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Abstract

To any bounded operator S on the Bergman space L2
a we associate a sequence of li-

near transforms Bn(S) ∈ L∞(D), where n ≥ 0, and prove that the Toeplitz operators
TBn(S) tend to S for some especial classes of operators S. In particular, this holds for
every radial operator in the Toeplitz algebra. Finally, we show that the inclusion of
the Toeplitz algebra into the essential commutant of the Bergman shift is proper.

1 Introduction and preliminaries

Let L(L2
a) be the algebra of bounded operators on the Bergman space L2

a = L2
a(D, dA), and

L∞ = L∞(D, dA), where D is the unit disk and dA is the normalized Lebesgue measure.
The Toeplitz operator with symbol a ∈ L∞ is defined by Taf = P (af), where f ∈ L2

a and
P is the orthogonal projection from L2(dA) onto L2

a. The Toeplitz algebra T(L∞) is the
closed subalgebra of L(L2

a) generated by {Ta : a ∈ L∞}.
In [10] we use a sequence of linear transforms (the n-Berezin transforms) Bn : L(L2

a)→L∞,
n ≥ 0, to study some problems of approximation and abelianization of algebras generated
by Toeplitz operators. Many authors have established the utility of the 0-Berezin transform
of an operator S as a tool to study some of its properties, especially when S is a Toeplitz
operator or belongs to T(L∞) (see, for instance [2] and [12]). The 0-Berezin transform of
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S ∈ L(L2
a) is usually called ‘the Berezin transform of S’ and denoted S̃. Since this paper

deals with an indexed family of such transforms, we will not adopt that notation here.

Our main purpose is to show that some bounded operators S are the norm limit of
TBn(S). Clearly, the above convergence implies that S ∈ T(L∞), a necessary condition that
we suspect is also sufficient. We give next a brief overview of the content of the paper.
The main results are Theorems 2.4 and 3.3; most of the other results are either preparatory
lemmas or corollaries of these theorems.

In this section we define Bn(S), fix notation, state some known results and give a sum-
mary of the algebraic properties of Bn that will be used later. All the results about Bn listed
here are proved in [10]. Section 2 provides criteria on an operator S for the convergence
of TBn(S) to S in the weak and the norm operator topologies. Theorem 2.4 gives a suffi-
cient condition for norm convergence. As applications, we obtain that norm convergence
holds for a Toeplitz operator Tµ, where |µ| is a Carleson measure on Bergman spaces, and
give characterizations of these operators and of Toeplitz operators with bounded symbol
in terms of their n-Berezin transforms. In Section 3 we deal with radial operators (i.e.:
diagonal operators with respect to {zn}n≥0), and show that every radial operator S in the
Toeplitz algebra is the norm limit of TBn(S). In the process we obtain a new formula for
TBn(S) when S is radial that could have further applications. We also show that a radial
operator S is compact if and only if S ∈ T(L2

a) and B0(S) ≡ 0 on ∂D. The last section is
devoted to answer a question of Englis [5], by showing that the inclusion of T(L∞) in the
essential commutant of Tz is proper. One of the main ingredients of this proof is Theorem
3.3 from the previous section. We finish the paper posing some open problems.

If z ∈ D, let ϕz(w) = (z − w)/(1 − zw) be the conformal map of D that interchanges
0 and z. The pseudo-hyperbolic metric on D is defined as ρ(z, w) = |ϕz(w)|. The ‘change
of variables’ operator is Uzf = (f ◦ ϕz)ϕ

′
z (z ∈ D and f ∈ L2

a). It is easy to see that Uz is
unitary, self-adjoint, and that if a1, . . . , an ∈ L∞,

UzTa1 . . . Ta1Uz = Ta1◦ϕz . . . Ta1◦ϕz .

For S ∈ L(L2
a) we will write Sz

def
= UzSUz. For a nonnegative integer n and z ∈ D, denote

K(n)
z (ω) =

1

(1− zω)2+n
(ω ∈ D).

The n-Berezin transform of an operator S ∈ L(L2
a) is

Bn(S)(z)
def
= (n + 1)(1− |z|2)2+n

n∑
j=0

(
n
j

)
(−1)j 〈S(ωjK(n)

z ), ωjK(n)
z 〉,
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where 〈 , 〉 denotes the usual integral pairing and
(

n
j

)
= n!/(n − j)! j!. When S = Ta, with

a ∈ L∞(D), a simple calculation involving the equality
∑n

j=0

(
n
j

)
(−1)j|ω|2j = (1 − |ω|2)n

and the change of variables ω = ϕz(ζ) gives

Bn(a)(z)
def
= Bn(Ta)(z) =

∫

D

a(ϕz(ζ))(n + 1)(1− |ζ|2)n dA(ζ).

This is the usual Berezin transform of the function a with respect to the weighted Bergman
space L2

a(dAn), where dAn(ζ) = (n+1)(1−|ζ|2)ndA(ζ), (see [1] and [7], Ch. 2). Since dAn(ζ)
is a probability measure, Bn(a)(z) is an average of a satisfying ‖Bn(a)‖∞ ≤ ‖a‖∞ for all
a ∈ L∞(D). For a general S ∈ L(L2

a) we only have

‖Bn(S)‖∞ ≤ (n + 1)2n‖S‖.(1.1)

Observe that this gives two different bounds for ‖Bn(Ta)‖∞ that are independent of each
other. In [10], Coro. 4.6, it is proved that

Bn(S) ∈ A = {a ∈ L∞ : a is uniformly continuous with respect to ρ}(1.2)

for every S ∈ L(L2
a). It follows from the formula of Bn(a) that ‖Bn(a) − a‖∞→0 when

n→∞ for every a ∈ A. That is, the sequence {Bn} works as an approximate identity for
A. In particular, lim ‖TBn(a) − Ta‖ = 0 for a ∈ A. The next two properties are Corollary
2.7 and Lemma 2.2 of [10], respectively.

(BnBk)(S) = (BkBn)(S) for every n, k ≥ 0 and S ∈ L(L2
a).(1.3)

Bn(Sz) = Bn(S) ◦ ϕz for every n ≥ 0, S ∈ L(L2
a) and z ∈ D.(1.4)

In particular, if we take S = Ta, with a ∈ L∞, (1.4) tells us that Bn(a ◦ ϕz) = Bn(a) ◦ ϕz.
Also, suppose that k is fixed in (1.3). Then Bk(S) ∈ A and the previous comments say that
Bk(Bn(S)) = Bn(Bk(S))→Bk(S) uniformly when n→∞. This observation will be at the
core of some of our results.

2 A criterion for approximation

If Sk, S ∈ L(L2
a), for k ≥ 0 integer, by Sk

WOT→ S we mean that the sequence Sk tends to S in
the weak operator topology. The proof of the next lemma is based on some of the estimates
given by Axler and Zheng in [2].

Lemma 2.1 Let S ∈ L(L2
a). The following conditions are equivalent
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(a) ‖TBk(S)‖ ≤ C, where C > 0 does not depend on k.

(b) supz∈D | 〈(Sz − (TBk(S))z) f, g〉|→0 for all f, g ∈ L2
a.

(c) TBk(S)
WOT→ S.

Proof. If (b) holds then

〈(S − TBk(S))Uzf, Uzg〉→0 for all f, g ∈ L2
a and z ∈ D.

Since Uz is a unitary operator, (c) holds. If (c) holds, a standard application of the Banach-
Steinhaus Theorem gives (a).

Now suppose that (a) holds. Writing Rk = S−TBk(S), the hypothesis says that ‖Rk‖ ≤ C ′

for some C ′ > 0 independent of k. Since

K(0)
z (w) =

∞∑
m=0

(m + 1)z̄mωm,

for z, λ ∈ D and R ∈ L(L2
a) we have

B0(R)(ϕz(λ)) = B0(Rz)(λ) = (1− |λ|2)2

∞∑
j,m=0

(j + 1)(m + 1)〈Rzω
j, ωm〉λ̄jλm,

where the first equality holds by (1.4). Fix two nonnegative integers n, j0. Then, for
0 < δ < 1/2 (to be chosen later) we obtain

∫

δD

B0(R)(ϕz(λ))λ̄n

(1− |λ|2)2
dA(λ) =

∞∑
j,m=0

(j + 1)(m + 1)〈Rzω
j, ωm〉

∫

δD

λ̄j+nλm dA(λ)

=
∞∑

j=0

(j + 1)〈Rzω
j, ωj+n〉δ2j+2n+2

= δ2n+2

(
j0∑

j=0

(j + 1)〈Rzω
j, ωj+n〉δ2j

+
∞∑

j=j0+1

(j + 1)〈Rzω
j, ωj+n〉δ2j

)
.(2.1)

4



Thus

δ−2(n+j0)−2

∫

δD

B0(R)(ϕz(λ))λ̄n

(1− |λ|2)2
dA(λ)−

j0∑
j=0

(j + 1)〈Rzω
j, ωj+n〉δ2(j−j0)

=
∞∑

j=j0+1

(j + 1)〈Rzω
j, ωj+n〉δ2(j−j0).

Since 0 < δ < 1/2 and ‖ωj‖ = (j + 1)−1/2,
∣∣∣∣∣

∞∑
j=j0+1

(j + 1)〈Rzω
j, ωj+n〉δ2(j−j0)

∣∣∣∣∣ ≤ ‖R‖
∞∑

j=j0+1

(j + 1)‖ωj‖ ‖ωj+n‖δ2(j−j0)

≤ δ ‖R‖,
where the last inequality holds because

∑∞
j=1 δ2j ≤ δ when 0 < δ < 1/2. Hence,

∣∣∣∣∣ δ−2(n+j0)−2

∫

δD

B0(R)(ϕz(λ))λ̄n

(1− |λ|2)2
dA(λ)−

j0∑
j=0

(j + 1)〈Rzω
j, ωj+n〉δ2(j−j0)

∣∣∣∣∣ ≤ δ ‖R‖

for all z ∈ D, 0 < δ < 1/2, and nonnegative integers n and j0. Taking R = Rk we have that
the integral in the above expression tends to 0 uniformly in z ∈ D whatever the choice of
(fixed) δ, n and j0. That is,

lim sup
k→∞

sup
z∈D

∣∣∣∣∣
j0∑

j=0

(j + 1)〈(Rk)z ωj, ωj+n〉δ2(j−j0)

∣∣∣∣∣ ≤ δ C ′

for every fixed 0 < δ < 1/2 and nonnegative integers n and j0. Putting j0 = 0 we obtain that
supz∈D |〈(Rk)zω

0, ω0+n〉|→0. We can prove recursively that supz∈D |〈(Rk)zω
j, ωj+n〉|→0 for

every 0 ≤ j ≤ j0 and n ≥ 0. Since j0 and n are arbitrary, we have

sup
z∈D

|〈(Rk)z ωj, ωm〉|→0

for every j,m, with 0 ≤ j ≤ m. If we change λ
n

by λn in the integrand of (2.1), we obtain
that the above holds for every j,m, with 0 ≤ m ≤ j. Thus, supz∈D |〈(Rk)z p, q〉|→0 for
every polynomials p and q. Since the polynomials are dense in L2

a and ‖(Rk)z‖ = ‖Rk‖ ≤ C ′

for all z ∈ D, (b) follows. 2

The next result is in [10], Lemma 5.6.
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Lemma 2.2 Let {Sk} be a sequence in L(L2
a) such that for some p > 4,

(1) ‖B0(Sk)‖∞→0 when k→∞,

(2) supz∈D ‖(Sk)z1‖p ≤ C and supz∈D ‖(S∗k)z1‖p ≤ C,

where C > 0 does not depend on k. Then ‖Sk‖L(L2
a)→0 when k→∞.

Corollary 2.3 Let S ∈ L(L2
a) such that for some p > 4,

sup
z∈D

‖Sz1− (TBk(S))z1‖p ≤ C and sup
z∈D

‖S∗z1− (TBk(S∗))z1‖p ≤ C,(2.2)

where C > 0 is independent of k. Then TBk(S)→S in L(L2
a)-norm.

Proof. Write Sk = S − TBk(S). Since (1.3) says that B0Bk = BkB0 on L(L2
a),

B0(Sk) = B0(S)−B0(TBk(S)) = B0(S)−B0(Bk(S)) = B0(S)−Bk(B0(S)),

which tends uniformly to 0 when k→∞ because B0(S) ∈ A. That is, {Sk} satisfies (1) of
Lemma 2.2. Since (2) of Lemma 2.2 is our hypothesis, the lemma applies. 2

Theorem 2.4 Let S ∈ L(L2
a). If there is p > 4 such that

sup
z∈D

‖TBk(S)◦ϕz1‖p < C and sup
z∈D

‖T ∗
Bk(S)◦ϕz

1‖p < C,

where C > 0 is independent of k, then TBk(S)→S in L(L2
a)-norm.

Proof. By Corollary 2.3 we only need to show that the theorem’s hypotheses imply (2.2).
Since TBk(S)◦ϕz = (TBk(S))z and

T ∗
Bk(S)◦ϕz

= TBk(Sz) = TBk(S∗z ) = TBk(S∗)◦ϕz = (TBk(S∗))z,

we only have to prove the first of the two inequalities

sup
z∈D

‖Sz1‖p < ∞ and sup
z∈D

‖S∗z1‖p < ∞,

because the second one will follow by symmetry.

By Lemma 5.3 of [10],

‖TBk(S)‖L(L2
a) ≤ Cp sup

z∈D
‖TBk(S)◦ϕz1‖1/2

p sup
ω∈D

‖T ∗
Bk(S)◦ϕω

1‖1/2
p ,
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where Cp depends only on p. By hypothesis then ‖TBk(S)‖L(L2
a) is bounded independently of

k, and the equivalence between (a) and (b) of Lemma 2.1 says that

sup
z∈D

|〈Sz − (TBk(S))zf, g〉|→0 for all f, g ∈ L2
a.

Taking f = 1 and g a polynomial with ‖g‖q = 1 (where 1/p + 1/q = 1), we see that for any
ε > 0 and z0 ∈ D:

|〈Sz01, g〉| ≤ sup
z∈D

|〈Sz − (TBk(S))z1, g〉|+ |〈(TBk(S))z01, g〉|
≤ ε + ‖(TBk(S))z01‖p ≤ ε + C

if k is big enough, where C > 0 is given by hypothesis and does not depend on k. Since ε
is arbitrary, we obtain that ‖Sz01‖p ≤ C for every z0 ∈ D, which proves the theorem. 2

All the measures considered in the paper will be Borel regular measures. If µ is a finite
measure on D and z ∈ D, write

B0(µ)(z) =

∫

D

(1− |z|2)2

|1− zw|4 dµ(w).

The formula

Tµf(z) =

∫

D

f(w)

(1− wz)2
dµ(w)

defines an analytic function for every polynomial f . When µ ≥ 0 and 1 < p < ∞, a necessary
and sufficient condition for Tµ to be continuous from Lp

a into Lp
a is that ‖B0(µ)‖∞ < ∞.

Such measure µ is called a Carleson measure (on Bergman spaces), and it is known that
‖Tµ‖L(Lp

a) ≤ Ap‖B0(µ)‖∞, where Ap > 0 only depends on p (see the proofs in [12], Ch. 6).

If µ is a complex measure, it can be decomposed in a standard way as µ = µ1 − µ2 +
i(µ3 − µ4), where µj ≥ 0 for j = 1, . . . , 4, and |µ| = µ1 + µ2 + µ3 + µ4. Thus, if |µ| is a
Carleson measure then Tµ ∈ L(Lp

a) and

‖Tµ‖L(Lp
a) ≤

4∑
j=1

‖Tµj
‖L(Lp

a) ≤ Ap

4∑
j=1

‖B0(µj)‖∞ ≤ 4Ap‖B0(|µ|)‖∞.

A simple application of Fubini’s theorem gives

〈Tµf, g〉 =

∫

D

f(w)g(w) dµ(w)
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for every f, g ∈ H∞. An immediate consequence is that B0(µ) = B0(Tµ).

In Theorem 5.7 of [10] we showed that TBn(a)→Ta in L(L2
a)-norm for any a ∈ L∞. The

next result generalizes that theorem.

Corollary 2.5 Let µ be a measure on D such that |µ| is Carleson on Bergman spaces. Then
TBk(Tµ)→Tµ in L(L2

a)-norm.

Proof. By the comments preceding the corollary, it is enough to assume that µ ≥ 0. Since

(BnTµ)(z) = (n + 1)(1− |z|2)2+n

n∑
j=0

(
n
j

)
(−1)j 〈Tµ(ωjK(n)

z ), ωjK(n)
z 〉

= (n + 1)(1− |z|2)2+n

n∑
j=0

(
n
j

)
(−1)j

∫

D

|ω|2j

|1− zω|2(2+n)
dµ(ω)

=

∫

D

(1− |z|2)2+n

|1− zω|2(2+n)
(n + 1)(1− |ω|2)n dµ(ω),(2.3)

Bn(Tµ) ≥ 0, and since

B0(Bn(Tµ) ◦ ϕz) = B0Bn((Tµ)z) = BnB0((Tµ)z) = Bn(B0(Tµ) ◦ ϕz),

we have

‖B0(Bn(Tµ) ◦ ϕz)‖∞ = ‖Bn(B0(Tµ) ◦ ϕz)‖∞ ≤ ‖B0(Tµ) ◦ ϕz‖∞ = ‖B0(Tµ)‖∞.

Hence, (Bn(Tµ) ◦ ϕz) dA is a Carleson measure, and

‖TBn(Tµ)◦ϕz‖L(Lp
a) ≤ Ap‖B0(Tµ)‖∞

for every integer n ≥ 0, z ∈ D and 1 < p < ∞. Since TBn(Tµ)◦ϕz is self-adjoint, Theorem 2.4
implies that TBn(Tµ)→Tµ. 2

The next lemma is well-known. Since I did not find it explicitly stated in the literature, a
proof is sketched here.

Lemma 2.6 Let µ be a finite positive measure on D. If

sup
z∈D

∫

D

(1− |z|2)2

|1− zw|4 dµ(w) < ∞(2.4)

then µ(∂D) = 0.
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Proof. For integers N ≥ 2 and 0 ≤ j ≤ N − 1, write

Ij =

{
eiθ :

2πj

N
≤ θ <

2π(j + 1)

N

}
and zj =

(
1− 1

N

)
eiπ( 2j+1

N
).

That is, zj/|zj| is the middle point of Ij and 2π(1−|zj|) is the length of Ij. It is geometrically
clear that there is some absolute constant c > 0 such that

w ∈ Ij ⇒ |w − zj| ≤ c(1− |zj|).
So, if s denotes the supremun in (2.4),

s ≥
∫

Ij

(1− |zj|)2

|1− zjw|4 dµ(w) =

∫

Ij

(1− |zj|)2

|w − zj|4 dµ(w) ≥ 1

c4

1

(1− |zj|)2
µ(Ij)

for all j. Consequently,

µ(∂D) =
N−1∑
j=0

µ(Ij) ≤ sc4

N−1∑
j=0

(1− |zj|)2 = sc4 1

N
→ 0

as N→∞. 2

Theorem 2.7 Let S ∈ L(L2
a). Then

(1) S = Tµ for a Carleson measure µ ≥ 0 if and only if Bn(S) ≥ 0 for all n.

(2) S = Ta for a ∈ L∞ if and only if ‖Bn(S)‖∞ ≤ C, with C independent of n.

Proof. If µ is a positive Carleson measure, Bn(Tµ) ≥ 0 by (2.3). Suppose now that Bn(S) ≥ 0
for every n, and consider the measures µn = Bn(S)dA. Let M(D) denote the space of finite
measure on D with the norm ‖ν‖ = |ν(D)|. That is, M(D) is the dual space of C(D), the
space of continuous functions on D. By (1.3),

‖B0(µn)‖∞ = ‖B0Bn(S)‖∞ = ‖BnB0(S)‖∞ ≤ ‖B0(S)‖∞ ≤ ‖S‖.(2.5)

Hence, µn is a Carleson measure with M(D)-norm ‖µn‖ = µn(D) = B0(µn)(0) ≤ ‖S‖ for
all n. By the Banach-Alaoglu Theorem (see for instance [11, p. 29]) there is a subsequence
µnk

and µ ∈M(D) such that µnk
→µ in the weak-star topology of M(D). This means that

∫

D

fdµnk
→

∫

D

fdµ, ∀f ∈ C(D).(2.6)
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It is clear that µ ≥ 0 and ‖µ‖ ≤ ‖S‖. If z ∈ D is fixed and we take f(w) = (1−|z|2)2/|1−zw|4
in (2.6), we get

B0(µnk
) =

∫

D

(1− |z|2)2

|1− zw|4 dµnk
(w)→

∫

D

(1− |z|2)2

|1− zw|4 dµ(w),

which together with (2.5) implies that the last integral is bounded by ‖S‖. Now Lemma 2.6
tells us that µ(∂D) = 0, and consequently the last integral is B0(µ)(z), which is bounded
by ‖S‖. In particular, we have that Tµ defines a bounded operator on L2

a.

If p, q are two polynomials and we take f = pq in (2.6), we see that 〈Tµnk
p, q〉→〈Tµp, q〉.

Since the polynomials are dense in L2
a and by (2.5), ‖Tµn‖ ≤ A2‖B0(µn)‖∞ ≤ A2‖S‖,

we deduce that Tµnk

WOT→ Tµ. But the above inequalities and Lemma 2.1 also imply that

Tµn

WOT→ S, so S = Tµ. This proves (1).

The proof of (2) follows the same lines, but it is simpler. If S = Ta then ‖Bn(Ta)‖∞ =
‖Bn(a)‖∞ ≤ ‖a‖∞. If ‖Bn(S)‖∞ ≤ C for all n, there is a subsequence {nk} such that
Bnk

(S) converges in the weak-star topology of L∞ to some function a, with ‖a‖∞ ≤ C. In
particular, for every f, g ∈ L2

a,

〈TBnk
(S)f, g〉 =

∫
Bnk

(S)fg dA→
∫

afg dA = 〈Taf, g〉.

Hence, TBnk
(S)

WOT→ Ta, but since ‖TBn(S)‖ ≤ ‖Bn(S)‖∞ ≤ C, Lemma 2.1 says that

TBn(S)
WOT→ S. 2

Remark 2.8 It is clear from the proof of Theorem 2.7 that in (1) or (2) the quantifier ‘for
all n’ can be replaced by ‘for infinitely many values of n’. In particular, taking into account
Corollary 2.5, we see that if S 6∈ T(L∞) then there are at most finitely many n’s such that
Bn(S) ≥ 0 or ‖Bn(S)‖∞ ≤ C, for any given C > 0.

3 Radial operators

We will say that S ∈ L(L2
a) is a radial operator if it is diagonal with respect to the or-

thonormal base {√n + 1 zn : n ≥ 0}. That is, Szn = λn(S)zn, where {λn(S)} is a bounded
sequence. Clearly, every bounded sequence defines a radial operator. The name radial ori-
ginates in the fact that if a ∈ L∞ is a radial function (i.e.: a(z) = a(|z|)) then Ta is a
radial operator. The set of radial operators form a commutative C∗-subalgebra of L(L2

a).
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We begin by showing the elementary fact that if S is radial, then so is Bn(S). Using that
when S is a radial operator,

〈Swj, wk〉 =

{
0 if j 6= k
λj(S)/(j + 1) if j = k

and
1

(1− wz)2+n
=

∞∑
m=0

(
m+n+1

m

)
(zw)m,

we obtain

〈S(wjK(n)
z ), wjK(n)

z 〉 =
∞∑

m1, m2=0

(
m1+n+1

m

) (
m2+n+1

m

)
zm1zm2〈Swj+m1 , wj+m2〉

=
∞∑

m=0

(
m+n+1

m

)2 |z|2m λj+m(S)

(j + m + 1)
.

Therefore

Bn(S)(z) = (n + 1)(1− |z|2)2+n

n∑
j=0

∞∑
m=0

(
n
j

)
(−1)j

(
m+n+1

m

)2 |z|2m λj+m(S)

(j + m + 1)
.

For t a real number, let Ct be the composition operator Ctf(z) = f(eitz). Clearly Ct is a
unitary operator with C∗

t = C−t. If S ∈ L(L2
a), the ‘radialization’ of S is

S̃
def
=

∫ 2π

0

C−tSCt
dt

2π
,

where the integral is taken in the weak sense. Then

〈S̃wj, wk〉 =

∫ 2π

0

ei(j−k)t〈Swj, wk〉 dt

2π
=

{
0 if j 6= k
〈Swj, wj〉 if j = k

Hence, S̃ is a radial operator and S̃ = S when S is radial. The above equality implies
that every bounded operator can be written in a unique way as S = S1 + S2, where S1

is radial, 〈S1w
j, wj〉 = 〈Swj, wj〉, and S2w

j is orthogonal to wj for every j. Clearly, the
decomposition is S1 = S̃ and S2 = S − S̃.

If a ∈ L∞ and f, g ∈ L2
a then

〈C−tTaCtf, g〉 =

∫

D

a(w)f(eitw)g(eitw) dA(w) =

∫

D

a(eitw)f(w)g(w) dA(w).

11



Thus, C−tTaCt = Ta◦rt , where rt(z) = eitz, and consequently

C−tTa1 . . . TamCt = (C−tTa1Ct)C−t . . . Ct(C−tTamCt) = Ta1◦rt . . . Tam◦rt

for a1, . . . , am ∈ L∞. Also, T̃a = Tã, where ã denotes the radialization of the function a:

ã(z)
def
=

∫ 2π

0

a(eitz)
dt

2π
.

The next lemma provides a very useful formula for TBn(S) when S is a radial operator. We
recall that dAn(w) = (n + 1)(1− |w|2)ndA(w).

Lemma 3.1 Let S ∈ L(L2
a) be a radial operator. Then TBn(S) =

∫
D

Sw dAn(w).

Proof. First we prove the result for S = Ta, where a ∈ L∞ is a radial function. If f, g ∈ L2
a

then

〈Bn(Ta)f, g〉 =

∫ ∫
a(ϕz(w))f(z)g(z) dAn(w)dA(z)

=

∫ ∫
a(ϕw(z))f(z)g(z) dAn(w)dA(z)

=

∫
〈(Ta)wf, g〉dA dAn(w)

=

〈[∫
(Ta)w dAn(w)

]
f, g

〉

dA

,

where the second equality holds because |ϕw(z)| = |ϕz(w)| and a is radial.

Now let S be a general radial operator. A result of Englis (see [5] or [6]) states that
{Ta : a ∈ L∞} is dense in L(L2

a) with the strong operator topology. Hence, there are ak ∈ L∞

such that Tak

WOT→ S. By the Banach-Steinhaus Theorem, ‖Tak
‖ ≤ C independently of k.

So, taking radializations and using that T̃ak
= Tãk

, the dominated convergence theorem
gives

〈Tãk
f, g〉 =

∫ 2π

0

〈Tak
Ctf, Ctg〉 dt

2π
→

∫ 2π

0

〈SCtf, Ctg〉 dt

2π
= 〈S̃f, g〉

when k→∞ for every f, g ∈ L2
a. That is, we can assume that the functions ak are radial.

Let n be an arbitrary fixed nonnegative integer. It follows from the definition of Bn that
Bn(Tak

)→Bn(S) pointwise on D when k→∞. Since (1.1) says that

‖Bn(Tak
)‖∞ ≤ (n + 1)2n‖Tak

‖ ≤ (n + 1)2nC,

12



two new applications of the dominated convergence theorem yield

〈Bn(S)f, g〉 = lim
k
〈Bn(Tak

)f, g〉

= lim
k

〈[∫
(Tak

)w dAn(w)

]
f, g

〉

= lim
k

∫
〈(Tak

)wf, g〉 dAn(w)

=

∫
〈Swf, g〉 dAn(w)

=

〈[∫
Sw dAn(w)

]
f, g

〉
,

where the second equality holds because the lemma was already proved for Toeplitz opera-
tors. 2

Corollary 3.2 Let S ∈ L(L2
a) be a radial operator and n be a nonnegative integer. Then

(1) ‖TBn(S)‖ ≤ ‖S‖,
(2) TBn(S) ≥ 0 if S ≥ 0.

(3) TBn(S)
WOT→ S when n→∞.

Proof. By Lemma 3.1,

‖TBn(S)‖ = ‖
∫

D

Sw dAn(w)‖ ≤
∫
‖Sw‖ dAn(w) = ‖S‖,

where the last equality holds because, since Uw is unitary and self-adjoint, ‖UwSUw‖ = ‖S‖,
and dAn is a probability measure. Since Sw ≥ 0 when S ≥ 0, (2) follows by a similar use of
the formula in Lemma 3.1. Finally (3) is a consequence of (1) and Lemma 2.1. 2

We are now ready to prove the second main result of this paper.

Theorem 3.3 Let S ∈ L(L2
a) be a radial operator. The following conditions are equivalent.

(1) S ∈ T(L∞),

(2) TBn(S)→S in operator norm,

13



(3) F : (D, | |)→ (L(L2
a), ‖ ‖) given by F (w) = Sw is continuous,

(4) F is continuous in 0.

Proof. (1) ⇒ (2). Since S ∈ T(L∞) there is a sequence of operators Sk→S, where each
Sk is a finite sum of finite products of Toeplitz operators with bounded symbols. Since the
process of radialization is continuous and S is radial, S̃k→S̃ = S. Corollary 3.2 now tells us
that for every fixed nonnegative integer n,

‖TBn(S̃k) − TBn(S)‖ = ‖TBn(S̃k−S)‖ ≤ ‖S̃k − S‖→0

when k→∞. Moreover, since

‖S − TBn(S)‖ ≤ ‖S − S̃k‖+ ‖S̃k − TBn(S̃k)‖+ ‖TBn(S̃k) − TBn(S)‖
≤ 2‖S − S̃k‖+ ‖S̃k − TBn(S̃k)‖,

it is enough to prove (2) for S̃k, but since Sk is a finite sum of finite products of Toeplitz
operators, the proof reduces to show that if

Q =

∫ 2π

0

Ta1◦rt . . . Tam◦rt

dt

2π
, with a1, . . . , am ∈ L∞,

then TBn(Q)→Q. By Lemma 3.1,

TBn(Q) =

∫

D

Uw

(∫ 2π

0

Ta1◦rt . . . Tam◦rt

dt

2π

)
Uw dAn(w)

=

∫

D

∫ 2π

0

Ta1◦rt◦ϕw . . . Tam◦rt◦ϕw

dt

2π
dAn(w).

Consequently, for any z ∈ D,

TBn(Q)◦ϕz = UzTBn(Q)Uz =

∫

D

∫ 2π

0

Tb1 . . . Tbm

dt

2π
dAn(w),(3.1)

where bj = aj ◦ rt ◦ ϕw ◦ ϕz for j = 1, . . . , m.

If 1 < p < ∞ and we look at each Tbj
as an operator on Lp

a, we have

‖Tbj
‖L(Lp

a) ≤ Cp‖bj‖∞ = Cp‖aj‖∞

14



for 1 ≤ j ≤ m, where Cp is the norm of the Bergman projection from Lp(dA) into Lp
a. Since

(2π)−1dt dAn(w) is a probability measure on [0, 2π]×D, the above estimate and (3.1) yield

‖TBn(Q)◦ϕz‖L(Lp
a) ≤ Cm

p ‖a1‖∞ . . . ‖am‖∞,

where the right member does not depend on z or n. Since T ∗
Bn(Q)◦ϕz

satisfies an equality as

(3.1) with each bj replaced by bj, the last estimate also holds for T ∗
Bn(Q)◦ϕz

. Hence, Theorem

2.4 tells us that TBn(Q)→Q in L(L2
a)-norm and completes the proof of (2).

(2) ⇒ (3). By (2) it is enough to prove that the map w 7→ (TBn(S))w is continuous for
every n. Moreover, since (1.2) says that Bn(S) ∈ A, we must prove that w 7→ Ta◦ϕw is
continuous when a ∈ A is radial. Let ε > 0. Since a ∈ A, there is some δ > 0 depending
only on ε such that

|a(w1)− a(w2)| < ε if ρ(w1, w2) < δ.(3.2)

For w, w0 ∈ D we have

‖Ta◦ϕw − Ta◦ϕw0
‖ ≤ sup

z∈D
|a(ϕw(z))− a(ϕw0(z))|

= sup
z∈D

|a(ϕz(w))− a(ϕz(w0)| < ε

if ρ(w,w0) < δ by (3.2), because ρ(ϕz(w), ϕz(w0)) = ρ(w,w0) for every z ∈ D. The easy
inequality (1− |w0|)ρ(w,w0) ≤ |w − w0| then gives (3).

Since (3) ⇒ (4) and (2) ⇒ (1) are trivial, only (4) ⇒ (2) needs to be proved. So, suppose
that (4) holds. First observe that since S is radial and

U0f(z) = f(ϕ0(z))ϕ′0(z) = −f(−z)

for f ∈ L2
a, then S0 = U0SU0 = S. By Lemma 3.1,

TBn(S) − S =

∫

D

(Sw − S) dAn(w) =

∫

{|w|<δ}
(Sw − S) dAn(w) +

∫

{|w|≥δ}
(Sw − S) dAn(w)

for 0 < δ < 1. The norm of the second integral in the sum is bounded by

∫

{|w|≥δ}
‖Sw − S‖ dAn(w) ≤ 2‖S‖

∫

{|w|≥δ}
dAn(w)→ 0

as n→∞, because the mass of the measures tend to concentrate at 0. The norm of the first
integral in the sum is bounded by sup|w|<δ ‖Sw − S‖, which can be made arbitrarily small
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by taking δ small, since by hypothesis (4), Sw→S0 = S when w→0. 2

Let Rad denote the algebra of bounded radial operators. An immediate consequence of
Theorem 3.3 is that the space {Ta : a bounded and radial} is dense in T(L∞) ∩Rad.

In [8] Korenblum and Zhu proved that if a ∈ L∞ is radial and B0(Ta) ≡ 0 on ∂D then
Ta is compact. Several results of this type have appeared in the literature for different types
of symbols (see, for instance [9] and [12]). These theorems have being widely generalized
by a result of Axler and Zheng [2] asserting that if S is a (several variables) polynomial
of Toeplitz operators Ta, with a ∈ L∞, and B0(S) ≡ 0 on ∂D then S is compact. More
recently, in [13] Zorboska has observed that the proof of Korenblum and Zhu can be adapted
to generalize the result of [8]. That is, if S ∈ L(L2

a) is radial, n(λn(S)−λn+1(S)) is bounded,
and B0S ≡ 0 on ∂D then S is compact. It is a simple calculation to verify that if a ∈ L∞

is radial, the eigenvalues of Ta satisfy the above condition (see the proof of Proposition 4.2
below). In the negative direction, it is known that the radial operator (Sf)(z) = f(−z)
satisfies B0(S) ≡ 0 on ∂D, although it is obviously not compact.

Our next result is a straightforward application of Theorem 3.3 that provides another
generalization of Korenblum and Zhu’s theorem.

Corollary 3.4 Let S ∈ L(L2
a) be a radial operator. Then S is compact if and only if

S ∈ T(L∞) and B0(S) ≡ 0 on ∂D.

Proof. If S is compact, a theorem of Coburn [4] asserts that S ∈ T(C(D)), where C(D) is
the algebra of continuous functions of the closed disk, so S ∈ T(L∞). Also, for z ∈ D,

|(B0S)(z)| = (1− |z|2)2|〈SK(0)
z , K(0)

z 〉|
≤ ‖(1− |z|2)SK(0)

z ‖ ‖(1− |z|2)K(0)
z ‖→0

as |z|→1 because (1 − |z|2)K(0)
z has norm 1 for every z ∈ D and tends weakly to 0 when

|z|→1. Observe that this argument does not use that S is radial.

Now suppose that S ∈ T(L∞) and B0(S) ≡ 0 on ∂D. By Lemma 4.8 of [10], if T ∈ L(L2
a)

is any operator such that Bn0(T ) ≡ 0 on ∂D for some n0 ≥ 0, then Bn(T ) ≡ 0 on ∂D
for every n ≥ 0. Thus, Bn(S) ≡ 0 on ∂D for every n ≥ 0. It is well-known that a
Toeplitz operator with continuous symbol that identically vanishes on ∂D is compact (see
[12], p. 107). Consequently TBn(S) is compact for all n, and since by Theorem 3.3, TBn(S)→S,
so is S. 2
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4 An essential commutant versus the Toeplitz algebra

It is natural to ask whether the inclusion T(L∞) ⊂ L(L2
a) is proper. In [5] (also [6]), Englis

obtained an affirmative answer by considering the essential commutant of Tz. We recall that
the essential commutant of an operator T ∈ L(L2

a) is

Ce(T ) = {S ∈ L(L2
a) : TS − ST is compact}.

Among other things, he proved

(a) Ce(Tz) = {S ∈ L(L2
a) : S − T ∗

z STz is compact},
(b) Ce(Tz) is a C∗-algebra,

(c) Tφ ∈ Ce(Tz) for every φ ∈ L∞.

The proof of (a) is algebraic manipulation from the fact that I − TzT
∗
z and I − T ∗

z Tz are
compact, (b) is straightforward once (a) is proved, and (c) holds because Tφ − T ∗

z TφTz =
T(1−|z|2)φ, which is easily seen to be compact when φ ∈ L∞. Observe that (b) and (c) yield

T(L∞) ⊂ Ce(Tz) ⊂ L(L2
a).

Since the radial operator Szn = (−1)nzn is not in Ce(Tz) (see Proposition 4.2), the second
inclusion is proper. But, as Englis noticed, this poses a new problem: to determine whether
the first inclusion is proper. With the aid of Theorem 3.3 we will see that this is indeed the
case.

Let `∞ be the Banach space of bounded complex sequences indexed from n ≥ 0. Consider
the linear subspaces

d0 = {{zn} ∈ `∞ : (zn − zn−1)→0}
and

d1 = {{zn} ∈ `∞ : n(zn − zn−1) ∈ `∞}.
It is clear that d0 is closed in `∞ and d1 ⊂ d0. Consequently d1 ⊂ d0, where d1 denotes the
closure of d1 in `∞. Every convergent sequence is in d1, but the sequence an = (−1)n log(n+
1)/(n + 1) is not in d1. Hence, d1 is not closed.

Lemma 4.1 The `∞-closure of d1 is properly contained in d0.

Proof. We shall construct a sequence in d0 \d1. Let an ≥ 0 be such that an→0 and nan→∞.
We define λn =

∑n
j=0 εjaj, where εj = 1 or −1 according to the following rule:
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εj = 1 for j = 0, . . . , n1 until λn1−1 < 1 and λn1 ≥ 1. Then εj = −1 for
j = n1, . . . , n2 until λn2−1 > 0 and λn2 ≤ 0. Then εj = 1 again until λn3 ≥ 1 for
the first time and repeat the process ad infinitum.

Roughly speaking, we are adding the a′ns until we equal or pass 1 to the right, then we rest
the next a′ns until we equal or pass 0 to the left and so forth. Clearly

sup
n
|λn| ≤ 1 + sup

n
|an| < ∞,

so {λn} ∈ `∞, and since λn − λn−1 = εnan→0, {λn} ∈ d0. Let 0 < ε < 1/10 and suppose
that there is a sequence {βn} ∈ d1 such that ‖{λn} − {βn}‖`∞ < ε. We will arrive to a
contradiction. Since {βn} ∈ d1 there is a constant C > 0 depending only on {βn} such that

βj − βj−1 ≤ C

j
for every j ≥ 1.(4.1)

If nk denotes the sequence of integers such that λnk
≤ 0 then nk < nk+1→∞. So, by our

hypothesis on aj, if nk is big enough then aj > 10C/j for every j ≥ nk. Taking such nk we
obtain

nk+n∑
j=nk+1

aj > 10

nk+n∑
j=nk+1

C

j
(4.2)

for every n ≥ 1. Since aj→0 we can choose nk so big that the additional condition aj < ε
holds for j ≥ nk. Thus, for nk that big, (4.2) holds and in addition there is some n = n(ε)
with

9ε ≤
nk+n∑

j=nk+1

aj < 10ε < 1.(4.3)

Since ank
< ε and λnk

≤ 0, by the way in which λnk
is defined we have −ε ≤ λnk

≤ 0. Hence
(4.3) implies that

−ε + 9ε ≤ λnk
+

nk+n∑
j=nk+1

aj = λnk+n < 10ε(4.4)

On the other hand, because |βnk
− λnk

| < ε and −ε ≤ λnk
≤ 0 then βnk

≤ ε. Consequently

βnk+n = βnk
+ (βnk+1 − βnk

) + · · ·+ (βnk+n − βnk+n−1)

by (4.1)

≤ ε +

nk+n∑
j=nk+1

C

j
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by (4.2)

≤ ε +
1

10

nk+n∑
j=nk+1

aj

by (4.3)

≤ ε +
1

10
10ε = 2ε.

Thus βnk+n ≤ 2ε, and since (4.4) says that λnk+n ≥ 8ε, we cannot have |βnk+n−λnk+n| < ε,
a contradiction. 2

Proposition 4.2 Let S ∈ L(L2
a) be a radial operator. Then

(1) S − T ∗
z STz is compact if and only if {λn(S)} ∈ d0.

(2) If S ∈ T(L∞) then {λn(S)} ∈ d1.

Proof. For (1) observe that

T ∗
z zk =

{
k/(k + 1) zk−1 if k > 0
0 if k = 0

yields (S − T ∗
z STz)z

k = λk(S)zk − λk+1(S)(k + 1)/(k + 2)zk. That is, S − T ∗
z STz is radial

and satisfies

λk(S − T ∗
z STz) = λk(S)− λk+1(S) +

λk+1(S)

k + 2
.

The operator S−T ∗
z STz is compact if and only if the last expression tends to 0, which gives

the result. For (2) observe that by Theorem 3.3, it is enough to show that if b ∈ L∞ is
radial, then {λn(Tb)} ∈ d1. Since b is radial, using polar coordinates we see that

λn(Tb)

(n + 1)
= 〈bzn, zn〉 =

∫ 1

0

b(r)r2n 2rdr =

∫ 1

0

b(t1/2)tn dt.

Thus,

|λn+1(Tb)− λn(Tb)| ≤
∫ 1

0

|b(t1/2)| |(n + 2)tn+1 − (n + 1)tn| dt

≤ ‖b‖∞
∫ 1

0

|(n + 2)tn+1 − (n + 1)tn| dt

= 2‖b‖∞
(

n + 1

n + 2

)n+1
1

n + 2
≤ ‖b‖∞

n + 2
.
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This proves (2). 2

A short comment on the proof of (2) in the above proposition. It is fairly easy to see that
d1 is a self-adjoint subalgebra of `∞, and therefore d1 is a C∗-algebra. Since, as showed in
the proof, {λn(Tb)} ∈ d1 for every b ∈ L∞rad(D) (the algebra of bounded radial functions),
it follows that {λn(S)} ∈ d1 for every S ∈ T(L∞rad(D)). That much can be proved without
using Theorem 3.3. This means that the only feature of Theorem 3.3 that the proposition
really needs is that every radial operator in T(L∞) belongs to T(L∞rad(D)).

Corollary 4.3 The inclusion T(L∞) ⊂ Ce(Tz) is proper.

Proof. By Lemma 4.1 there is a sequence {λn} ∈ d0 \ d1. Let S be the radial operator with
eigenvalues λn. By Proposition 4.2 then S ∈ Ce(Tz) \ T(L∞). 2

The results proven here lead naturally to the following problems,

(1) Is every {λn} ∈ d1 the sequence of eigenvalues of a radial operator in T(L∞)? More
generally, can we give a reasonable characterization of the radial operators in T(L∞)
in terms of their eigenvalues?

(2) Is every S ∈ T(L∞) the norm limit of TBn(S)?

I have no strong feelings about the possible answer to the first question, although my guess is
that it is probably negative. I believe that the last question may have an affirmative answer.
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