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13.1 Introduction

South America harbors one of the main hotspots of diversity, the high mountain
ecosystems, despite only accounting for a quarter of the Earth’s land surface (Myers
et al. 2000; Barry 2008; La Sorte and Jetz 2010; Hoorn et al. 2013). Several plants,
birds, and macrofungal species show endemism in the high mountain of many
regions of South America (Fjeldsa and Kessler 1996; Myers et al. 2000; Robledo
et al. 2006). These ecosystems comprise natural watersheds, providing several eco-
system services such as hydrological regime regulation, soil protection, and conser-
vation of biodiversity (Grét-Regamey et al. 2012). Mountain habitats show
distinctive abiotic conditions that differentiate them from lowlands (Barry 2008).
For instance, temperature decrease in average 6 °C per each km in elevation also
influenced by latitude (Barry 2008). Generally, the studies in mountain ecosystems
have been focused on aboveground diversity (plants, animals and macrofungi)
(Robledo and Renison 2010; Castillo et al. 2017; Nouhra et al. 2018; Quintero and
Jetz 2018), but little is known about soil communities (Lugo and Cabello 2002;
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Becerra et al. 2009; Menoyo et al. 2009; Geml et al. 2014; Soteras et al. 2016).
Among them, arbuscular mycorrhizal fungi (AMF) are ubiquitous root symbionts in
the Glomeromycota that form an obligate root symbiosis with great part of land
plants (Schiiler et al. 2001; Spatafora et al. 2006). Despite the large diversity of
host plants (ca. 200,000 species), there has just been identified in average 250 AMF
morphological taxa (hereafter “morphospecies”), and no correlation between plant
species and AMF richness has been globally found (Bever et al. 2001; Tedersoo
et al. 2014).

The vast majority of the AMF taxa occur in nearly every climatic zones and con-
tinents (Davison et al. 2015). Last studies have postulated that a recent dispersion is
the main factor shaping the cosmopolitan distribution of the most of the AMF taxa
(Davison et al. 2015). However, these fungi are differentially affected by soil char-
acteristics (Smith and Read 2008). In addition, different host species are colonized
by particular AMF present in their rhizosphere (Senés-Guerrero and Schiif$ler 2016;
Soteras et al. 2016), although there is a lack of a global positive correlation with
plant richness. As plants and terrestrial animals, AMF taxa richness has been evi-
denced to correlate negatively with latitude (Hillebrand 2004; Davison et al. 2015),
but different from ectomycorrhizal fungi (Tedersoo et al. 2014) and other soil
microorganisms (Bardgett and Van Der Putten 2014). In addition, variables such as
precipitation and temperature through the alteration of soil moisture, locally affect
AMEF richness (Davison et al. 2015). South America comprises diverse high moun-
tain ecosystems, from low latitude tropical to high latitude temperate, where differ-
ent local conditions also influence AMF communities (Matus et al. 2014).

Taxa of AMF could be grouped by their functional characteristics that are phylo-
genetically constrained (Hart and Reader 2002; Maherali and Klironomos 2007).
Thereby, members of Gigasporaceae produce extensive extra-radical mycelia, spor-
ulate lately in the growing season, and provide high nutritional benefits to hosts. On
the other hand, Glomeraceae mainly colonize intraradically, produce spores early,
and provide less nutritional benefits to hosts. Finally, Acaulosporaceae represents an
intermediate colonization strategy, producing low biomass inside and outside the
roots, and being highly resistant to soil acidity and low temperatures (Hart et al.
2001; Hart and Reader 2002). Accordingly, and based on the competitor-stress
tolerant-ruderal framework of Grime (1979), Gigasporaceae are considered as
“competitor”’, Glomeraceae as “ruderal” and Acaulosporaceae as “stress tolerant”
(Chagnon et al. 2013).

In this chapter we reviewed and re-analyzed the data of the studies performed at
high mountain ecosystems of South America to evaluate the variation of AMF mor-
phospecies richness and composition of AMF communities in relation to micro- and
macro-scale factors. Particularly, we hypothesized that high mountain forests har-
bor different richness and composition of AMF communities due to changes in
microscale (host species, pH, N, P) and macroscale factors (latitude, temperature,
and precipitation) rather than similar AMF communities as expected from its cos-
mopolitan distribution.
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13.2 Arbuscular Mycorrhizal Fungi in the High Mountain
Ecosystems of South America

Traditionally, the studies of AMF diversity were based on the morphological char-
acteristics and ontogeny of the asexual spores (Smith and Read 2008). The advance
of DNA-based methods improved the taxonomic identification of non-sporulating
and AMF species. This kind of studies are very scarce in South America even more
in mountain ecosystems (Soteras et al. 2016; Senés-Guerrero and Schiifller 2016).
Therefore, we only considered the morphological diversity of AMF in high moun-
tain ecosystems of South America. We compiled published studies searching in
Google Scholar articles containing the following combination of terms: “arbuscular
mycorrhizal” AND “high mountain” OR “Andean”. We reviewed all the studies
performed at mountain sites at around 1200 meters above sea level focusing on
“highlands” sensu Barry (2008) that identified AMF spores morphologically.
Following this procedure, we obtained in total 12 studies: 6 from Brazil, 5 from
Argentina and 1 from Chile (Fig. 13.1, Table 13.1). Considering all of them, 168
AMEF morphospecies were identified.

13.3 Arbuscular Mycorrhizal Fungi Richness
Versus Macroscale and Microscale Factors

To disentangle the relationship of AMF richness with microscale and macroscale
factors we fitted generalized linear models (GLM) with the glm() function as imple-
mented in the R environment with Poisson error distribution and identity logarith-
mic link function (R Core Team 2018). When overdispersion was detected the
standard errors were corrected using a quasi-GLM model (Zuur et al. 2009).
Microscale factors included: host species or vegetation type and soil characteristics
as pH, N and P content, obtained from the studies when available. Macroscale fac-
tors included: latitude, mean annual temperature (in degree Celsius multiplied by
10) and mean annual precipitation from MERRAclim (Vega et al. 2017a), available
in the DRYAD database (Vega et al. 2017b).

Vegetation type or host species showed significant differences in AMF rhizo-
spheric richness (Fig. 13.2). Mountain ecosystems in Brazil (savanna forest, quartz
gravel field dominated by Vellozia sp., and rocky outcrops of Cerrado and Atlantic
Forest) showed the highest AMF richness. This result is probably due to the domi-
nance of AMF in hot and seasonal environments (van der Heijden et al. 2008). For
the contrary, the lowest AMF richness was observed in successional temperate for-
ests of N. pumilio (Fig. 13.2). Generally, in temperate forests, where nutrient avail-
ability is low and the organic form is present in litter and humus, predominate the
colonization by ectomycorrhizal decomposer fungi (Matus et al. 2014). In conse-
quence, ectomycorrhizal fungi are responsible for almost the 80% of the N acquired
by plants of temperate and boreal ecosystems (van der Heijden et al. 2008). As in N.
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Fig. 13.1 Map showing the location of the high mountain ecosystems included in this study

pumilio forests, we found that reforested Araucaria forests of Brazil also showed a
very low AMF diversity. In this study, rhizosphere soil samples were taken from
reforested areas with A. angustifolia (8—12 years old) and Pinus elliotti plants
(Moreira-Souza et al. 2003). Several studies have described changes in AMF com-
munities associated with exotic plant invasion (Mummey and Rillig 2006). The very
low AMF richness in this ecosystem compared with 19 other mountain hosts and
ecosystems support the evidence that exotic plant species might negatively influ-
ence on soil AMF communities.

Arbuscular mycorrhizal fungi richness related to microscale (pH, N and P con-
tent) and macroscale (latitude, mean annual temperature and mean annual precipita-
tion) factors are shown in Fig. 13.3. AMF richness was negatively related to pH
(t=2.049, P = 0.046, Fig. 13.3a), positively to N (t = 3.003, P = 0.006, Fig. 13.3b),
but not significant relationship was observed with P (t = 0.236, P =0.81, Fig. 13.3c).
In addition, a negative relationship was observed of AMF richness with latitude in
absolute numbers (t = —4.015, P < 0.001, Fig. 13.3d), and a positive relationship
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Fig. 13.3 AMF richness related to microscale (pH, N and P content) and macroscale (latitude,
mean annual temperature and mean annual precipitation) factors. Asterisks indicate significant
relationship according to the GLM (*** P < 0.001, ** P < 0.01, * P <0.05). Points color represents
sampling sites

with both mean annual temperature (t = 4.191, P < 0.001, Fig. 13.3e) and precipita-
tion (t = 2.137, P = 0.039, Fig. 13.3f). AMF communities of high mountain showed
high richness at lower latitudinal tropical ecosystems, where seasonal changes of
solar radiation, day length and temperature are small (Barry 2008). These ecosys-
tems showed the lowest pH and intermediate N values. The same latitudinal pattern
was observed for global AMF richness studies (Davison et al. 2015), plants and
animals (Hillebrand 2004), but not for ectomycorrhizal fungi which are associated
with specific forest types (Tedersoo et al. 2014).

13.4 Arbuscular Mycorrhizal Fungi Communities’
Composition: Geographical Structure and Relationship
with Macroscale Factors

In order to evaluate the variation on AMF community composition in relation to
different geographical scales and macroscale factors, we first constructed principal
coordinates of neighbor matrices (PCNM). The PCNM variables allow to detect if
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the biological response (i.e. AMF community composition) is associated with dif-
ferent spatial structures along the study area. We obtained six geographical vari-
ables able to detect the spatial structure of the data at all scales encompassed by the
sampling design (Borcard and Legendre 2002; Borcard et al. 2004). The order of the
PCNM variables follows a progression from larger to smaller spatial scales (Borcard
et al. 2004). For each response data model, the most significant PCNM variables
were chosen by permutational forward model selection and ensuring that the
adjusted R? of the reduced models did not exceeded the adjusted R? of the global
models. The AMF community composition (presence-absence) was partitioned
among the selected geographical variables and macroscale factors (latitude, mean
annual temperature and mean annual precipitation) using distance-based redun-
dancy analysis (db-RDA), with capscale() function from R package vegan (Legendre
and Andersson 1999; Oksanen et al. 2018). The dissimilarity distance between pairs
of AMF morphospecies was estimated using the Sorensen index. The variation
explained by geographical variables and macroscale factors was determined by the
automatic selection of variables using forward model choice on adjusted R? with
999 permutations using the ordiR2step() function. In this procedure, the variables
that best fit the data are sequentially selected and added to the final model. The
analyses were performed using the vegan package in R. The significance among
centroids of sites was assessed with the envfit() function of the vegan package after
999 permutations. To determine whether the significant effects were attributed to
either differences of multivariate site (between group variability) or to dispersion
(within group variability) we used the betadisper() function of vegan. Microscale
factors were not included in this analysis due to missing data in some sites. The
Yungas, Cerrado and Soberbo stream from Brazil (Orlandi Costa et al. 2016; Souza
de Pontes et al. 2017) were discarded from the db-RDA analysis due to significant
effect of within heterogeneity, which avoids the possibility to differentiate the
effects of multivariate dispersion from the compositional change among sites.
Four geographical variables were significantly structuring AMF communities
(ordered in increasing importance for final model fit: PCNM1: F=17.737, P =0.002;
PCNM3: F = 11.047, P = 0.002; PCNM4: F = 4.779, P = 0.002; and PCNM2:
F=2.697, P =0.018). The three macroscale variables significantly structured AMF
community composition of each site (latitude: F = 19.899, P = 0.002; mean annual
precipitation: F = 92.853, P = 0.002; and mean annual temperature: F = 5.532,
P = 0.002) being kept in the final model. Site differences in relation to their AMF
community was associated 25% with both geographical and macroscale factors
(R*=0.72, pseudo-F = 12.32, P = 0.001, Fig. 13.4a), 21% with only geographical
factors (R* = 0.59, pseudo-F = 12.35, P = 0.001, Fig. 13.4b), and 19% with only
macroscale factors (R? = 0.55, pseudo-F = 13.63, P = 0.001, Fig. 13.4c).
According to the analysis derived from the db-RDA, the AMF community dif-
fered significantly among sites (1 = 0.94, P < 0.001, Fig. 13.4a). At a wider scale
(represented by PCNM1; associated with db-RDA1: r? = 0.95, P = 0.001), latitude,
precipitation and temperature were highly related to differences between Brazil and
Chile in their AMF community composition. This is in concordance with global
studies of AMF biogeography that showed influences of temperature and precipita-
tion on AMF root colonizing composition (Opik et al. 2013; Davison et al. 2015).
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At coarse scales (mainly represented by PCNM3; associated with db-RDA2:
> = 0.66, P = 0.001) Central Argentina and Patagonia Argentina differentiated in
their AMF community composition mainly due to the differences in host species
(PERMANOVA: F = 12.54, r* = 0.77, P = 0.001), soil pH (PERMANOVA:
F=10.53,r2=0.47,P=0.001) and N content (PERMANOVA: F =7.678, r>=0.39,
P =0.001). Several studies provide evidence that the distribution of AMF can be
affected by host species, pH and total N (Koske 1987; Johnson et al. 1992; Egerton-
Warburton et al. 2004).

To evaluate the strength of association of sampling sites, and vegetation type or
dominant host with AMF morphospecies, an indicator species analysis was applied
using the indval() function of the R package labdsv (Dufrene and Legendre 1997,
Roberts 2013). Two species were significantly associated with Brazil, nine with
Yungas, eleven with Central Argentina, three with Chile, and six with Patagonia. Of
the 20 vegetation types and dominant hosts, six AMF morphospecies were signifi-
cantly associated with savanna forest, one with A. siccus, one with T. spicatus, four
with rocky outcrop, one with rupestrian grassland, one with A. acuminata, four with
P. australis, three with N. pumilio, and one with successional forest. A meta-analysis
of global distribution patterns of root-colonizing AMF also demonstrated different
type of ecosystems hosting different assemblages of AMF morphospecies (Opik
et al. 20006).

13.5 Relationship Between AMF Functional Richness
and Abiotic Characteristics

Arbuscular mycorrhizal fungi were grouped into three functional groups according
to their traits (sensu Chagnon et al. 2013): “ruderal-Glomeraceae”
(Claroideoglomeraceae + Glomeraceae + Pacisporaceae + Diversisporaceae),
“stress-tolerant-Acaulosporaceae”  (Acaulosporaceae + Ambisporaceac +
Entrophosporaceae + Archaeosporaceae), and ‘“‘competitor-Gigasporaceae”. To
determine the relationship among AMF functional groups with microscale and mac-
roscale factors we fitted generalized linear models (GLM) with the glm() function
as implemented in the R environment with Poisson error distribution and identity or
logarithmic, in the case of Gigasporaceae, link function. When overdispersion was
detected, the standard errors were corrected using a quasi-GLM model.
Glomeraceae and Gigasporaceae families were negatively associated with pH
(t=3.685,P <0.001; t =2.785, P = 0.009; respectively). Meanwhile, and contrary
to previous evidence (Veresoglou et al. 2012), Acaulosporaceae did not show a sig-
nificant relationship with pH (t=0.747, P = 0.460). Glomeraceae and Gigasporaceae
showed higher morphospecies richness in soils with pH between 3.5 and 5.0, and
Acaulosporaceae from 5.0 to 6.0. Contrary to Glomeraceae, sporulation of
Acaulosporaceae is promoted in acidic soils, but its members also occur on higher
pH soils (Clark 1997). Only Gigasporaceae showed a significant and positive asso-
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ciation with N (t = 5.106, P < 0.001), and a negative association with P (t = 2.038,
P = 0.048). Meanwhile, Glomeraceae and Acaulosporaceae did not show a signifi-
cant relationship with any of these variables (Fig. 13.5). In P- limited ecosystems
with high N availability, host plants may select AMF taxa with extensive hyphal
networks that forage P effectively, such as Gigasporaceae (Egerton-Warburton et al.
2007). This is because excess in N availability is expected to improve plant photo-
synthesis thus making the availability of C for transfer to AMF symbionts less
costly for the plant (Johnson 2010). Nonetheless, evidence that increase N avail-
ability reduce the occurrence of AMF taxa with greater P benefit (i.e. Gigasporaceae)
has been also documented (Treseder et al. 2018).

Among macroscale factors, Glomeraceae and Gigasporaceae showed a negative
significant relationship with latitude (t = 4.450, P < 0.001; t = 5.180, P < 0.001;
respectively), and a positive association with mean annual temperature (t = 5.302,
P <0.001;t=3.902, P <0.001; respectively) and precipitation (t = 2.779, P = 0.008;
t=3.815, P <0.001; respectively). However, Acaulosporaceae did not show signifi-
cant association with any of these variables (Fig. 13.5). Gigasporaceae members are
adapted to live in stable ecosystems (de Souza et al. 2005), and highly dependent on
precipitation (Veresoglou et al. 2012) as observed here.

13.6 Conclusions

High mountain ecosystems of South America differed in their AMF communities
due to macroscale and microscale factors, revealing indicator AMF morphospecies
associated with either sampling site or vegetation type or host identity. This is in line
with global molecular studies of AMF, which evidenced patchily distributed AMF
communities (Opik et al. 2010, 2013), although contrary to an AMF taxa cosmo-
politan distribution (Davison et al. 2015). As stated by Davison et al. (2015), several
high mountain ecosystems of South America remain unexplored thus making our
results probably related to low sampling effort. However, it is important to take into
account that these authors presented global patterns of molecularly identified AMF
species considering only four records among grassland and successional forests at
South America thus probably losing the patchily structure of AMF communities of
high mountain ecosystems. The AMF richness relationships with micro and mac-
roscale factors were mainly due to Glomeraceae and Gigasporaceae responses to
these variables. At higher scales, tropical and temperate ecosystems differentiated
in their AMF community composition due to macroscale factors as latitude, precipi-
tation and temperature. At lower scales, soil characteristics and host species became
the most relevant factors in differentiating AMF community composition of sites.
High mountain ecosystems of South America comprise a particular environment in
which AMF communities could not be framed in a cosmopolitan pattern but rather
they adjust to their own pattern associated with specific conditions of the
highlands.
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