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This paper describes how the global stability of a circular cylinder is affected when submerged in
a two-phase gravitational flow. The flow behavior is governed by both the Reynolds and the Froude
number, while the depth of the cylinder has been varied to create different scenarios for the stability
analysis. The baseflow obtained by the numerical solution of the 2D Navier-Stokes equations has
been analyzed, and the first bifurcation (i.e. Hopf type) has been explored for different depths,
Reynolds and Froude numbers. In addition to the typical vortex shedding instabilities associated
to isolated cylinders, the presence of an interface between fluids creates new instabilities associated
with the free surface that present more complex and deformed structures. According to the region
of the parameter space studied here, two main causes of instabilities have been found: the ones
provoked by vortex shedding on the cylinder wake (wake instabilities) at low Froude numbers and
the ones produced by the free surface deformation (free surface instabilities) at high Froude numbers.
When instabilities are related to vortex shedding, the critical Reynolds number and the frequency
of the most unstable mode are comparable to the classical solution without free surface and gravity
effects. In all cases, the shape of the most unstable mode is deformed and distorted according to
the free surface location, while the critical Reynolds numbers and the frequency associated to the
perturbation are both affected by the gravity and the free surface presence.

INTRODUCTION

The interaction between the viscous wake of a sub-
merged object and the free surface position is a prob-
lem that deserves attention. For example, [1] justifies
the study of this problem by its potential relevance for
the remote sensing of the ocean surface from satellites,
while [2, 3] outline its application to the design of off-
shore structures and vessels. It is well known that in
the absence of free surface and gravity, the von Kármán
vortex street generated by flow past an infinitely long
circular cylinder produces a two dimensional time peri-
odic flow for Reynolds numbers between approximately
47 and 189 [5–8]. When gravity is added to the prob-
lem, the dynamics of the large-scale coherent structures
around a circular cylinder in an open channel under very
shallow and turbulent flow conditions where the bed fric-
tion significantly affects the wake structure is studied in
[24]. The complex wake created by an emergent cylinder
with a large aspect ratio in a shallow open channel flow is
studied experimentally using particle image velocimetry
in [25]. Another relevant experimental free surface study,
where the surface-height profile and vertical velocity dis-
tributions of a fully submerged hydrofoil were measured
in [26]. This work focuses on the changes produced in
the stability of this flow when the cylinder is submerged
and a free surface separating two distinct fluids in the
presence of gravity. In contrast, to the works referenced
[24] and [25], here gravity acts orthogonal to the cylinder
axis and the flow is laminar. Different 2D steady base-

flows have been numerically studied and a linear global
stability analysis has been performed in order to quan-
tify the differences in the onset of the first instability
when free surface and gravity are added to the problem.
Previous authors performed stability analysis of idealized
problems such as simple vortex structures [9, 10] and an-
alytic shear flows [1]. To the authors knowledge, this
constitutes the first study where a global stability anal-
ysis is performed on a Navier-Stokes computed solution
in the presence of density discontinuities caused by the
free surface. In order to gain insight about the physics
of the interaction, the limits of steady solution where the
velocity, the pressure and the free surface finally reach
a stationary state are analyzed. The problem depends
on two non-dimensional numbers, the Reynolds and the
Froude numbers and one geometrical parameter, which is
the cylinder depth (i.e. distance from the top of the cylin-
der to the free surface at rest). The classical single phase
case when, in the absence of gravity, only one fluid is used
has a very well studied solution and the steady separa-
tion bubble breaks its symmetry (i.e. becoming unstable)
when the Reynolds number increases its value above the
critical value Respc ≈ 47 with non-dimensional frequency
given by the Strouhal number Stspc ≈ 0.11 (both based
on the cylinder diameter). For Reynolds numbers above
this critical value, perturbations amplify to destabilize
the separation bubble. In our study the Reynolds num-
ber has been increased from subcritical to supercritical
values while the Froude number based on the cylinder
diameter has been kept constant for three different cylin-
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der depths. Contrary to the unsubmerged case (no free
surface), two causes could trigger the first instability of
the submerged cylinder: typical vortex shedding instabil-
ity or other free surface instabilities (i.e. wave breaking
or secondary wave formation). In our study the range
of parameters Reynolds, Froude and cylinder depth has
been carefully selected such that different causes of in-
stability appear. Free surface instabilities are dominant
in some parts of the selected parameter space and their
associated perturbation amplitudes can be distinguished
from the typical vortex shedding instabilities (one phase).
Rayleigh-Taylor instabilities are not expected consider-
ing that the heavier fluid is always placed at the bot-
tom. In order to extend the flow analysis to those cases
beyond the critical point, a Dynamic Mode Decompo-
sition (DMD)[20, 21] technique, has been performed on
the supercritical range. The latter analysis confirms that
the frequencies associated to the most unstable mode are
well captured through the linear stability analysis of the
base flow obtained through frequency damping [19]. Sim-
ilarly to the work presented by Triantafyllou and Dimas
[1], the purpose here is to analyze the stability of the
wake of floating two-dimensional objects. However, a
few differences can be found between the two method-
ologies. First, in our case no analytic hypothesis of the
flow or weakly parallel assumptions have been used for
the baseflow construction, instead, the base flow has been
computed solving the Navier-Stokes equations for both
fluids. Second, no boundary conditions have been used
for the free surface, and a scalar function, and the Vol-
ume of Fluid (VOF) function[11] has been included in
the simulation to represent density and dynamic viscos-
ity changes. Third, a two-dimensional global analysis has
been performed, and consequently we have not assumed
any harmonic dependance of the perturbation in the flow
direction (i.e. parallel flow).

METHODOLOGY

The governing equations are the incompressible
Navier–Stokes equations in laminar regime, which are
supplemented with the conventional boundary conditions
on solid and/or open boundaries. The computational do-
main Ω contains both fluids with different density and
dynamic viscosity superposed one over the other. The
first one is placed at the top of the domain (denoted by
subscript 1) and the second at the bottom (subscript 2).
Let us name their corresponding densities and kinematic
viscosities as ρi and νi (i = 1, 2), respectively, where
ρ2 � ρ1. The non dimensional governing equations, writ-
ten in a Lagrangian framework, are:

∇ · v = 0, (1)

ρ
Dv

Dt
= −∇p+

1

Re
∇ · (µ∇v) +

ρ

Fr2D
ug (2)

Here D/Dt, v, p, ρ and µ are the material derivative,
velocity, pressure, density and dynamic viscosity non-
dimensional variables and ug is a unitary vector parallel
to the gravity force. The equations are computed in
non-dimensional form using the cylinder diameter D,
the inflow velocity U and the density and dynamic
viscosity of the bottom fluid such that pressure is non-
dimensionalized with ρ2U

2. The Reynolds Re = UD
ν2

and Froude Fr = U√
gD

numbers are defined using the

properties of the bottom fluid. Following the classical
theoretical framework used in this kind of problems, see
[22], in addition to equations (1) and (2), we have

Dρ

Dt
= 0 (3)

which ensures that the density of every particle remains
unchanged as we follow its motion. The VOF function φ
is used to track the free surface, such that: φ = 0 in the
fluid 1 and φ = 1 in the fluid 2. As usual, the free surface
is represented by VOF function isosurface φ = 0.5. An
efficient and accurate Particle Finite Element Method
(PFEM-2)[12] has been used to numerically simulate the
dynamics of the incompressible baseflows. It is important
to remark that both density and dynamic viscosity are
discontinuous functions that are accurately transported
according to the techniques detailed in [12].

The relation between the density and dynamic viscos-
ity of the fluid and the VOF function is:

ρ = (1− φ)ρ1 + φρ2, (4)

µ = (1− φ)µ1 + φµ2, (5)

We choose a sufficiently large domain compared to the
cylinder size to minimize undesirable boundary effects.
The inflow and exit boundaries are located at 18D
and 90D upstream and downstream of the cylinder,
respectively. Side boundaries are located 20D apart from
the central axis. A uniform inflow boundary condition,
together with a natural boundary condition for the far
field and outflow, are used for the velocity. No-slip
boundary conditions are employed for cylinder walls. A
Neumann boundary condition is imposed for the pressure
in all boundaries except at the top where a fixed total
pressure condition is imposed. Details are provided in
FIG. 1. In order to avoid reflection of waves from outlet
boundaries an absorption or relaxation zone is set in the
last 30D of the domain. In this zone an explicit damping
force to components of the velocity field in the direction
of gravity is imposed to damp wave motion, and prevents
reflections from the outlet boundary [23].

After a mesh convergence process based on the drag
and lift forces, a final mesh has been retained. The
mesh used for the baseflow simulations is a finite volume
mesh that contains 32122 cells, the default mesh size is
0.7D while in the cylinder proximity and the free surface
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region, the mesh size has been refined to 0.01D. The
global mesh and the mesh refinement near the cylinder
are detailed in FIG. 2. This mesh was transformed into
a P2-P1 finite element by cell division of the original
finite volume mesh, generating a second mesh with 65834
triangles and 132542 quadratic nodes for the stability
analysis computations.

FIG. 1: Computational domain description for baseflow
computation and subsequent stability analysis.

An accurate resolution of the free surface interface is
crucial to extract stability information and hence special
care is taken to resolve well this region such that the
interface remains sharp along the time iterative solution.
Large jumps of fluid density and dynamic viscosity
across the interface should be correctly captured by the

FIG. 2: Global (top) and zoomed view around the
cylinder (bottom) of the mesh used for the baseflow

computation and subsequent stability analysis.

numerical algorithm in order to satisfy the momentum
balance in the vicinity of the interface. Readers
interested in more details of the PFEM-2 method and the
enrichment technique used for the free surface definition
may see [12].

The complete stability analysis requires two steps:
during the first one, the two-dimensional Navier-Stokes
equations are solved for the Re and Fr values that reach
a steady or periodic state (v, p, φ) known as base flow.
The equations for the baseflow read:

ρ
Dv

Dt
= −∇p+

1

Re
∇ · (µ∇v) +

ρ

Fr2D
ug (6)

∇ · v = 0, (7)

Dφ

Dt
= 0 (8)

which are complemented with 4 and 5.
In the problem solved in what follows, the component

along the third spatial direction (z) of the basic flow
velocity vector is taken to be zero v = (u, v, 0), and
all components are taken to be independent of this
spatial direction, ∂

∂z = 0. The consequence is that
the linearized equations of motion defining the biglobal
stability problem may be expressed by real operators.
The basic flow is obtained by time-integration of system
6-8, starting from rest and evolving driven by the
boundary conditions.

For the cases where the Reynolds number is above the
critical value Re > Rec and no steady-state is obtained
(e.g. periodic case) a last step is performed to obtain
the baseflow. In those cases, an artificial steady-state is
forced through a frequency damping technique[19]. Some
final tests are performed by DMD analysis of time varying
flow without frequency damping, to confirm that the
results obtained damping the frequencies that turn the
flow to instability were correct (see Appendix).
Regardless of how the base flow is obtained, during
the second step the base flow (steady or damped) is
perturbed with small wave like ansatz for velocity and
pressure such as:

v = v + εv̂ exp(ωt) p = p+ εp̂ exp(ωt), (9)

where ε � 1 and ω = ωr + iωi is a complex number
that contains the growth rate (ωr) and the oscillation
frequency (ωi) of the perturbations. The stability
analysis of the equations implies the linearization of the
Navier-Stokes equations around a steady or damped flow
(e.g. a frequency damping method is used to obtain a
steady stated). This methodology has been extensively
used by the authors and the results are presented in
[14], [16], [17], [21], [15] and [18]. Substituting into
equations 1-3, subtracting the basic flow equations 6-
8, and linearizing, the equations for the perturbation
quantities are obtained
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∇ · v̂ = 0, (10)

ρ
∂v̂

∂t
+ ρv∇v̂ + ρv̂∇v + ρ̂v∇v = −∇p̂+

1

Re
∇ · (µ∇v̂ + µ̂∇v) +

ρ̂

F r2D
ug, (11)

∂ρ̂

∂t
+ v∇ρ̂+ ρ∇v̂ = 0 (12)

The system 10-12 is thus transformed into the general-
ized eigenvalue problem to determine the complex eigen-
value ω and eigenvector X,

A ·X = −ωB ·X, (13)

where X = (v̂, p̂, ρ̂) and the linear operators A and B
are real. The process followed and the description of the
operators A and B is detailed in [14], and implies the
resolution of a large generalized eigenvalue problem by
an iterative Arnoldi method.
The baseflow can be considered unstable when any of
the growth rates ωr are positive. Note that when the
Navier-Stokes equations are solved and perturbed, terms
that include the density gradients may become important
and have to be taken into account in the proximity of
the free surface. The boundary conditions used for the
perturbed problem have been already described, with
the exception of the inflow boundary condition where
zero velocity perturbation is imposed. In addition, two
important considerations should be remarked when the
analysis is performed:

� For subcritical Reynolds numbers, the steady
baseflow implies a final distribution of density and
dynamic viscosity determined by the values of the
VOF function.

� For supercritical cases, where the baseflow is
unsteady, a frequency damping algorithm [19] is
performed. For those supercritical cases, the linear
global stability analysis is performed on an damped
baseflow. Results are confirmed by an unsteady
DMD analysis using no less than 10 snapshots per
period (see Appendix ).

RESULTS

In all this work, the liquid (bottom fluid) density and
dynamic viscosity are 100 times their respective top fluid
value. The Froude number has been varied in the interval
Fr ∈ [0.25, 4] and three different water depth values
were studied h/D = 0.55, 1, 2. The bifurcation onset
corresponding to the critical Reynolds number, Rec, has
always been found in the range Re = [10, 60].
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FIG. 3: Vorticity fields for depth of h/d = 0.55,
Re = 180 and for Froude numbers of (top) Fr=0.3,

(bottom) Fr = 0.6. Positive vorticity is shown as dark
grey and negative vorticity as light grey.

Validation

Despite the Reynolds number difference, the free
surface elevation at the top of the cylinder is similar to
the one presented by Bouscasse [3] and Reichl [2]. For
the sake of validation, the global drag and lift forces have
been computed and compared against previous results[3,
4] at the more studied conditions Re = 180, h/D =
0.55 and different Froude numbers. Results show good
agreement, see FIG. 4. In FIG. 3, two vorticity field
snapshots at Re = 180 and t = 100 at two different
Froude numbers Fr = 0.3 and Fr = 0.6 are shown, as
can be observed the free surface position and vorticity
wake is very similar to the results presented by Bouscasse
[4].

Stability analysis

Baseflow computation.

We begin by assessing the free surface deformation
when varying the Froude number at a fixed Reynolds
Re = 40. Results are summarized in FIG. 5, where
it becomes apparent that increasing the Froude number
leads to longer deformations. Furthermore, an increase
in Fr also results in a higher elevation at the cylinder
position, suggesting that low Froude numbers lead to
a narrow contraction between cylinder top and free
surface and a consequent locally accelerated flow. The
shape of the free surface also modifies locally the flow
direction, introducing larger vertical flow components as
the Froude number increases. Overall the free surface
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FIG. 4: Drag and lift coefficients calculated with
PFEM-2 at Re = 180 and h/D = 0.55 for different Fr

numbers, comparison with Bouscasse [3, 4].

FIG. 5: Top: free surface position at Re = 40 and
h/D = 0.55 for different Froude numbers. Bottom:

zoomed view around the cylinder.

deformation provides base-flows that are substantially
different when the Froude number is varied. In addition,
the cylinder depth h/D and the Reynolds number provide
two additional parameters that modulate the shape
of the base flow upon which the stability analysis is
performed. An example is provided in FIG. 6, where
the horizontal and vertical velocity components of the
baseflow (including the free surface location) are shown
for Re = 45, Fr = 3 and h/D = 0.55. The onset of
instability is hence controlled by these parameters and

quantified in following sections.

FIG. 6: Steady state velocity field for Re = 45,
h/D = 0.55 and Fr = 3. The black line corresponds to

the free surface location.

Hopf bifurcation.

Locating the cylinder under a deforming free surface
results in a complex flow. In this case, the leading in-
stability controlling the onset of unsteady flow (i.e. Hopf
bifurcation) can be associated to two distinct physical
phenomena. For some parameters, the classic wake in-
stability (i.e. vortex shedding when the Reynolds number
approximates its critical value Respc [5]) that appears also
in one-phase flows (Fr = ∞) dominates, whilst in other
situations free surface instabilities associated to the in-
terface deformation dominate. Depending on the values
of the three parameters involved in this study: Froude,
Reynolds and depth, vortex shedding or free-surface de-
formation dominates the onset of unsteadiness. Let us
start the study presenting the different types of instabil-
ities that have been found according to the mode shape
and depending on the value of the parameters.

First, a wake instability dominates at high Froude
numbers Fr > 3, these modes present associated
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FIG. 7: Example of the shape of a deformed vortex
shedding mode. Horizontal(top) and vertical(bottom)
components of the velocity perturbation for Fr = 3.5,

Re = 50 and h/D = 0.55

frequencies which are not far from the classical vortex
shedding frequency Stc ∼ 0.11 which is equivalent to the
critical value ωci ∼ 0.73. This most unstable mode can be
visually identified by comparison to the one obtained for
single phase flow Fr →∞, with the only difference that
the vortex shedding pattern that appears immediately
behind the cylinder is deformed and modulated by the
free surface shape. As vortex shedding is the dominant
instability cause, the frequency of the most unstable
mode remains close to ωci . A typical example of this
kind of mode is found at Fr = 3.5 for the three values of
the parameter h/D, see the components of the velocity
perturbation amplitude in FIG. 7 when h/D = 0.55 the
critical Reynolds number is found at Rec ≈ 50.

A second type of instability is found when free surface
deforms a few diameters away of the cylinder. This
instability is generally found at intermediate Froude
numbers 2.5 < Fr < 1.5, and the frequency associated to
this kind is lower compared to the reference single phase
one ωci . The shape of the most unstable mode is clearly
associated to the free surface deformation and is found
behind the cylinder, but far from the cylinder near-wake.
See, for example, the velocity perturbation in FIG. 8 for
Fr = 2, Re = 30 and h/D = 0.55.

FIG. 8: Example of the shape of a free surface mode.
Horizontal(top) and vertical(bottom) components of the

perturbation for Fr = 2, Re = 30 and h/D = 0.55

Other types of instabilities that deserve attention are
also found; a particular kind of free surface instability
has been exclusively found at Fr = 1 and h/D = 0.55,
due to the contraction created between the cylinder and
the free surface (blocked flow). This confined instability
is found close to the free surface cylinder area, and has
negligible frequency, see FIG. 9 for Re = 60. It should
be also mentioned, that in some situations the instability
found is a combination of the two types of instabilities,
wake and free surface, described before. Then, the
mode amplitude presents a vortex shedding shape that
propagates in both top and bottom fluids, this kind of
instability appears at low Froude numbers Fr < 1.5 and
the frequencies associated are close to the classical one
due to the vortex shedding component, see FIG. 10.

The evolutions of the growth/damping rates and the
angular frequencies of the resulting most unstable mode
are shown in FIG. 11, for various Reynolds and depths
h/D, for three representative Froude numbers: Fr = 3.5,
Fr = 2 and Fr = 1. The case without free surface
Fr, h/D → ∞ is included as reference. The most
unstable mode moves towards the unstable region ωr > 0
when the Reynolds number is increased, similarly to what
happens in the absence of free surface. For the highest
Froude number, Fr = 3.5, the growth rate curves are
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FIG. 9: Particular case of a stationary free surface
mode when the interface deformation is very close to
the cylinder. Horizontal(top) and vertical(bottom)

components of the perturbation for Fr = 1, Re = 60
and h/D = 0.55

close to each other for all depths, which corresponds
to the classic cylinder wake instability and not being
caused by the free surface proximity to the cylinder.
This is in good agreement with the mode presented in
FIG. 7 for Fr = 3.5 and h/D = 0.55, as a typical
example of deformed (and modulated) vortex shedding
instability. Furthermore, the frequency and the critical
Reynolds numbers are not far from the ones presented
for the single phase case, which is the canonical vortex
shedding instability. When the Froude number decreases
to Fr = 2, both the critical Reynolds number and the
frequency decrease when compared to the single phase
flow, meaning that in this circumstance the instability is
not related to the vortex shedding and now depends on
the free surface deformation and the cylinder depth. In
fact, the lowest critical Reynolds numbers are found at
Fr = 2 in particular for small depth h/D values, being
Re ≈ 20 when h/D ≤ 1. For the particular case Fr = 1
and minimum depth h/D = 0.55, a zero frequency mode
is found which agrees with the confined mode shape, see
FIG. 9. If the depth is increased, the instability becomes
a vortex shedding type, having frequencies and growth
rates not far from the single fluid case. Similar to the

FIG. 10: Example of the shape of a combined vortex
shedding-free-surface mode. Horizontal(top) and

vertical(bottom) components of the perturbation for
Fr = 0.5, Re = 60 and h/D = 0.55

Fr = 2 case, highest depth implies enhanced stability,
consequently the critical Reynolds increases when h/D
increases. Comparing the single phase case (h/D = ∞
and Fr → ∞, red lines in FIG. 11) to the most similar
case analyzed (maximum Froude number Fr = 3.5 and
maximum depth h/D = 2), we found that the critical
Reynolds number is lower, suggesting that when the
wake causes the instability the free surface presence
has a stabilizing effect. This provides a first evidence
that only when wake instabilities are responsible of the
Hopf bifurcation, the free surface presence increases the
stability of the flow, however this statement cannot be
generalized to other free surface instabilities.

Additionally, at the bottom picture of FIG. 11, we
can appreciate that at high Froude numbers (Fr = 3.5)
which present a vortex shedding instability, its angular
frequency is affected by the submerged depth, and ωi
decreases when the ratio h/D decreases. As h/D is
increased, the frequency tends to the one obtained when
a single phase is considered. Therefore, it may be argued
that for high Froude numbers and non-dimensional
depths larger than 2 (h/D ≥ 2), the free surface presence
does not affect significantly the perturbation frequency
being close to ωc. Those frequency values are reduced for
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FIG. 11: Growth rate and frequency versus Re number
for representative Froude numbers Fr = 1, 2, 3.5 and all
depth. The classical results of the Hopf bifurcation of
the isolated cylinder problem without free surface and
no gravity has also been added (red line), where it can

be observed that Rec = 47 and ωc = 0.7414 are the
expected critical values.

smaller depths h/D < 2. The mode corresponding to this
leading unstable mode for the case Re = 45, Fr = 3 and
h/D = 0.55 is depicted in FIG. 12, where the shape of the
mode is visibly influenced by the free surface modulation.

In FIG. 15 the growth rate is plotted against the
Reynolds number for different Froude numbers, when the
depth h/D = 0.55 is kept constant. We also represented
in red the single phase case for comparison. We observe
that according to the type of inherent instability the
curves are clustered together. As we explained before,
if the instabilities are purely or partially caused by some

FIG. 12: Unstable mode (real part) for the case
Re = 45 Fr = 3 and h/D = 0.55

kind of wake phenomena, the critical Reynolds number
is close to the single phase critical value (Respc ). Vortex
shedding occurs when Fr ≥ 3 and Fr ≤ 0.5, whilst
for 2.5 ≥ Fr ≥ 1.5, free surface instabilities dominate.
In the bottom part of FIG. 15, the angular frequency
associated with the less stable mode is also represented
versus the Reynolds number for different values of the
Froude parameter. We can observe that using the red
line corresponding to the single frequency case ωci as
reference, the frequencies of the perturbation modes are
not far from this value. Namely, ωi approaches ωci
when vortex shedding causes the instability, while the
modes corresponding to free surface clearly present lower
frequencies.

As the steady baseflow can be instabilized by two
different causes: either the cylinder wake or the excessive
free surface deformation. We should take into account
that FIGS. 11 and 15, just presents the most unstable
mode without attending to the cause, which can change
depending on the Reynolds number. Consequently, the
most unstable mode in a particular Reynolds range could
be caused by the cylinder wake, but when the Reynolds
number increases, free surface deformation modes might
grow quicker and finally cause the instability or viceversa.
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FIG. 13: Variation of the critical Reynolds number Rec
as a function of the Froude number Fr for different
depths h/D. The critical Reynolds number for the

single phase flow Respc has been added as reference in
red dashed line.

This mode competition is what causes the slope change
in the curves. In this analysis, it is the mode shape what
should give some light into the physical interpretation of
the final cause of the instability when the instability limit
(ωr = 0) is crossed.

FIG. 13 presents the variation of the critical Reynolds
number Rec as a function of Froude number Fr for
different depths h/D. This figure presents a critical
Froude range around Fr ∼ 2 − 2.5 where the critical
Reynolds number is minimized, this tendency is followed
by the three depths studied. For the highest Froude
numbers, the curves tend to approach the critical
Reynolds number obtained for the single phase flow Respc ,
also represented in the figure.

For completeness, we include a summary of the results
in FIG. 14. The figure includes the different types of
instabilities, for varying Froude numbers and depths.

CONCLUSIONS

This work has presented for the first time global
stability analysis results for a submerged circular cylinder
under the modulation of a steady free surface. The
stability of this particular cylinder is therefore affected
by the free surface position relative to the cylinder
center, the Reynolds number and the Froude number.
A framework to analyze the Hopf bifurcation of this
two-phase flow has been developed performing a global
stability analysis for particular steady or quasi steady
solutions. These results have shown that different
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FIG. 14: Global representation of the types of
instabilities found in our parameter space.

scenarios could appear depending on the parameter
values and relative free surface position, as consequence
besides the onset of wake instabilities associated to the
von Kármán vortex street that generally appear when
cylinders are studied, other unstable modes associated to
the free surface interface also modify the flow stability.
Modes that combine both phenomena and singularities
such as stationary modes may also appear in the
parameter space studied. As expected, the shape of the
most unstable mode is always deformed and distorted due
to the free surface presence. We conclude that, depending
on the kind of instability, the critical Reynolds number
can change severely, and the presence of free surface does
not always enhances stabilization. In addition, the free
surface has shown to modify the frequency associated to
the less stable perturbations. The global scenario shows
that using the single phase critical Reynolds number and
critical frequency as reference, two high frequency regions
appear associated to low and high Froude numbers that
involve wake instability, and an intermediate interval of
Froude numbers where the instabilities are associated to
the free surface.
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APPENDIX: DMD CONFIRMATION FOR
SUPERCRITICAL REGIMES.

We explore the frequency variations in the supercritical
regime. This happens when the Reynolds number range
is extended to larger Reynolds numbers, Re > Rec, and
frequency damped baseflows are used for the analysis. To
confirm the results obtained by the (frequency damped)
linear stability analysis, an unsteady DMD analysis has
been also performed for Fr = 3 and two supercritical
Reynolds numbers Re = 60 and Re = 70 for all cylinder
depths. FIG. 16 compares the critical frequencies for the
DMD analysis and the global stability analysis results
obtained from the analysis of damped baseflows. It can
be observed that the values of the frequencies agree well.
In all cases the leading frequency is attributed to the
vortex shedding instability in the cylinder wake, typically
found at Fr = 3.
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