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Abstract. We described the first passage time distribution associated to the stochastic evolu-
tion from an unstable uniform state to a patterned one (attractor of the system), when the time
evolution is given by an integro-differential equation describing a population model. In order
to obtain analytical results we used the Stochastic Path Perturbation Approach introducing
a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale
perturbation expansion. We show that the stochastic multiscale perturbation is a necessary
tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial
differential equations. A small noise parameter was introduced to define the random escape of
the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation,
to show the agreement with our theoretical predictions.
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1. Introduction

In the last twenty years the study of non-local models in ecology and biology has led to much interest, most
of them have been formulated in terms of continuous-field evolution equations for densities describing long
distance interactions [1–3], but also in terms of discrete master evolution equations [4]. These interactions
can be mediated through vision, hearing, smelling or other kind of sensing. Therefore, non-local effects
in the non-linear terms in reaction–diffusion equations may account for resource’s competition within a
certain range. Works quoting the importance of these type of dynamical models can be found in the
present issue. It is worth mentioning studies of bacteria cultures on petri dishes, in which the diffusion of
nutrients and/or the release of toxic substances can cause non–locality in the interactions [5–8]. Moreover,
we can mention related works, as the study of travelling wave solutions of non-local reaction–diffusion
equations arising also in population dynamics [9]. Other study refer to the pattern formation phenomena
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in a model of competing populations with non-local interactions [10], and bifurcation theory [11,12]. There
are also some pieces of work related to neural fields, where non-local interactions and noise-induced jumps
play an important role in the description of real systems [13,14].

In this contribution we focus on the study of a stochastic non-local (integro–differential) version of the
so-called Lotka–Volterra, or Fisher, equation [3, 15, 16]. We are specially concerned on the description
of the random escape time of the field system –from a uniform stationary to a patterned state near
criticality– introducing a stochastic multiscale perturbation expansion.

In the next section we show the mathematical model used in this study, next we perform the Fourier
analysis of the non–local model. In section IV we introduce the stochastic multiscale perturbation ex-
pansion, and finally in section V we introduce our discussions and future work.

2. Mathematical Model

The dynamical model, shown in the next equation, takes into account the exponential growth of the
population, characterized by the parameter a, a diffusion constant D, a non–local competition term,
proportional to a parameter, b, and the kernel G (x).

We also model environmental/thermic fluctuations acting on these types of systems. To take this into
account, we introduce an additive fluctuating Gaussian field ξ(x, t) in the dynamics. This is a plausible
ansatz when the unspecified random contributions are more important at low density, see Appendix 3 in
[17]. We characterized the strength of the noise with a small parameter ε.

Then, the one dimensional model looks as follows

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ au(x, t)− bu(x, t)

∫
D
u (x− x′, t)G(x′)dx′ +

√
εξ(x, t). (2.1)

We are interested in the stochastic pattern formation description of the (positive) density field u(x, t)
of Eq.(2.1), subject to periodic boundary conditions on D = [−L,L]. The random characteristics of this
stochastic integro–differential equation is completely characterized by the statistics of the field ξ(x, t).
Nevertheless the first passage time problem associated to this model is non-trivial, due to the characteris-
tics introduced by the non-local term contribution. In the present study we included Gaussian white-noise
moments [18–20]

〈ξ(x, t)〉 = 0; 〈ξ(x, t)ξ(x′, t′)〉 = δ(x− x′)δ(t− t′).

The non–local interaction, i.e., the kernel G (x) is adopted to be symmetric and normalized in the
domain of interest D, we use a square kernel defined as

G(x) =
1

2w
[Θ(w − x)Θ(w + x)] , (2.2)

where Θ(x) = 0 if x < 0 and Θ(x) = 1 if x > 0, is the step function. Thus the limit w → 0 reproduces a
local interaction, and the limit w → L represents a non-local interaction in the complete domain D. In
[6] several types of kernels, and their analytical properties are presented.

The deterministic version of the model, Eq.(2.1) with ε = 0, has two homogeneous steady states:
{0, a/b}. In the local case those values constitute the unstable and stable fixed points respectively; note
that the non-local Fisher’s model is non–variational. For the non–local case we are interested mainly in
the instability that occurs with the non–zero state, i.e., u0 = a/b. This instability can be understood
doing a linear analysis around u0, see Eq.(3.5), and its appearing depends on the growth parameter a the
diffusion constant D and the Fourier transformation of the non–local kernel G(x), these characteristics
are analyzed in detail in the following sections. Then, for a given set of parameters, see Eq.(3.6), the
uniform initial condition u0 becomes unstable, so due to fluctuations, the dynamics ends in a patterned
stable solution. We show the comparison between deterministic vs. stochastic evolutions in Figure 1. In
this figure one realization of the stochastic dynamics, Eq.(2.1), is shown in the course of time. In addition
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Figure 1. Typical stochastic evolution of the field u(x, t). The initial condition is
u(x, 0) ≡ u0 = 1 and the evolution follows Eq.(2.1) with ε = 10−2. The physical
parameters (a, b,D,w, L) are chosen in such a way the initial condition is unstable (see
Tables I and II). The arrow shows the amplitude of the stochastic evolution at three
different times: t = (10, 20, 25), i.e., evolving from the uniform toward the patterned
state. The inset shows the time-evolution to the final state from a pure deterministic
solution with initial condition: u(x, 0) = 1 +

√
ε cos(kex) for the set of times: t =

(10, 20, 30).

in the inset of this figure we also show the evolution of a pure deterministic solution, for a similar set of
times, and from the particular initial condition: u(x, 0) = a/b +

√
ε cos(kex) (the uniform solution plus

and small Fourier perturbation, see next section for the definition of ke). As can be seen the attractor
is almost reached (from this deterministic evolution) for a time around t = 30. Therefore the important
point in the description of the pattern formation is to investigate its transient stochastic dynamics. In the
next sections we will be interested in the analytical description of the Mean First Passage Time (MFPT)
leaving the uniform state to the final patterned stable solution. To do this we will introduce a multiscale
perturbation expansion and used the stochastic path perturbation approach to tackle the evolution of
Eq.(2.1).

3. Fourier analysis

As mentioned, in the present analysis we assume periodic boundary conditions in the interval D ≡ [−1, 1],
i.e., we use a domain size L = 1. In order to study the transition from a uniform stationary state to a
patterned one, we decompose Eq.(2.1) using a discrete Fourier transformation, as follows

u(x, t) =

∞∑
n=−∞

An(t) exp (iknx)

ξ(x, t) =

∞∑
n=−∞

ξn(t) exp (iknx)

G(x) =

∞∑
n=−∞

Gn exp (iknx) ,
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here kn = nπ, n = 0,±1,±2,±3.... and
∫ 1

−1G (x) dx = 1. Introducing these series into Eq.(2.1) and
using that ∫ 1

−1
ei(m+n)πxdx = 2δm+n,0 (3.1)

we arrive at

∂t

∞∑
n=−∞

An(t)eiknx =

∞∑
n=−∞

(
D (ikn)

2
+ a
)
An(t)eiknx

−2b

( ∞∑
m=−∞

Am(t)eikmx

)( ∞∑
n=−∞

GnAn(t)eiknx

)

+
√
ε

∞∑
n=−∞

ξn(t)eiknx,

then using orthogonality of Fourier series we can write the following infinite set of coupled Fourier modes

dAn
dt

=
(
−Dk2n + a

)
An − 2b

l=∞∑
l=−∞

An−lAlGl +
√
εξn(t), 〈ξm(t′)ξn(t)〉 = δm+nδ(t− t′) (3.2)

Introducing the usual linear stability analysis: u = u0 + u1 with u0 = a/b and
u1 = eϕt

(∑∞
n=−∞Ane

iknx
)

into the deterministic part of Eq.(2.1) we get

∂tu1 = D∂2xu1 + au1 − bu1u0 − bu0
∫
D
u1 (x− x′, t)G(x′)dx′ (3.3)

= D∂2xu1 + au1 − bu1u0 − 2bu0

( ∞∑
n=−∞

GnAne
ϕteiknx

)
. (3.4)

Therefore the homogenous state u0 = a/b is unstable under small perturbations of the form

u(x, t) = a/b+ eϕt+iknx, (3.5)

if

ϕ = −Dk2n − 2aGn > 0. (3.6)

For the particular kernel we use in the present work, Eq.(2.2), the dispersion relation ϕ ≡ ϕ(kn)
is shown in Figure 2. Note that any typical length scale characterizing an abrupt condition for the
kernel G(x) (cut-off in the range of non–local interaction) appears in the final expression of the Fourier
transformation Gn. As discussed in detail in [6] an interesting characteristic of this non–local dynamics
is the appearance of a non-trivial unstable mode, as illustrated in Figure 1. In Tables I and II we show
the corresponding numerical values of the parameters we have used.

Therefore depending on the physical parameters of the system new scenarios may appear, for example
if the value of the diffusion coefficient changes (due to external agents) the stability of the homogeneous
state u0 = a/b may change, see Eq.(3.6) and Figure 2. In particular the situation when ϕ(ke) = 0 for a
given value of ke may happen, leading therefore to a critical slowing down for the escape process. This
critical case is much more complex to analyze because the instability turns to be non-linear. See also
Eqs.(4.11)-(4.13) in the next section where we discuss the multiple scale dynamics of non-local Fisher’s
model in terms of a minimum coupling approximation.
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Table 1. Parameters near criticality used.

Physical parameters Description

a = 1 Linear growth rate
b = 1 Nonlinear coupling parameter

D = 5× 10−4 Diffusion coeficient
L = 1 Macroscopic size system
w = 0.7 Cut-off in the non-local interaction range

Table 2. Critical parameters.

Physical parameters Description

G2 = 1
2
sin 2πw
2πw Fourier mode of the square non-local Kernel

ϕ = −D(2π)2 − 2aG2 > 0 Phase in the small wave perturbation

0 2 4 6 8 1 0
- 1 . 0

- 0 . 5

0 . 0

0 2 4 6

- 1

0

�

n

Figure 2. Dispersion relation ϕ as a function of n. Here Eq. (3.6) is ploted for the
parameter values shown in Tables I and II. Note that the unstable mode in this case
corresponds to n = 2. The dashed line in the inset is the result of using the same set of
parameters but with the diffusion parameter D = 0.08. For the last case (dashed line),
the uniform state u0 is stable.

3.1. The Minimum Coupling Approximation

From the coupled equations (3.2) we can make progress decreasing the dimension of the system near
criticality, see appendix A. First consider the deterministic part of Eq.(3.2), then let us denote u(x, 0) =
a/b > 0 the initial condition of the field, i.e., the uniform stationary state. Adopting the parameters (see
Tables I and II) in such a way that there is only one Fourier unstable mode that we call ke in the present
work (see Figure 2), we get in a short-time evolution

A0(∆t) ∼ a/b+ 2bAe(0)2 |Ge|∆t,

with |Ae(0)| � a/b, meaning that A0(t) grows linearly in time. While Ae(t) grows exponentially

Ae(∆t) ∼ Ae(0) exp [ϕ∆t] .
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We can therefore bring out what we call the Minimum Coupling Approximation (MCA), this ap-
proximation allows us to derive from Eq.(3.2) the following set of coupled deterministic equations (see
appendix A)

dA0

dt
' aA0 − bA2

0 − 2bA2
eGe ≡ F (A0, Ae) (3.7)

dAe
dt
' a(e)Ae − bAeA0 (1 + 2Ge) ≡ Q(A0, Ae), (3.8)

Here we have used G0 = 1
2 , the symmetries a(n) = a(−n) ≡ (−Dk2n + a), and Gn = G−n to conclude

that Ae = A−e. This means that Fisher’s field is represented as

u(x, t) = A0 +

∞∑
n=1

2An cos(nπx). (3.9)

Interestingly the stationary state in the MCA can be found solving equations: F (A0, Ae) =
Q(A0, Ae) = 0, then we obtain the solutions

A0 =
−Dk2e + a

b(1 + 2Ge)
(3.10)

A2
e =

∣∣1−Dk2e/a∣∣ϕ
2 (b2/a) |Ge| (1 + 2Ge)2

. (3.11)

From the deterministic point of view [Eqs.(3.7)-(3.8)], when ϕ > 0 the dominant time-evolution of the
unstable mode Ae(t) can be studied from the supercritical normal form:

dz/dt = ϕz − βz3, (3.12)

where β ≡ 2a (1− 2 |Ge|) (b/a)
2 |Ge|. Equation (3.12) can be obtained solving from (3.7) the stationary

solution A0 = A0(Ae) and introducing this solution into the evolution Eq.(3.8) after invoking a Taylor
expansion for small Ae [5]. Note that from (3.12) the deterministic transient from z(0) > 0 towards the
final attractor z(∞) =

√
ϕ/β cannot be used to characterize a finite time-scale in the pattern formation.

Therefore the statistical description of such a transient process is one of the main subjects in the study
of nonequilibrium phenomena, where noise plays a crucial role in the dynamics of the system. This is the
reason why the study of the MFPT turns to be of great importance in the analysis of pattern formation.

We remark that in the framework of the MCA it is possible to see, from Eqs.(3.10)-(3.11), that at
the critical point (ϕ ≡

(
−Dk2e + 2a |Ge|

)
= 0) the stationary solutions are given by: A0|ϕ→0 → a/b and

Ae|ϕ→0 → 0. So if we wish to calculate a finite value for Ae(∞) we should go beyond the MCA. On
the other hand, the essential difficulty describing the relaxation from a state of marginal stability (when
ϕ = 0), is that there is no regime in which a linear approximation is meaningful. This subject will be
clarified in the next section, see Eqs. (4.11) to (4.13).

4. The Stochastic Multiscale Perturbation Expansion

A better description of the complexity of the stochastic evolution can be obtained when introducing a
stochastic multiscale expansion. In order to simplify this presentation let us introduce the main idea at
the level of the MCA for the case ϕ > 0.

The stochastic version of the set of coupled MCA Eqs.(3.7)-(3.8) can be written in the form
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dA0

dt
= F (A0, Ae) +

√
εξ0(t) (4.1)

dAe
dt

= Q(A0, Ae) +
√
εξe(t), (4.2)

where
〈ξ0(t)ξe(t

′)〉 = 0, 〈ξe(t)ξe(t′)〉 = 〈ξ0(t)ξ0(t′)〉 = δ (t− t′) . (4.3)

If ε is a small parameter, we can introduce a stochastic multiscale perturbation expansion for the homo-
geneous mode, A0, and the unstable one, Ae, in the form

A0(t) = A
(0)
0 +

√
εx+ εy + · · · (4.4)

Ae(t) =
√
εW + εV + · · · . (4.5)

Introducing Eqs.(4.4)-(4.5) into Eqs.(4.1)-(4.2), and collecting different orders in ε we obtain the mul-
tiple scale dynamics of the modes. For example for the homogeneous mode, up to O

(
ε1
)
, we get

O
(
ε0
)
⇒ A

(0)
0 = a/b (4.6)

O
(
ε1/2

)
⇒ dx

dt
= −ax+ ξ0 (4.7)

O
(
ε1
)
⇒ dy

dt
= −ay − bx2 − 2bGeW

2. (4.8)

For the dynamics of the unstable mode we get

O
(
ε1/2

)
⇒ dW

dt
= ϕW + ξe (4.9)

O
(
ε1
)
⇒ dV

dt
= ϕV − b(1 + 2Ge)Wx. (4.10)

From this multiscale perturbation it is possible to see that in the supercritical case ϕ > 0 the short-
time evolution is linear, therefore a Gaussian noise-perturbation dominates the escape process from the
unstable state. However this (linear) simplification does not happen when ϕ = 0, in fact at the critical
point the relevant escape process is triggered by non-Gaussian fluctuations because the stochastic set of
equations that dominates the escape processes are in this case:

dx

dt
= −ax+ ξ0 (4.11)

dW

dt
= ξe (4.12)

dV

dt
= −b(1 + 2Ge)W (t)x(t). (4.13)

Due to the marginality of the unstable state, the order O
(
ε1/2

)
does not give a correct description for

the escape time. Up to this order the MFPT would be the one associated to a pure diffusion problem
which is not a good description of the escape from a marginal unstable state triggered by noise, so we
have to go beyond the Gaussian description given by the process W (t). To the next order O

(
ε1
)
, the

stochastic evolution of V (t) indeed controls the dominant contribution of the random escape time, but
in this case the time evolution of V (t) is governed by a ”noise term” that is the product of a Wiener and
an Orstein-Uhlenbeck process, so the stochastic process V (t) would be non-Gaussian.
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4.1. The Stochastic Path Perturbation Approach in the Supercritical Case

In the small noise approximation (ε� 1) the Stochastic Path Perturbation Approach (SPPA) consists in
obtaining information about the first passage time statistics without solving the Fokker–Planck equation.
This is done by analyzing the stochastic realizations of the process under study when they are written in
terms of Wiener paths [21].

Due to the linearity of the unstable evolution, the SPPA can easily be introduced working out the
Wiener realization up to O

(
ε1/2

)
[22], on the other hand in the small noise approximation the first

passage time statistics is independent of the saturation of the unstable mode [23]. Therefore in order
to study the pattern formation in the system we will consider a threshold-value for the growth of the
unstable mode Ae(t) (to be able to calculate the MFPT without considering the saturation in the unstable
mode Ae(t), see Eq.(4.19)).

The supercritical case occurs when the factor ϕ ≡
(
−Dk2e + 2a |Ge|

)
> 0, therefore the escape process

of the unstable mode Ae(t) is dominated by the O
(
ε1/2

)
, i.e., the linear stochastic differential Eq.(4.9).

Consistently the homogeneous mode is well described by Eqs.(4.6)-(4.7). We can interpret the stochastic

multiscale dynamics in the following form: to O
(
ε0
)

the homogenous modes is the expected value A
(0)
0 =

a/b, and to O
(
ε1/2

)
stochastic realizations x(t) correspond to an Orstein-Uhlenbeck process which will

lead to the saturation of the dispersion of the homogeneous mode: A0(t � a) = a/b +
√
εx(∞) + · · · .

Concerning the unstable mode, up to O
(
ε1/2

)
the realization W (t) corresponds to an exponentially

increasing stochastic process, therefore these realizations will lead to the dominant escape process toward
the final attractor of the non-local Fisher equation. Using that ϕ ≡

(
−Dk2e + 2a |Ge|

)
> 0, from Eqs.(4.7)

and (4.9) we can write both stochastic realizations in the following form

x(t) =

∫ t

0

exp [−a (t− t′)] ξ0(t′)dt′, x(0) = 0, t ≥ 0 (4.14)

W (t) =

∫ t

0

exp [ϕ (t− t′)] ξe(t′)dt′, W (0) = 0, t ≥ 0. (4.15)

Form expression (4.14) we note that for t → ∞ the process x(t) saturates to its stationary state,
therefore we can introduce the notation Ω to characterize the random variable x (∞) = Ω, which, in
addition from Eq.(4.7) can be seen to be characterized by the normal pdf

P (Ω) =
exp

(
−Ω2

2σ2
Ω

)
√

2πσ2
Ω

, σ2
Ω =

1

2a
, Ω ∈ (−∞,∞) . (4.16)

On the other hand from (4.15), the stochastic process W (t) can be written in the form

W (t) = eϕt
∫ t

0

exp [−ϕt′] ξe(t′)dt′

≡ eϕtη(t), (4.17)

where the process η (t) fulfills the stochastic differential equation

dη

dt
= e−ϕtξe(t), η(0) = 0, t ≥ 0.

Even more, it is possible to see that the stochastic process η (t) also saturates for times t � ϕ−1. Then
the random variable η (∞) ≡ η is characterized by the normal pdf

P (η) =
exp

(
−η2
2σ2
η

)
√

2πσ2
η

, σ2
η =

1

2ϕ
, η ∈ (−∞,∞) ≡ Dη. (4.18)
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Approximating η(t) ∼ η(∞) in Eq.(4.17) we can extract the escape times te inverting a random
mapping (this is the core of the SPPA for linear unstable states), i.e., we can study the random escape
times te form a random transformation law η → te (into a suitable support to assure the positivity of te).
To see this fact we first define te ≥ 0 as the time when the stochastic process W (t) reach a threshold
value We,

W 2
e = W (te)

2 ' e2ϕteη(∞)2 = η2 exp (2ϕte) , (4.19)

then we can solve from (4.19) the random escape time as a function of the threshold We

te =
1

2ϕ
ln

(
We

η

)2

,
We

η
≥ 1

η ⇒ Normal distributed, see Eq.(4.18).

Now using the scaling Eq.(4.5) we write We = Ae/
√
ε. Then the random mapping we were looking for is

te =
1

2ϕ
ln

(
A2
e

η2ε

)
. (4.20)

Here Ae will be considered as a threshold-value to be taken into account to characterize the pattern
formation, i.e., the transition from the unstable state to the patterned state.

An asymptotic value Ae(∞) can be estimated from the stationary solution of the deterministic MCA,
Eq.(3.11). Alternatively, Ae(∞) can be approximated from the attractor of the normal form (3.12)
associated to the explosive mode Ae(t), i.e., Ae(∞) =

√
ϕ/β, where ϕ is the phase of the Fourier mode

and β ≡ 2a (1− 2 |Ge|) (b/a)
2 |Ge|.

4.1.1. The mean first passage time

We can calculate the MFPT taking the average on Eq.(4.20) to obtain

〈te〉 =
1

2ϕ

〈
ln
A2
e

η2ε

〉
,

so using a nondimensional time we get

〈τe〉 = ln (K) +
E + ln 4

2 erf (K)
, K � 1, τe = ϕte, (4.21)

where E is the Euler constant and K = Ae
√

ϕ
ε is the universal parameter of the system, see appendix B.

4.1.2. The first passage time distribution

Finally, the pdf for the escape times, i.e., the first passage time distribution P (te), can be obtained from
the theorem of the transformation of random variables:

P (te) =

∫
Dη
δ

(
te −

1

2ϕ
ln
A2
e

η2ε

)
P (η) dη, te ≥ 0, (4.22)

i.e., after some algebra we get (see appendix B)

P (τe) =
2K

erf (K)
√
π

exp
[
−τe −K2 exp (−2τe)

]
, K = Ae

√
ϕ

ε
, τe = ϕte. (4.23)

These results could have been obtained using the SPPA without invoking a multiple scale analysis [24].
Nevertheless the stochastic multiple scaling analysis, Eqs.(4.4)-(4.5), is necessary if we want to tackle the
escape process at the critical point ϕ = 0, or if the noise appears in some physical parameter of the system
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like for example in a, b, or D leading therefore to a multiplicative stochastic partial integro-differential
equation, instead of the additive model given in Eq.(2.1). Work along these lines will be presented
elsewhere.

As can be seen in Figure 3 the comparison with the Monte Carlo simulations show a good agreement
with (4.23). The parameters that we have used in the simulations of Eq.(2.1) are shown in Tables I &
II, and the noise intensity was ε = {10−2, 10−4}. In according with these parameters the unstable
initial condition of the field was chosen u(x, 0) = 1. As can be seen from Figure 1 a particular stochastic
evolution shows the transient to the final steady state (compare with deterministic evolution shown in
the inset). Thus in order to characterize the pattern formation in the system we use a threshold ∆ for
each stochastic realization: ∆ ≡ max[u(x, te)] −min[u(x, te)] = 1. Therefore we can use the theoretical
pdf for the escape time, Eq.(4.23), using a threshold-value Ae ' 0.5.

1 0 2 0 3 0 4 0 5 0
0 . 0 0

0 . 0 3

0 . 0 6

0 . 0 9

0 . 1 2

P(�
e )

�e

Figure 3. Escape time probability distribution, for the supercritical case, from Eq.(4.23)
as a function of the nondimensional time τe. The value of the parameters that we have
used are shown in Tables I and II (thus ϕ ' 0.19649, β ' 0.16947 and so Ae(∞) ∼√
ϕ/β ' 1.076). Dotted line: theoretical distributions for ε = 10−2, while the dashed

line corresponds to ε = 10−4. Bar plots correspond to the simulations of Eq.(2.1) for
each corresponding value of ε.

5. Conclusions

In this work we presented a general approach to tackle the problem of the characterization of the Mean
First Passage Time from an initial homogenous unstable state towards a final patterned stable attractor.
In particular we applied this general approach when these states are associated to an stochastic integro–
differential spacial dynamics as in a Fisher-like equation. The general theory is based on the Stochastic
Path Perturbation Approach with the implementation of the Minimum Coupling Approximation that
allowed us to study the random escape times from the initial unstable state.

In the present paper we introduced, in addition, a stochastic multiple scale analysis which is a funda-
mental tool that unable us to undertake linearly unstable states, as well as nonlinear instabilities where
the fluctuation responsible for the escape process cannot be described in terms of Gaussian statistics,
see Eqs.(4.11)-(4.13). This critical case, ϕ(ke) = 0, may happen when some parameters are modified
because of external reasons, for example, the diffusion coefficient may change altering the mobility of the
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species, see Figure 2. On the other hand, if the noise appears in some physical parameter of the evolution
dynamics, for example the growth rate changes in the form a→ a+ ξ(x, t), the stochastic problem turns
to be of multiplicative character, which is different to the additive problem presented in Eq.(2.1). These
cases can only be tackled properly using the stochastic multiscale perturbation approach that we have
introduced in the present work, these subjects under current investigation.

We are confident that the present theoretical approach to solve the First Passage Time Statistics, may
help the general understanding of the pattern formation in complex systems, where diffusion (extended
process) versus non-local interactions (with kernel and range interactions) play an important role in the
description of real systems. The present stochastic multiple scale approach may also help to solve a
different but related problem: the study of distributed time-delayed 0-dimensional dynamical systems
that can be of interest in biological models [25,26].

Acknowledgements. M.O.C. thanks grant from SECTyP, Universidad Nacional de Cuyo, Argentina, and grant
PIP 90100290 (2010-12) from CONICET, Argentina. M.A.F. thanks CONICYT Project: Anillo en Complejidad
Social SOC-1101 and FONDECYT 1140278.

Appendix A: Reduction to the Minimum Coupling Approximation

When there is only one unstable Fourier mode Ae the deterministic part of the set of equations (3.2) can
be written in a more friendly way separating the dynamics of the homogeneous and the unstable modes,
as well as neglecting the dynamics of the rest of the modes Al,∀l 6= ±e, 0 :

dA0

dt
= (a− bA0)A0 − 2bAeA−eGe +

∑
l 6=0,e

O (AlA−l) (5.1)

dAe
dt

= [a(e)− bA0(1 + 2Ge)]Ae −
∑
l 6=0,e

O (Ae−lA−l) (5.2)

dA−e
dt

= [a(−e)− bA0(1 + 2G−e)]A−e −
∑

l 6=0,−e

O (A−e−lA−l) . (5.3)

In the symmetrical case, i.e., when Gn = G−n and noting that a(n) = a(−n) ≡ (−Dk2n + a), from
Eqs.(5.1)-(5.3) it can proved that An = A−n,∀n, therefore we can restrict the Fourier modes to a cosine
expansion u(x, t) ' A0+

∑∞
n=1 2An cos(nπx), or what is equivalent to consider the deterministic dynamics

in the form

dA0

dt
' (a− bA0)A0 − 2bA2

eGe, (5.4)

dAe
dt
' [a(e)− bA0(1 + 2Ge)]Ae. (5.5)

Here we have neglected contributions of the form O (AlA−l) ,∀l 6= e, 0, this approximation gives what we
have called the Minimum Coupling Approximation [5, 24].

The stationary states of Eqs.(5.4)-(5.5) are characterized by equations:

(a− bA0)A0 = 2bA2
eGe, (5.6)

a(e) = bA0(1 + 2Ge), Ae 6= 0, (5.7)

and their solutions are the ones presented in Eqs. (3.10) and (3.11). They represent the nonlinear
structure of the pattern formation in the context of the MCA, i.e.:

u(x, t =∞) ' A0(∞) + 2Ae(∞) cos(kex),

which of course is only an approximation to the true stationary state of Eq.(2.1), see inset of Figure 1.
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Appendix B: The first passage time distribution

Using the random mapping (4.20) and the normal distribution Eq.(4.18) we can calculate all the moments:
〈tne 〉, or the pdf (4.23). Introducing the Jacobian of the transformation in Eq.(4.22) we can write

P (te) =

∫
Dη
δ (te − t(η)) P (η) dη, t(η) =

1

2ϕ
ln
A2
e

η2ε
≥ 0

= N
∫ Ae/

√
ε

0

δ (η − ηe) P (η)
dη∣∣∣dt(η)dη

∣∣∣
η=ηe

, ηe =
Ae√
ε
e−ϕte

= NP (ηe)

∣∣∣∣ dηdte
∣∣∣∣
ηe

= N
exp

( −1
2εσ2A

2
ee
−2ϕte

)
√

2πσ2

Aeϕe
−ϕte
√
ε

, σ2 =
1

2ϕ
.

Introducing the nondimensional time τe = ϕte the normalization constant N can be calculated as

1 =

∫ ∞
0

P (τe) dτe

=
N√
π

∫ ∞
0

Ae

√
ϕ

ε
e−τe exp

(
−ϕA

2
e

ε
e−2τe

)
dτe.

Defining the auxiliary constant K = Ae
√

ϕ
ε and introducing the change of variable x2 = K2e−2τe we get

1 =
N√
π

∫ ∞
0

exp
(
−τe −K2e−2τe

)
dte

=
N√
π

∫ K

0

e−x
2

dx

=
N
2

erf (K) .

Therefore the pdf can be written as

P (τe) =
2K√

π erf (K)
exp

(
−τe −K2e−2τe

)
, K = Ae

√
ϕ

ε
, τe = ϕte,

which is the result given in (4.23). The MFPT follows as: 〈τe〉 =
∫∞
0
τeP (τe) dτe, which is the result

given in Eq.(4.21).
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