fe2O3-based junctions (Co-α-Fe2O3–NA (nano arrays)/MgFe2O4,	27 α-Fe2O3-WO3,	

28 , NiO/α-Ni(OH)2–α-Fe2O3,
29-30 IrO2 (NP)-α-Fe2O3

31 and α-Fe2O3/ZnFe2O4),	32, WO3-based junctions (Al2O3-

WO3 33 and PtOx-WO3
34) and Ag3PO4-based junctions (AgX/Ag3PO4 (X=Cl, I, Br) core–shell particles,	35 and 

Ag@Ag3(PO4)1-x/ZnO36).  

Metal−molecule interactions can also play a key role in multi-electron charge-transfer reactions such as 

oxygen reduction, hydrogen evolution and water oxidation.37 The catalysis of electron-transfer reactions on 

electrically floating conductive particles induced by a redox couple or “redox electrocatalysis” 37 was first 

introduced by  Spiro 38 and Bard 39 and recently summarized. 37 The first practical examples of metallic 

nanoparticles (NPs) acting as polarized floating electrodes, 40-41 involved the generation of inorganic and 

organic free radicals aimed at inducing changes in the Fermi level of colloidal metallic NPs (Pt, 42-45 Ag, 46-47 

Au 48-49). Such charged NPs have been used to catalyze dark and photo-induced hydrogen evolution reaction 

(HER) by means of sacrificial (irreversible) donors such as methylviologen.	39, 42, 44, 49-53 In a recent example of 

redox photo-electrocatalysis for water oxidation, the electron acceptor/sensitizer [RuIII(bpy)3]3+ was used to 

oxidize water on iridium oxide NPs. This species was found to be stable for at least few hours and was 

successfully electrochemically recycled. These experiments were performed in water–acetonitrile (MeCN) 

mixtures showing the potential of the organic media to enhance the stability of redox shuttles, a common 

problem in photocatalytic water oxidation systems.	54  

Tetrathiafulvalene (TTF, see chemical structure in Scheme 1) is an organic electron donor exhibiting two 

reversible and well-separated one-electron oxidation steps.	 55-61 The strong self-assembly properties of the 

radical cation of TTF are involved in the formation of building blocks for the synthesis of highly electrically 

conducting structures.59, 62 Such properties have been extensively explored in the fields of organic 

conductors,58-59, 61, 63 superconductors,59, 62, 64 photovoltaic cells,65 and solar cells,66 among others.58, 62 Metal–

ligand coordination strategies are widely used to create self-assembled three-dimensional (3D) architectures. 

TTF-based metal–organic frameworks (MOFs) linked by non-covalent interactions, show an extended charge 
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 4 

transport pathway within the rigid MOF structure,	 67-68 where the production of TTF•+ sites enhances 

conductivity, reaching values comparable with those of common organic semiconductors:  10–6 S·cm–1 for 

Zn2(TTFTB) and Co2(TTFTB) to 10–5 S·cm–1 for Mn2(TTFTB) and 10-4 S·cm–1 for Cd2(TTFTB) at 298 K 

where TB stands for tetrabenzoate.	67-68 Recent studies have shown TTF-based conducting polymers to exhibit 

high electrical conductivity or high charge mobility properties with potential applications in semiconductor 

and/or optoelectronic devices.	69	The radical cations of derivatives of TTF have been found to dimerize in the 

solid state, however they need to be stabilized by developing a mechanically bonded interlocked system,55, 70-71 

holding two TTF units within a pre-organized framework,72-74 or complexing the dimer with a rigid 

macrocycle. 75 Recently, oxygen evolution by TTFPF6 under illumination with a Xe source (7 W) was 

reported. 76	

Crystals grown after oxidation of TTF with nitrosonium tetrafluoroborate (NOBF4) have been reported to be 

non-stoichiometric ((TTF)3(BF4)2), with TTF moieties stacked in parallel columns arranged into layers 

alternated with  layers. 77 A TTF stack is composed of TTF° monads interspersed with (TTF+)2 dyads. 

The conductivity of this salt was found to be 2·10−5 S·cm−1, making it a semiconductor. 77  

As an alternative approach to the synthesis of heterojunctions for water oxidation, we report here the in-situ 

self-assembly of TTF, TTF•+ and or  into p-type semiconductors, which get adsorbed on the surface 

of Pt microparticles. The self-assembled microrods were noted as [ ]n@Pt and [

]n@Pt. When photo-irradiated, these semiconducting assemblies were found to trigger water oxidation with the 

production of O2 with 100 % efficiency with respect to the initial concentration of TTF•+. Pt acts as a floating 

microelectrode whose Fermi level is imposed by the redox species in solution, injecting electrons from water, 

into the photo-excited TTF-based assemblies adsorbed on Pt. The different TTF species showed no signs of 

decomposition in solution, proving their redox reversibility and chemical stability. A gradual increase of the 

proton concentration in solution results in the protonation of the initial assemblies, and thus, the formation of 

HTTF+ leads to competing reactions; indeed, HTTF+@Pt has been recently found to photo-reduce H+ to H2.	78		 	

BF4
−

BF4
− PF6

−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−
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 5 

Experimental	

Chemical Synthesis of TTF•+ by oxidation with NOBF4 

The stoichiometric oxidation of TTF (99%, Acros) by NOBF4 (synthesis grade, Merck) was performed 

entirely inside of a glove box purged with nitrogen (O2 < 1 ppm, H2O < 1 ppm). Thus, 0.175 mmol of TTF 

dissolved in 5 mL of dry MeCN (99.9% extra dry, Sigma Aldrich) were mixed with 0.175 mmol of previously 

dried NOBF4 dissolved in 5 mL of dry MeCN (Equation 1). The mixture was stirred during 24 h in the dark. 

Subsequently, the obtained solution was quantitatively transferred to a 25 mL volumetric flask and the volume 

was completed with dry MeCN. The characterization of the final solution is shown in Figure 1. For the 

photochemical experiments, an excess of 5% of TTF was used in the synthesis of TTF•+ in order to ensure that 

the reaction was complete and no oxidant was left without reacting, therefore avoiding oxidation of TTF•+ to 

TTF2+. The resulting product in solution was named , UV-vis absorption spectra and cyclic 

voltammograms were recorded in order to verify that TTF2+ was not produced. After the completion of the 

reaction, the solution was thoroughly degassed inside of the glove box in order to evacuate all the NO released 

during the reaction. The final 7 mM  stock solution was always kept inside the glove box and 

protected from the light. The chemical formation of ions in solution during TTF•+ synthesis reads:  

 

Electrochemical Synthesis of TTF•+ by Bulk Electrolysis using BuNPF6 as supporting electrolyte.  

was synthesised by bulk electrolysis in a conventional H-cell with the positive and negative sides 

separated by glass wool plug avoiding the transfer of TTF•+ to the cathodic compartment. The anodic side of 

the cell was filled with 9.5 mL of 7 mM TTF (0.066 mmol of TTF) and 0.1 M tetrabutylammonium 

hexafluorophosphate (BuNPF6 > 99.0%, Sigma-Aldrich) in dry MeCN. The cathodic side was filled with 9.5 

mL 0.1 M BuNPF6 in dry MeCN. Duocel® reticulated vitreous carbon electrodes, were used as counter and 

working electrodes, and a Ag/AgCl double-junction was used as organic reference electrode. The solutions 

TTF/TTF•+BF4
−

TTF/TTF•+BF4
−

TTF(l ) + NOBF4(l ) → TTF(l )
•+ +BF4(l )

− +NO(g)                                                                                          Eq. 1

TTF•+PF6
−
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 6 

were stirred to increase the rate of mass transport. Before the bulk electrolysis, a cyclic voltammogram was 

recorded by using a glassy carbon as working electrode in order to determine the potential for the oxidation of 

TTF (Fig. SI1a in the supporting information, SI). For the electrolysis, the potential of the working electrode 

was maintained at a constant value of 0.21 V vs TTF0/•+ until the charge reached a plateau. The final charge 

corresponds  to the number of moles of TTF in the electrochemical cell, with a 100% of Faradaic efficiency 

(Fig. SI1b). The UV-Vis spectrum of the final solution is shown in Fig 1a. For the photocatalytic 

experiments, 0.0033 mmol of TTF (5 % of the initial amount of TTF) were added to the final solution of 

 in order to have the same proportion TTF/ TTF•+ reached in the synthesis of  (see 

item above). The product in solution was named . 

Photosensitized water oxidation reaction (WOR) by and  

The photosensitized WOR experiments were performed inside the glove box in septum-sealed cells containing 

3 mL of suspensions composed of Pt microparticles (<10 µm 99.9%, Aldrich) and or

 in 20 or 50 % (v/v) water/MeCN mixtures. All solutions were prepared inside the glove box. 

Water was degassed with N2 prior insertion to the glove box. The cells were illuminated with a 455 nm Light 

Emitting Diode (LED, M455L3 Thorlabs) and stirred at 1400 rpm under anaerobic conditions in the glove box 

at 23 ± 2 ºC. Control reactions without illumination and without Pt were also performed. The evolution of the 

reaction products was followed by gas chromatography (GC), cyclic voltammetry (CV), UV-Vis spectroscopy, 

scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and mass spectrometry (MS). 

Chemical analysis 

The headspace of the septum-sealed glass vials was sampled during the photosensitized WOR by using a lock-

in syringe with a push−pull valve (SGE Analytical Sciences). The gas phase was subsequently analysed by 

injecting it into a Trace 1300 gas chromatograph from Thermo Fisher Scientific, equipped with a thermal 

conductivity detector (TCD) and a 5 Å molecular sieves (80/100 mesh) column. Argon was used as carrier gas. 

TTF•+PF6
−

TTF•+PF6
− TTF/TTF•+BF4

−

TTF/TTF•+PF6
−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF/TTF•+BF4
−

TTF/TTF•+PF6
−
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 7 

It is worth mentioning that before sampling the headspace of the reaction vessels, the solutions were degassed 

by making vacuum with the sampling syringe; thus, the concentration of dissolved oxygen in solution is 

significantly lower than that in the headspace and therefore not relevant for the quantification of produced O2. 

Prior injection, the line of injection of the GC instrument was purged with N2 and the exit of the line was 

connected to a water trap in order to avoid suction of air during the injections. 

UV-Visible absorption spectra were taken during the photosensitized WOR by using a 10 mm optical path 

length quartz cell and a UV-Vis Spectrometer (Agilent Technologies).  All the solutions were diluted down to 

50 µM prior analysis. 

The stability of the TTF species during the reaction was evaluated by electrospray ionization MS (ESI-MS) 

using a LTQ Velos instrument (Thermo Scientific) equipped with conventional heated ESI source at 2.7 kV 

potential. The reaction mixture was diluted 10 times with MeCN prior analysis and delivered to the ESI source 

with flow rate of 5 µL/min. MS analysis was performed in positive polarity with automatic gain control set up 

to 3e4, enhanced scanning mode activated and in m/z range of 100 – 1500. 

Scanning Electron Microscopy (SEM) 

SEM images were obtained by using a FEI Teneo SEM equipped with an EDX detector from Bruker. The 

sample preparation consisted in drop casting a 30 µL aliquot of the suspension (or solution) on a carbon 

conductive SEM support. After letting the sample dry completely (1 h) inside the glove box, the holder was 

immediately transferred to the microscope for analysis. The drying time was the same for all the samples. 

X-Ray Powder Diffraction (XRD) 

In order to collect enough TTF-based phase for XRD analysis, 1 mL aliquots of  and 1 mL 

aliquots of a suspension composed of , water and Pt microparticles after 12 h of 

photosensitized WOR were dried (inside of the glove box) and subsequently analysed by XRD. Powder 

diffraction was performed on a Bruker D8 Advance diffractometer using a non-monochromated Cu-source and 

a LynxEYE 1D detector. Samples were loaded on low background Si-crystal sample holders and spun during 

measurement. 

TTF/TTF•+BF4
−

TTF/TTF•+BF4
−
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 8 

Electrochemical characterization 

Cyclic voltammetric experiments were performed in a three-electrode configuration using a PGSTAT 30 

potentiostat (Metrohm, CH). For all the electrochemical analyses Ag and Pt wires were used as pseudo-

reference and counter electrodes, respectively. Prior each electrochemical measurement, the microelectrodes 

were polished with a diamond disk (particle size 0.1µm), washed with MeCN and finally dried in a nitrogen 

stream. All the solutions and the voltammograms were prepared and recorded in the glove box.  

For the characterization of the synthesized TTF•+ a carbon microelectrode (diameter = 8 µm) was used as 

working electrode and 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6, > 99.0% Sigma Aldrich) 

was used as supporting electrolyte. 

In order to study behaviour of TTF•+ in acidic conditions a series of acidified standards were analysed using a 

Pt microelectrode (diameter = 10 µm) as working electrode. The standard solutions were prepared by adding 

known concentrations of HBF4 to 1 mM solutions of TTF•+ (in the form of TTF/TTF•+BF4
–) in 20 % (v/v) 

water/MeCN mixtures. 0.1 M TBAPF6 in 20% (v/v) water/MeCN was used as supporting electrolyte. Fresh 

solutions were used for each analysis and only the first scan was recorded.  

Independently, a cell containing 2 mM TTF•+ (in the form of TTF/TTF•+BF4
–) and 1 mg Pt microparticles in 

20 % (v/v) water/MeCN mixture was prepared. From this cell, aliquots before and after 10 h of irradiation 

were taken, diluted twice with the supporting electrolyte, and analysed by cyclic voltammetry. Prior analyses 

the Pt microparticles were separated by decantation. 

	

Results and discussion 

With three absorption maxima at 343, 436 and 582 nm, Figure 1a corroborates the chemical ( ) and 

electrochemical ( ) oxidation of TTF to TTF•+. 78 No signals associated to the formation of TTF2+ or 

any other compounds were observed. Figure 1b shows the near steady-state cyclic voltammogram obtained 

after chemical oxidation of TTF, the zero-current in the region around 0.2 V (starting potential) confirms the 

TTF•+BF4
−

TTF•+PF6
−
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 9 

total oxidation of TTF. The same voltammogram was obtained upon complete electrochemical oxidation 

during the synthesis of  (not shown). 

  

Figure 1. a. UV-vis absorption spectra in dry MeCN of 50 µM TTF and 50 µM TTF•+ with  and as counter-ions (CI). b. 

Cyclic voltammogram of 1.0 mM TTF•+ ( as CI) in dry MeCN (0.1 M TBAPF6 as supporting electrolyte) taken with a 8 µm 

carbon microelectrode. The scan rate was 25 mV·s–1. 

 

Scheme 1. Chemical structure of TTF, HTTF+ and TTF•+ 

 

For the photosensitized WOR with or  as electron acceptor/photosensitizers in 

water/MeCN mixtures, the reaction cells were illuminated with a 455 nm LED and stirred at 1400 rpm under 

anaerobic conditions in the glove box. The LED power, the initial concentration of  and the amount of 

Pt microparticles were set to 90.8 mW·cm–2, 2 mM, and 1 mg, respectively. The optimisation of these 

TTF•+PF6
−

BF4
−

PF6
−

BF4
−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF•+
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 10 

parameters is summarized in the SI, section SI2. Interestingly, 24 h-aged solutions of and 

were found to be 30 to 60 % more active than freshly prepared solutions (which will be 

discussed more in detail in the SEM section), thereafter all the photochemical experiments were performed 

with 24 h-aged solutions. 

In order to study the effect of the water content on the performance of , photo-irradiation in 20 % (v/v) 

and 50 % (v/v) water/MeCN mixtures were performed. As shown in the gas chromatograms in Figure 2, 

oxygen is produced by the photosensitized WOR by both,  and  (no other 

electrolyte involved in the reaction) and Pt microparticles. Control reactions in the dark with Pt, and under 

irradiation without Pt did not yield O2 indicating that the oxygen generation by TTF•+ requires both light and 

Pt microparticles. 

Figure 2 shows that in 20% (v/v) water/MeCN mixtures the evolution of O2 by photo-excitation of 

or  reaches a maximum after 10 h of reaction with an efficiency of about 70 % 

with respect to the initial concentration of TTF•+ (details of the calculation in Section SI2). In contrast, in 50% 

water/MeCN mixtures, both,  and  yield O2 with 100% efficiency within 20 h 

of reaction. Thereafter, the concentration of O2 starts to decline due to O2 reduction. After 48 h of photo-

reaction about 20 nmoles of H2, (accounting for < 1 % efficiency) were also detected due to proton reduction. 

Indeed, the formation of protons during the WOR leads to the formation of HTTF+. Both, the selective 

reduction of O2 to H2O by HTTF+ in acidic media in the dark (Eq. SI3) 79 and the reduction of protons on Pt by 

photo-excited HTTF+ (Eqs. SI4 to SI6), 78 have been previously reported. It should be noted that the reduction 

of protons by photo-excited HTTF+ is more efficient at proton concentrations higher than 10–1 M and in 

presence of a strong acid. 78 Therefore, the slow and inefficient H2 evolution observed in this work is due to 

the low proton concentration, which is never higher than 10–3 M as shown by CV (vide infra). From a safety 

standpoint, there is not risk of mixing H2 and O2 in this experiment as H2 is produced in trace amounts (< 20 

nmole). 

All in all, the WOR by photo-excited  can be summarised as: 

TTF/TTF•+BF4
−

TTF/TTF•+PF6
−

TTF•+

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF•+
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 11 

4TTF•+ + 2H2O Pt,hv⎯ →⎯⎯  4TTF + O2 + 4H+                                                                                                                                  Eq. 2  

The TTF molecules formed can be further protonated to form HTTF+. 

Figure 2 also shows that the nature of the anion does not play a relevant role in the photo-activation of , 

as the evolution of O2 by both  and proved to be the same.  

  

Figure 2. Gas evolution during photosensitized WOR. Initial conditions: 2 mM TTF•+ and 1 mg Pt (< 10 µm) in 20% v/v (dotted lines) 

and 50 % v/v (full lines) water/MeCN (W/MeCN) mixtures. Black and red plots correspond to the photocatalytic experiments 

performed with  and , respectively. All the samples were vigorously stirred and irradiated with a 455 

nm LED. Inset:  chromatograms obtained at after different times of the WOR by  in 50 % (v/v) water/MeCN mixtures. 

Even though the amount of O2 detected is 50 times higher than that of H2, the signal associated to H2 is comparable to that of O2 due to 

the detection method. Indeed, the difference in thermal conductivity between H2 and Ar (carrier gas) is 20 times higher than that 

between O2 and Ar, accounting for a higher sensitivity for the detection of H2.   

 

Considering that the concentration of protons increased as the WOR progressed, cyclic voltammetry was used 

to study the behaviour of TTF•+  in acidic conditions (Fig. 3). As described in detail in the experimental 

section, a series of acidified standards were analysed by cyclic voltammetry using a Pt 

microelectrode (diameter = 10 µm) as working electrode. Such configuration closely mimics the TTF-based 

TTF•+

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF/TTF•+BF4
− TTF/TTF•+PF6

−

TTF/TTF•+BF4
−

TTF/TTF•+BF4
−
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 12 

photosensitized WOR system reported in this work where 10 µm Pt microparticles were used as 

electrocatalysts. Independently, aliquots before and after 10 h of irradiation, of a suspension containing 2 mM 

TTF•+ (in the form of ) and 1 mg Pt microparticles in 20 % (v/v) water/MeCN, were also 

analysed by cyclic voltammetry (Fig. SI2a). 

All the voltammograms in Figure 3 show two characteristic one-electron steady-state voltammetric signals 

associated to the TTF•+/TTF and TTF2+/TTF•+ redox couples. The potential window using the Pt 

microelectrode is limited by the reduction of protons in the negative side and the oxidation of water in the 

positive side. The wave observed between the reduction of protons and the reduction of TTF•+ corresponds to 

O2 reduction as confirmed by the [H+]=1.8·10–2 M standard, which prior electrochemical analysis was 

saturated with O2 (see section SI4 for more details, Fig. SI2b). The sharp peak observed on the return anodic 

sweep after the reduction of TTF•+ to TTF (0.55 V vs SHE) indicates the adsorption of TTF/TTF•+ assemblies 

on the surface of the Pt microelectrode (as confirmed by SEM for Pt microparticles vide infra). The scan rate 

dependence analysis of the deposits on the electrode was inconclusive as the deposit-related signals obtained 

after repolishing the electrode in between each scan were not reproducible. 

 

TTF/TTF•+BF4
−
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 13 

Figure 3. Cyclic voltammograms of acidified standards of 1 mM TTF•+ (in the form of ) in 20% water/MeCN. 

Concentration of HBF4: 7.1·10–6 M, 1.1·10–4 M and 1.8·10–2 M. Potential scan: 0.82 V (vertical dashed line) to 2.3 V, followed by 2.3 

V to negative potentials and back to 0.75 V. Inset figure: E (onset potential for proton reduction) vs log10[H+]. 

The onset potential for proton reduction dependence vs log10[H+] for the acidified TTF•+ standards, is linear 

with a slope of 0.121 V (inset Fig. 3), which accounts for a 2:1 H+/e– ratio. This behavior is due to the coupled 

reduction of protons by the Pt electrode and HTTF+, which is explained in detail in Section SI4.  

Using this electrochemical proton calibration, the proton concentration of the sample taken after 10 h of 

photosensitized WOR (Fig. SI2a) was estimated to be 1.4·10–3 M (4.3 µmoles of protons) that in accordance 

with Eq. 2 corresponds to 1.1 µmoles of produced O2, which is indeed the amount of O2 detected by GC after 

10 h of reaction (1 µmol, doted black line, Fig. 2). This analysis therefore corroborates the 4:1 ratio (H+: O2) 

expected for the photosensitized WOR described in Eq. 2. 

SEM and EDX images were taken at different moments of the photosensitized WOR (Fig. 4). The images 

corresponding to the samples prepared from fresh TTF•+ solutions (without Pt) displayed no features (not 

shown), while the samples aged during 24 h (in the dark, without Pt), showed flower-like assemblies of about 

50 µm size formed from cubic assemblies of between 5 and 25 µm (Fig. 4a). As demonstrated by the EDX 

analysis, such assemblies are composed of S and C, indicating that they are TTF-based. As a matter of fact, the 

synthesis of a mixed-valence (MV) dyad between TTF and TTF•+ ((TTF/TTF)•+) and the π-dimer (TTF•+)2, has 

been previously reported. 80 Such studies suggest that the self-assemblies formed in this work result from the 

interaction between TTF and TTF•+. Indeed, we observed that TTF•+ solutions in the dark slowly 

disproportionate, thereby generating more TTF available for self-assembly. Such TTF-based self-assemblies 

result from weak intermolecular interactions: van der Waals, CT interaction and π-π stacking. 80-81 82  

TTF/TTF•+BF4
−
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Figure 4. SEM images of TTF-based assemblies during photosensitized WOR. Conditions: [TTF•+]0= 2mM (in the form of 

), Pt=1mg, 50% (v/v) water/MeCN. 30 µL aliquots were dried on carbon paste inside the glove box. The drying time 

was 1 h for all the samples.  The inset figures are EDX images showing the distribution of sulfur (green) and Pt (red). a. TTF•+ aged 

during 24 h in absence of Pt and in dark. WOR progression in time: b. 0h; c. 5h; d. 12h; e. 72h. The images on the right of Figures 4.c, 

d, and e are close-ups of the corresponding images on the left. 

 

As mentioned above, the [TTF/TTF•+BF4
–]n@Pt assemblies formed from fresh TTF/TTF•+BF4

–
 solutions were 

found to be between 30 and 60% less active than assemblies from solutions aged during 24h, indicating that 

the flower-liked self-assemblies observed in Figure 4a are the precursors for more photo-active TTF-based 

assemblies.  

The morphology of the TTF-based assemblies on the Pt particles was found to change dynamically as the 

water oxidation progressed. For comparison, images taken prior illumination (Fig. 4b) showed only Pt 

particles.  

TTF/TTF•+BF4
−
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After 5 h of irradiation (Fig. 4c) the SEM and EDX images showed TTF-based rods of about 30 µm long and 

15 µm width growing on the Pt microparticles, which correlates with the sharp peak observed when analysing 

 by cyclic voltammetry on a Pt microelectrode. Similar TTF-based assemblies on Pt have been 

previously reported by Penner et al. 83, where crystalline TTF(Br)x was obtained by slow electrochemical 

oxidation of TTF in a bromide-containing electrolyte by a Pt NP-modified graphite electrode. The crystalline 

TTF(Br)x structure consisted of π-π  stacks of TTF•+ electron acceptors arranged in parallel to an equal number 

of (incomplete) rows of Br– electron donors (hence the sub index) .84 In such structure, electrons were 

delocalized along the TTF•+ π-π stacks that were in turn arrayed along the c-axis of the crystal, with higher 

conductivity along the c-axis compared to the perpendicular direction. This fact also explains the crystal 

preferential growth along the c-axis, resulting in long, narrow arrays.84 Interestingly in ref 84, physisorbed 

TTF, was found to be crucial for the nucleation of the (TTF)Brx nanocrystals, which is in line with the 

observation that assemblies between TTF•+ and TTF physisorbed on Pt particles, are the nucleus for larger 

assemblies and, therefore the starting point for the photosensitised WOR described here. 

After 12-24 h of reaction (Fig. 4d), the SEM and EDX images showed dense TTF-based rods as long as 150 

µm. This corresponds to the maximum of O2 production shown in Fig. 2. For further corroboration, SEM and 

EDX images of dried aliquots of the [ ]n@Pt system were also taken, revealing the same kind of 

microrods (Fig. SI3a). By 72 h (Fig. 4e), the TTF-based microrods had been replaced by amorphous and less 

dense assemblies. A corresponding close-up image (on the right) showed TTF-based film-like assemblies 

covering the Pt particles.  

SEM and EDX images of dried aliquots of TTF•+ stirred during 72 h under irradiation (without Pt), showed 

cubic assemblies 10 µm long and 10 µm width (Fig. SI3b), which are completely different from the 

morphology observed in Fig. 4e (same time of illumination in a reaction containing Pt). This indicates that the 

presence of Pt not only affects the activity of the composites but also their morphology and dimensions. It is 

important to note that the Fermi level of the Pt microparticles is constantly tuned by the composition of the 

TTF-based assemblies. 37 	

TTF/TTF•+BF4
−

TTF/TTF•+PF6
−
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In order to assess structural differences in the [ ]n@Pt assemblies during the photosensitised 

WOR, 1 mL aliquots of  and 1 mL aliquots of [ ]n@Pt in 20 % v/v 

water/MeCN after 12 h of photosensitized WOR, were dried out (inside of the glove box) and subsequently 

analysed by XRD (Fig. SI4). Bragg scattering does occur for both samples. It was attempted to model the data 

by Rietveld refinement using the only structural model reported for (TTF)3(BF4)2. 77 However, the resulting fit 

did not provide unambiguous proof for the presence of (TTF)3(BF4)2, at least not of the reported polymorph. 

The XRD pattern of the sample obtained after 12 h of photosensitized WOR, shows lesser crystallinity than 

that of the sample before reaction and a modified phase composition, with the signals corresponding to the Pt 

microparticles dominating the spectrum at 2θ > 38. A change in phase composition is expected considering 

that after photosensitized WOR the system contains TTF, TTF+ and HTTF+, which, as explained before, are 

likely to interact with each other, yielding a different packing than that reported for those three species 

independently. As a conclusion, the XRD characterization clearly shows a change in phase composition during 

the photosensitized WOR, but due to the complexity of the system, a structural model could not be assigned to 

the diffraction patterns.  

In accordance with the concept of redox electrocatalysis on electrically floating metallic particles, 37 the most 

plausible mechanism for the water oxidation by these photo-excited [TTF/TTF•+]n@Pt  assemblies is shown in 

the energy diagram illustrated in Scheme 2: In the dark, the Fermi level of the electrons on the Pt 

microparticles is determined by the Nernst potential of the redox species in excess in solution, i.e. TTF/TTF•+, 

at about 0.55V vs SHE; which is too low to trigger water oxidation. This corresponds to a Fermi level at –4.95 

eV assuming that the origin of the standard redox potential scale corresponds to –4.4 eV. However, upon 

illumination the [TTF/TTF•+]n@Pt  assemblies are photo-excited, leaving low energy holes able to accept 

electrons from the Pt particle, which in turn can oxidise water on its surface thereby producing O2 and H+ . 

Indeed, the redox potential of the photo-excited assemblies is higher than 2.5 V vs SHE considering that the 

photon energy of excitation is 2.7 eV. As shown in Scheme 2, the illumination results in a lowering of the 

Fermi energy of the Pt microparticles (more negative than –7 eV) well below the Nernst potential for water 

oxidation. 

TTF/TTF•+BF4
−

TTF/TTF•+BF4
− TTF/TTF•+BF4

−
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As the reduction of [TTF/TTF•+]n@Pt proceeds, the amount of the sensitizer TTF•+ decreases and the TTF 

formed becomes protonated (Eq. SI4). As shown previously, the redox potential of HTTF+ is in turn capable of 

reducing oxygen in the dark. 78  

 

Scheme 2. Simplified energy scheme involved in the photosensitized WOR by TTF•+ in presence of Pt microparticles.  

 

 

The stability of the TTF species in solution during the photochemical reaction was studied by UV-Vis 

absorption and MS. Figure 5 shows the gradual and complete reduction of TTF•+ to TTF during the 

photosensitized WOR. No absorption signals other than those corresponding to TTF and TTF•+ are observed 

indicating the absence of decomposition of TTF•+ during the photochemical reaction. In addition, the MS 

spectra obtained at different times of reaction (Fig. SI5), showed no decomposition products, meaning no m/z 

signals associated to the opening of the TTF rings. This accounts as evidence for the stability of the TTF 

species and their involvement in the reaction not as sacrificial electron acceptors/donors, but as reversible 

redox shuttle.  

The complete reduction of TTF•+ to TTF is an important advantage of the photosensitized WOR system 

reported in this work. As previously discussed, TTF was found to photo-reduce protons to hydrogen, oxidizing 
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TTF back to TTF•+,78 which would ultimately reset the WOR system, making the whole cycle sustainable as 

all the products of the reaction are reusable.  

 

Figure 5. UV-Visible absorption spectra taken during photosensitized WOR by TTF•+ (in the form of ). Initial 

conditions for the reaction: [TTF•+]0: 2mM, 50% (v/v) water/MeCN, 1 mg of Pt (<10µm), irradiation at 455 nm. All the solutions were 

diluted down to 50 µM with dry MeCN inside the glove box prior analysis.  

 

Conclusions 

In summary, we report photosensitized water oxidation by self-assembled [TTF/TTF•+]n@Pt in water-MeCN 

mixtures. The efficiency of the photosensitized WOR towards O2, H+ and TTF, was found to be 100 % with 

respect to the initial concentration of TTF•+. Pt microparticles act as floating microelectrodes whose Fermi 

level is imposed by the redox species in solution, here predominantly TTF•+/TTF. Thus, Pt oxidises water after 

injection of electrons into the photo-excited TTF•+-based semiconducting assemblies that act as both electron 

acceptors and photosensitizers. A gradual increase of the proton concentration in solution leads to the 

protonation of the assemblies, which shifts the Pt Fermi level to more negative values. Although the process is 

slow, the initial electron acceptor/photosensitizer TTF•+ showed no signs of decomposition in solution, proving 

its redox reversibility and chemical stability, and therefore its potential to be used as a redox shuttle for water 

oxidation. More suitable derivatives of TTF•+ (Section SI8) and more environmentally friendly and less 

expensive catalysts are being currently evaluated in order to improve the kinetics of the reaction. 

All in all, this work opens a new avenue for water photo-oxidation based on the design of self-assembled 

organic p-type semiconductors, which are shown to be efficient at accepting electrons from an electrocatalyst 

TTF/TTF•+BF4
−
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particle and driving water oxidation.  Considering the capability of photoexcited HTTF+ to reduce protons on 

Pt microparticles, the next step towards the development of a complete and sustainable artificial 

photosynthetic system is the efficient separation of protons from the WOR medium. Thus, protons can be 

reduced by TTF in a separated compartment, and the TTF•+ formed during the reduction of protons can in turn 

be used to oxidise more water. The fact that both, TTF and TTF•+ can be electrochemically recycled due to 

their stability and reversibility can be also exploited in order to make a more flexible artificial photosynthetic 

device.  

 

Associated Content 
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Figure 1. a. UV-vis absorption spectra in dry MeCN of 50 μM TTF and 50 μM TTF•+ with BF4
-  and PF6

- as 
counter-ions (CI). b. Cyclic voltammogram of 1.0 mM TTF•+ ( as CI) in dry MeCN (0.1 M TBAPF6 as 

supporting electrolyte) taken with a 8 µm carbon microelectrode. The scan rate was 25 mV·s–1. 
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Figure 2. Gas evolution during photosensitized WOR. Initial conditions: 2 mM TTF•+ and 1 mg Pt (< 10 µm) 
in 20% v/v (dotted lines) and 50 % v/v (full lines) water/MeCN (W/MeCN) mixtures. Black and red plots 

correspond to the photocatalytic experiments performed with TTF/TTF•+BF4
-  and TTF/TTF•+PF6

-, 
respectively. All the samples were vigorously stirred and irradiated with a 455 nm LED. Inset: 

 chromatograms obtained at different moments of the WOR by TTF/TTF•+BF4
-  in 50 % (v/v) water/MeCN 

mixtures. Even though the amount of O2 detected is 50 times higher than that of H2, the signal associated 
to H2 is comparable to that of O2 due to the detection method. Indeed, the difference in thermal 

conductivity between H2 and Ar (carrier gas) is 20 times higher than that between O2 and Ar, accounting for 
a higher sensitivity for the detection of H2.   
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Figure 3. Cyclic voltammograms (CVs) of acidified standards of 1 mM TTF•+ (in the form of  TTF/TTF•+BF4
-) 

in 20% Water/MeCN. Concentration of HBF4: 7.1·10-6 M, 1.1·10-4 M and 1.8·10-2 M. Potential scan: 0.82 V 
(vertical dashed line) to 2.3 V, followed by 2.3 V to negative potentials and back to 0.75 V. Inset figure: E 

(onset potential for proton reduction) vs log10[H+ ]. 
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Figure 4. SEM images of TTF-based assemblies during photosensitized WOR. Conditions: [TTF•+]0= 2mM (in 
the form of TTF/TTF•+BF4

-), Pt=1mg, 50% (v/v) water/MeCN. 30 µL aliquots were dried on carbon paste 
inside the glove box. The drying time was 1 h for all the samples.  The inset figures are EDX images showing 
the distribution of sulfur (green) and Pt (red). a. TTF•+ aged during 24 h in absence of Pt and in dark. WOR 
progression in time: b. 0h; c. 5h; d. 12h; e. 72h. The images on the right of Figures 4.c, d, and e are close-

ups of the corresponding images on the left. 
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Figure 5. UV-Visible absorption spectra taken during photosensitized WOR by TTF•+ (in the form of 
TTF/TTF•+BF4

-). Initial conditions for the reaction: [TTF•+]0: 2mM, 50% (v/v) water/MeCN, 1 mg of Pt 
(<10µm), irradiation at 455 nm. All the solutions were diluted down to 50 µM with dry MeCN inside the 

glove box prior analysis. 
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