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Plant cells maintain remarkable developmental plasticity, allowing
them to clonally reproduce and to repair tissues following wounding;
yet plant cells normally stably maintain consistent identities.
Although this capacity was recognized long ago, our mechanistic
understanding of the establishment, maintenance, and erasure of
cellular identities in plants remains limited. Here, we develop a cell-
type-specific reprogramming system that can be probed at the
genome-wide scale for alterations in gene expression and histone
modifications. We show that relationships among H3K27me3,
H3K4me3, and gene expression in single cell types mirror trends
from complex tissue, and that H3K27me3 dynamics regulate guard
cell identity. Further, upon initiation of reprogramming, guard cells
induce H3K27me3-mediated repression of a regulator of wound-
induced callus formation, suggesting that cells in intact tissues may
have mechanisms to sense and resist inappropriate dedifferentiation.
The matched ChIP-sequencing (seq) and RNA-seq datasets created
for this analysis also serve as a resource enabling inquiries into the
dynamic and global-scale distribution of histone modifications in
single cell types in plants.

reprogramming | H3K27me3 | stomata | Arabidopsis

lants retain developmental plasticity in differentiated somatic

cells while simultaneously maintaining these cells’ diverse
and distinct fates. Extrinsic (cell-cell signaling) and intrinsic
(regulation of gene expression) mechanisms have been shown to
contribute to the generation of cell fates. Both extrinsic and in-
trinsic controls are likely also involved in cellular reprogramming,
but little is known about how these layers of control function co-
operatively and independently to define the potential and behaviors
of individual Arabidopsis cells. Here, using a genetic manipulation
in an epidermal cell type, we present a system that enables mech-
anistic dissection of intrinsic mechanisms of cell identity mainte-
nance without disrupting tissue interactions.

Gene regulation via the Polycomb repressive complex 2
(PRC2) is required for intrinsic cell fate maintenance in many
systems, including Arabidopsis. PRC2, which catalyzes trimethyl-
ation of lysine 27 of the histone H3 tail (H3K27me3), was first
well-characterized in Drosophila; here, regional domain identity
in the embryo is highly correlated with H3K27me3 distribution
patterns (1). A failure to maintain H3K27me3 at Drosophila
HOX genes through cell divisions leads to inappropriate HOX
gene expression and misspecification of fate (2). The H3K27me3
histone itself, rather than PRC2, was shown to be critical for
transcriptional regulation that prevents homeotic defects (3),
suggesting that H3K27me3 is dynamically regulated at distinct
targets to establish and abolish a cellular identity. Profiles of
mammalian chromatin from individual cell types also support a
connection between H3K27me3 and preservation of cellular
identity, with domains of H3K27me3 enrichment greatly expanded
in differentiated cells relative to embryonic stem cells (4). Moni-
toring H3K27me3 over the course of cellular reprogramming in
tissue culture has shown this modification is dynamically remod-
eled at a small number of loci (5, 6). One possibility is that while
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H3K27me3 is important for fate maintenance, few loci enforce
particular identities.

Plants globally lacking PRC2 have dramatic postembryonic
developmental defects in cell identity maintenance, including the
formation of somatic embryos from differentiated tissue (7). If
PRC2 is lost only in postembryonic vegetative tissues, plants
form undifferentiated masses of tissue called callus (8) and fully
differentiated root hair cells can dedifferentiate to this state (9).
These phenotypes support the hypothesis that plant cell identity
maintenance requires transcriptional regulation via histone
modifications (reviewed in ref. 10). The profundity and hetero-
geneity of these reprogramming events, however, obscures which
changes to H3K27me3 are a cause and which are a consequence
of reprogramming.

Genome-wide H3K27me3 profiles with finer spatial and tempo-
ral resolution are therefore required to address the role of chro-
matin modification in plant cell identities. Pioneering H3K27me3,
H3K4me3, and gene expression profiling in Arabidopsis in root hair
and nonhair epidermal cells established that genomic H3K27me3
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distributions could exhibit cell type-specific behavior (11), and
subsequent studies on other differentiated Arabidopsis tissues and
cell types (12, 13) confirmed these findings. Further work improved
mechanistic insight by observing changes in H3K27me3 during
developmental transitions, although these studies were done in
mixed tissues (14, 15). While these studies suggest H3K27me3 is
important for cell identity maintenance, no study has observed
dynamic regulation of this histone modification during cellular
reprogramming. Ectopic expression of single transcription factors,
typically PRC2 targets, can reprogram cells in Arabidopsis (16, 17),
indicating expression changes at few loci can dramatically effect
cell identity.

An ideal, but currently unavailable, dataset would capture the
behavior of H3K27me3 in a single Arabidopsis cell type as it un-
dergoes reprogramming to a progenitor cell type. If H3K27me3
locks in cell fates, must it be reorganized for such reprogram-
ming to occur? If so, how and to what extent? The Arabidopsis
stomatal lineage (Fig. 14) provides a system to observe how
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histone modifications are reorganized over fine timescales dur-
ing development of single cell types as well as during cellular
reprogramming. Stomatal guard cells (GCs) can be isolated for
transcriptional profiling (18) and reprogrammed back to a pro-
genitor state in vivo (19) and are totipotent when cultured in
isolation (20). GCs are the terminal products of a well-defined
epidermal cell lineage. A basic helix-loop-helix transcription
factor, FAMA, is necessary and sufficient for a cell to acquire and
maintain GC identity (16). FAMA forms a complex with RETI-
NOBLASTOMA RELATED (RBR), and when point mutations
are introduced into FAMA to abrogate its interaction with RBR
(referred to here as FAMA™ ¥ or LGK lines), GCs fail to maintain
terminal identity (19). Strikingly, this leads to a reinitiation of early
stomatal lineage behaviors. These behaviors include the expression
of the stomatal lineage initiator SPEECHLESS (SPCH) and
reinitiation of asymmetric cell divisions, followed by transition to
MUTE-expressing Guard Mother Cell (GMC) identity and, ulti-
mately, the production of new GCs in the footprint of the original
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Fig. 1. Single-cell type transcriptional profiles indicate that LGK GCs acquire early stomatal lineage identities. (A) Diagram of developmental trajectory of WT

(Left) and reprogrammed (Right) GCs. The yellow box denotes cells marked by FAMA:YFP-YFP (young and maturing GCs) that were FACS-isolated for
transcriptional and histone profiles. (B) PCA shows WT GCs cluster with previously characterized young and mature GCs, while LGK GCs cluster more closely
with GMCs. Samples marked (JA) are from ref. 18. (C) ICl shows WT GCs are similar to transcriptomes previously generated from early FAMA-stage cells. LGK
GCs lose early FAMA-stage identity and become more similar to early lineage cells. Columns are previously defined cell types. Rows are sorted WT and LGK
GCs. Two replicates of each test cell type are shown. Color key indicates the ICl score and, therefore, the degree of similarity between known and unknown
cell identities. (D) Differential expression analysis conducted with DESeq2 comparing WT and LGK GCs shows early lineage regulators (black) are up-regulated
and genes associated with GC function (teal) are down-regulated.
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GCs (Fig. 14). RBR physically interacts with components of the
PRC2 complex (21, 22), leading to the hypothesis that identity
maintenance defects in LGK GCs was due to a failure to recruit
PRC2 to the many FAMA targets (19). Independently, Lee et al.
(23, 24) converged on a similar model of GC identity maintenance
by different manipulations of FAMA and suppression of the GC
reprogramming phenotype by overexpression of PRC2 components.

In this work, to address intrinsic mechanisms behind cell iden-
tity, we report the generation of high-quality genome-wide maps
of histone modifications in Arabidopsis GCs, along with corre-
sponding transcriptome and histone modification profiles during
in planta reprogramming of these cells. The reprogramming of
GCs into early stomatal identities with scorable attributes occurs
in an intact tissue, where extrinsic regulators of cell fate mainte-
nance like niche signaling can be maintained. Furthermore, prior
work establishing transcriptional signatures of stomatal lineage
cell types (18) enabled us to define the extent of reprogramming
and to identify potential regulators of this reprogramming. We
find that genomic patterns of H3K27me3 deposition are clearly
divergent between GCs and whole seedlings, revealing a strong
correlation between cell identity and H3K27me3 distribution. GC
reprogramming was not associated with widespread depletion of
H3K27me3 at stomatal lineage regulatory genes, despite differen-
tial expression of nearly 3,000 genes. These data suggest H3K27me3
functions to establish cellular identity, but that previous models
attributing GC reprogramming to global H3K27me3 depletion
need to be reconsidered. We further use these datasets to show this
in vivo reprogramming event may be negatively regulated by
H3K27me3, via repression of a procallus gene expression program.

Results

Establishing Methods to Capture and Profile Normal GCs and Those
Undergoing Reprogramming. To capture differentiated stomatal
GCs and those undergoing reprogramming, we generated a re-
porter (FAMAp:YFP-YFP) that in intact leaves and in fluoresence-
activated cell sorting (FACS) analysis clearly distinguished WT
and reprogramming GCs from autofluorescent nontarget cells
(Fig. 14 and SI Appendix, Fig. S1 B and C). A FACS gating
strategy and RNA extraction method described previously for
the stomatal lineage (18, 25) was used to generate and analyze
RNA-sequencing (seq) libraries (scheme laid out in ST Appendix,
Fig. S1C). After completing general quality control analyses (S/
Appendix, Fig. S2 A and B), we validated the specificity and ef-
fectiveness enabled by FAMAp:YFP-YFP expression to FACS-
isolate GCs by comparing the resultant GC transcriptomes
with published transcriptomes of stomatal lineage cell types (18).
Principal component analysis (PCA) shows WT GCs profiled for
this study cluster with previously profiled young GCs (18) and, to
a lesser extent, with mature GCs, while LGK GCs cluster more
closely with a precursor cell type, the GMC (Fig. 1B, [JA] indi-
cates data from ref. 18). The identity of an unknown cell type can
also be discerned by calculating an Index of Cellular Identity
(ICI) where genes whose expression is most informative for in-
dividual known cell types are compiled and used as a metric to
classify unknown cell types (26). When global measures of
identity like ICI are applied to LGK GCs, we find that they lose
FAMA-stage identity and become more similar to identities as-
sociated with the GMC stage (MUTE) and with samples con-
taining all aerial epidermal cell types (Fig. 1C).

Having broadly defined the identities of our sorted cells, we
sought a more granular understanding of the gene expression
changes that occur during FAMA"®® reprogramming. We iden-
tified 2,987 genes that are differentially expressed between WT
and FAMA™¥ GCs (P < 0.01, log, fold change threshold of 1);
they are split nearly equally between increased or decreased ex-
pression (Fig. 1D and Dataset S1). Genes associated with GC
function such as the ion channels KAT1 (27), and GORK (28), and
the myrosinase enzyme 7GGI (29) are strongly down-regulated

21916 | www.pnas.org/cgi/doi/10.1073/pnas.1911400116

(Fig. 1D). Genes whose expression is normally high only in the
early precursors of the stomatal lineage, including MERISTEM
LAYER 1 (ATMLI) and SPCH, are up-regulated in LGK cells
(Fig. 1D).

Although reprogramming to intermediate fates is observed in
animal systems (reviewed in ref. 30), studies of regeneration in
Arabidopsis have focused on contexts in which identities are fully
reset or where the reprogrammed state does not clearly correlate
with an individual adult stem cell type (reviewed in ref. 31).
Because LGK GCs are derived from a tissue that originates in
the shoot apical meristem (SAM), we queried whether LGK GCs
reprogram to a SAM identity. We calculated another ICI in-
cluding microarray data from cells found in the SAM and leaf
primordia (SI Appendix, Fig. S2D). Given a larger option of cell
types, LGK cells are still much more transcriptionally similar to
stomatal lineage cells than any other cell type, suggesting that
LGK GCs reprogram but remain within the stomatal lineage of
the leaf epidermis.

ChIP-Seq Data from FACS-Sorted GCs Is High Quality and Consistent
with Tissue-Scale Data. To investigate the relationship between
histone modifications and cell identity, we then generated matched
H3K27me3, H3K4me3, and transcriptional profiles for our pure
(FAMAp:YFP-YFP expressing) cell populations. H3K4me3 was
included in part because it has a positive correlation with gene
expression and could serve as a control for linking ChIP and
gene expression datasets. Despite the many experiments reporting
H3K27me3 and H3K4me3 profiles, few are done on single cell
types, and we therefore needed to optimize ChIP-seq protocols to
accommodate low inputs (Materials and Methods). Using two
replicates of 100,000 cells for each genotype and histone mark, our
protocol enabled the generation of ChIP-seq data that met quality
control standards based on metrics employed in ENCODE pipe-
lines (SI Appendix, Fig. S3 A and B). As expected, H3K27me3 and
H3K4me3 were primarily found associated with euchromatic, gene-
rich regions (SI Appendix, Fig. S3D). We calculated the Spearman
correlation of genome-wide tag distributions between our RNA-seq
and ChIP-seq datasets and found a positive correlation between
H3K4me3 and transcription and a negative correlation between
H3K27me3 and transcription (Fig. 24) as expected from studies on
bulk tissue (32, 33).

To assess the accuracy of our peak calling and subsequent
assignment to genes, we examined transcript levels among genes
carrying H3K27me3 and/or H3K4me3 peaks. Once identified,
we subset genes carrying peaks into thirds based on peak score,
and then generated histograms of transcript levels in these thirds
(Fig. 2B). Genes in the top third of H3K27me3 peaks featured
the lowest transcript levels, while the middle and bottom third
show only modest increases in gene expression (Fig. 2B), a trend
that mirrors findings from isolated SAMs (14). In contrast, gene
expression level is well separated by H3K4me3 peak category (Fig.
2B). The top third of H3K4me3 peaks correlates with the highest
gene expression levels, while the middle and bottom thirds cor-
relate with their respective gene expression levels (Fig. 2B). This
agreement between histone modification enrichments and gene
expression state supports the conclusion that we have successfully
generated high quality ChIP-seq profiles specifically for GCs.

Broadly, the single cell type H3K27me3 data were similar to
data from bulk tissue: For example, H3K27me3 was abundant in
the gene body (Fig. 2C), consistent with H3K27me3 datasets
generated from whole Arabidopsis seedlings (32). We performed
Singular Enrichment Analysis to identify overrepresented Gene
Ontology (GO) terms for genes carrying H3K27me3. Among
the top enriched (false discovery rate [FDR] < 0.05) GO terms
for genes carrying H3K27me3 are regulation of transcription,
postembryonic, organ, and system development (Fig. 2D and
Dataset S2). The overrepresentation of developmental GO
terms suggests that WT GCs, like other cell types in Arabidopsis,
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Fig. 2. High-quality H3K27me3 and H3K4me3 ChIP-seq datasets can be isolated from single cell types. (A) Spearman correlation coefficients calculated for
H3K27me3, H3K4me3, and gene expression in isolated GCs. H3K27me3 is anticorrelated with gene expression, while H3K4me3 is correlated with gene ex-
pression in GCs. (B) Expression levels for genes associated with H3K27me3 and H3K4me3 peaks. Genes sets are divided into thirds based on peak score, and
then the distribution of normalized expression levels (TPM) is plotted. (C) H3K27me3 and H3K4me3 enrichment within the gene body of target genes is
represented as the signal P value, where the null hypothesis is that signal is present in the input control. Each row of the heatmaps represents a gene with a
peak annotated to it. The top two heatmaps are composed of genes with H3K27me3 peaks. The bottom two heatmaps are composed of genes with H3K4me3
peaks. Genes are pseudolengthened to 1 kb, and 1-kb flank is shown on either side. (D) Top 25 enriched GO terms for genes with H3K27me3 peaks in WT GCs.

use H3K27me3 to repress developmental programs. This sup-
ports the hypothesis that H3K27me3 reinforces cell fates.

Differential Binding Analysis of H3K27me3 in WT GCs Versus Whole
Aerial Tissue Reveals Tissue-Specific Enrichment Dynamics. The ideal
way to reveal tissue-specific H3K27me3 dynamics would be to
compare our GC data with data from other single cell types,
however, we found no published datasets whose platform or quality
was suitable for this (ST Appendix, Fig. S4). We therefore compared
the H3K27me3 profile from WT GCs to a high-quality published
profile generated from whole Arabidopsis aerial tissue using the
same H3K27me3 antibody (34). In a differential binding analysis of
the H3K27me3 union peak set from WT GCs and aerial tissue (n =
8,480), one-quarter of the peaks have increased enrichment in
aerial tissue, one-quarter have increased enrichment in WT GCs,
and the remaining half are not called differential (Fig. 34). Genes
associated with peaks in the differential fraction are enriched for
transcriptional and developmental regulators, including regulators
of shoot and epidermal development (Fig. 3 B and C). H3K27me3
enrichment heat maps (Fig. 3E) and average H3K27me3 enrich-
ment profiles (Fig. 3F) of these differentially enriched loci show a
clear difference in enrichment levels across datasets.

As predicted, the master regulator transcription factor gene
FAMA, normally expressed in GCs, completely lacks H3K27me3
in WT GCs (Fig. 3D). SPCH and MUTE are master regulators of

Lee et al.

the identities of GC precursor cells in which they are expressed,
and those loci have reduced H3K27me3 in WT GCs relative
to aerial tissue (Fig. 3D). The reduction, but not elimination of
H3K27me3 at SPCH, a gene expressed only in GC precursors,
may represent reestablishment of the H3K27me3 mark. This is
consistent with previous observations that H3K27me3 is a “slow”
mark that is reestablished over several cell divisions in human
tissue culture (35). Lineage-expressed genes like CYCLIN D7;1
(CYCD7;1), HOMEODOMAIN GLABROUS 2 (HDG?2), and
EPIDERMAL PATTERNING FACTOR 1 (EPFI) also lack
H3K27me3 repression in GCs (Fig. 3D). However, genes whose
expression and activity fall outside of the stomatal lineage, such
as the shoot meristem regulators SHOOTMERISTEMLESS
(STM) (36), and HECATE1 (HEC1I) (37), and the nonepidermally
expressed peptide ligand gene CHALLAH/EPFL6 (38), have in-
creased H3K27me3 in GCs (Fig. 3D).

Associated with the 25 H3K27me3 peaks most depleted in
GCs relative to aerial tissue (Table 1) are GC-expressed genes
such as FAMA and STOMATAL CARPENTERI (SCAPI), which
are required to establish correct GC morphology (16, 39) and
members of the HD-ZIP IV family known to regulate stomatal fates
including ATML1 and PROTODERMAL FACTOR 2 (PDF2) (40,
41), HDG?2 (42), and HDG5 (43). Other genes in this list, such as
GLYCEROL-3-PHOSPHATE ACYLTRANSFERASES (GPATS)
and 3-KETOACYL-COA SYNTHASE 2 (KCS2), generate the
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Heatmap of enrichment of H3K27me3 at loci with differential enrichment in aerial tissue relative to GCs with a log, fold change threshold of 1 (n = 2,057). Each row
represents a gene with a differentially enriched H3K27me3 peak. The top two heatmaps show genes with increased H3K27me3 enrichment in GCs. The bottom two

enrichment in aerial tissue. Genes with increased enrichment in GCs are shown in purple. Genes with increased enrichment in seedlings are shown in blue.
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heatmaps show genes with increased H3K27me3 enrichment in aerial tissue. Enrichment in E and F is represented as the signal P value relative to the input control.
(F) Average enrichment of H3K27me3 at the same loci shown in F. The plot at Left shows H3K27me3 enrichment in GCs. The plot at Right shows H3K27me3
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epidermal-specific waxy cuticle (44, 45). This unbiased approach
mirrors the cell type-specific trends we observe at the SPCH,
MUTE, and FAMA loci (Fig. 3D), thereby validating that our
FACS to ChIP-seq method provides high-quality data without
perturbing GC identity.

H3K27me3 Peaks Are Differentially Enriched at Several Regulatory
Loci during GC Reprogramming. From our comparison of WT
GCs and aerial tissue, it was clear that H3K27me3 distribution
varies widely in different tissues, corroborating previous obser-
vations (14, 15, 46). With this validation of our single-cell type
methods and dataset, we could then generate profiles of H3K27me3
and H3K4me3 to compare WT GCs with reprogramming GCs.
Transcriptional profiles of LGK GCs established that SPCH is
strongly up-regulated (Fig. 1D); concomitantly, the SPCH locus
loses all H3K27me3 in LGK GCs. H3K27me3 coverage of
MUTE and FAMA, whose expression levels are not up-regulated
in FAMA™X, remains unchanged based on a differential bind-
ing analysis (Fig. 44). We identified overlapping and unique
genomic intervals, or peaks, of enrichment for each modification
in WT and LGK GCs. We found 15,288 common H3K4me3
peaks between WT and LGK GCs, with 635 and 563 unique to
each cell type, respectively. For H3K27me3, we found 6,348
common peaks, 551 WT GC unique peaks, and 805 LGK GC
unique peaks (SI Appendix, Fig. S3C). To assess H3K27me3
distribution more broadly, we performed differential enrichment
analysis of the 7,704 H3K27me3 peaks found in WT and/or LGK
GCs and found 382 peaks (367 genes) were differential between
WT and reprogrammed GCs (Fig. 4B and Dataset S1). An
earlier model of GC reprogramming was that it resulted from
failure of FAMA to recruit RBR and the PRC2 complex to
stomatal target genes (19). While H3K27me3 was depleted from
SPCH in LGK GCs, as predicted by this model, the genome-wide
result that roughly equal numbers of genes gained or lost
H3K27me3 (Fig. 4B) was not expected.

When the average H3K27me3 enrichment levels at the loci
that gained or lost H3K27me3 in WT and LGK GCs were plotted,

Table 1. Top 25 H3K27me3 peaks differentially depleted in GCs
Gene ID Gene name FDR Fold change
AT4G04890 PDF2 1.65e-76 -9.84
AT3G24140 FMA 2.85e-72 -9.66
AT4G21750 ATML1 8.14e-71 -9.61
AT5G46880 HB-7 3.62e-67 -9.44
AT5G65590 SCAP1 9.06e-65 -9.36
AT1G04220 KCS2 1.68e-63 -9.28
AT1G75910 EXL4 2.29e-63 -9.28
AT2G15840 AT2G15840 3.52e-63 -9.26
AT5G62470 MYB96 3.61e-62 -9.22
AT5G25830 GATA12 5.16e-60 -9.13
AT4G35070 AT4G35070 7.88e-58 -9.02
AT4G00400 GPAT8 6.19e-57 -8.98
AT4G29020 AT4G29020 1.78e-55 -8.98
AT5G53220 AT5G53220 2.67e-53 -8.84
AT2G45970 CYP86A8 2.67e-53 -8.82
AT4G01950 GPAT3 4.67e-53 -8.8
AT1G33811 AT1G33811 2.11e-52 -8.77
AT3G27400 AT3G27400 2.74e-52 -8.77
AT1G75891 AT1G75891 5.75e-50 —-8.66
AT5G49334 AT5G49334 1.56e-49 -8.64
AT1G70030 AT1G70030 8.94e-48 -8.57
AT5G62470 MYB96 3.15e-47 -8.54
AT1G05230 HDG2 3.15e-47 -8.51
AT1G19620 AT1G19620 5.06e-47 -8.51
AT1G65985 AT1G65985 7.10e-47 -8.51
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both sets of loci had roughly equal amounts of H3K27me3 in WT
GCs, but average enrichment levels diverged at these loci in LGK
GCs (Fig. 4C). H3K4me3 behaves oppositely to H3K27me3 at
these loci (Fig. 4C). The number of differentially enriched peaks
between WT and LGK GCs (n = 382) is far fewer than those be-
tween WT GCs and aerial tissue (n = 3,965), and far fewer than the
number of FAMA targets (47) and of genes differentially expressed
during reprogramming (Fig. 1D). Differential H3K27me3 peaks
identified do correlate well with the direction and magnitude of
differential expression (SI Appendix, Fig. S5) and are enriched for
genes involved in transcription and control of postembryonic de-
velopment, suggesting the genes with altered H3K27me3 could
represent regulators of cellular identity (Fig. 4D).

Given the modest changes to H3K27me3 we observed in
reprogrammed cells, it was important to test whether H3K27me3
depletion in GCs could be causative for reprogramming at all.
We generated a FAMA promoter-driven artificial microRNA that
simultaneously targeted the two leaf-expressed SET domain-
containing members of the PRC2 complex, CURLYLEAF (CLF)
and SWINGER (SWN), to reduce H3K27me3 in GCs. Depleting
PRC2 activity specifically in GCs caused a reprogramming pheno-
type qualitatively similar to the 1 observed in FAMA"CX (Fig. 4E),
but occurs at a lower frequency (SI Appendix, Fig. S6 A and B). This
evidence suggests that the changes we observe to H3K27me3 at loci
regulating transcription, although few in number, have a critical role
in maintaining GC identity.

WIND3 Exhibits Differential H3K27me3 Enrichment and Modulates
Reprogramming. Genes that lost H3K27me3 could be linked to
reestablishment of early stomatal lineage identity, but what
about the genes that gained H3K27me3? Among the most in-
teresting genes with this behavior were transcriptional regulators
reported to act during reprogramming (Fig. 44). For example,
the WIND3 locus gains H3K27me3 marks and is transcriptionally
down-regulated during GC reprogramming (Fig. 44 and SI Ap-
pendix, Fig. S8C). This is particularly intriguing because WIND3
is 1 of 4 AP2-ERF transcription factors that promotes wound-
induced reprogramming, and the sole member of the group
whose locus is clearly associated with H3K27me3 (9). Broad
overexpression of WIND3 produces a dedifferentiation pheno-
type similar to H3K27me3 depletion in Arabidopsis roots (9).
Differential expression of WIND3 in LGK GCs could be caused
by differential expression of this gene during stomatal develop-
ment. However, in neither published RNA-seq nor microarray
profiles was WIND3 lower in early stomatal lineage cells relative to
GCs (SI Appendix, Fig. S7A) (18). Therefore, we hypothesized that
differential expression of WIND3 was specific to LGK repro-
gramming rather than stomatal development. Because WIND3 has
a role in wound-induced reprogramming, we next asked whether
there were broader transcriptional patterns that implicated a
wound response or other reprograming pathways in LGK GCs. We
compared the transcriptome of LGK GCs to that of callus derived
from cotyledons and petals (48); of the 1,490 genes up-regulated
during callus formation in this study, however, only 162 were dif-
ferentially expressed in WT v LGK GCs (P value of overlap = 1)
(SI Appendix, Fig. S84). Moreover, this small overlapping gene set
is enriched for GO terms related to microtubule-based processes,
ribosome biogenesis, and translation (SI Appendix, Fig. S8A),
suggesting that any similarity between the two reprogramming
events is cell cycle reentry, not shared regulatory pathways for
reprogramming. That LGK GCs are not employing significant
portions of known reprogramming pathways is reinforced by in-
vestigation of WIND3 and 102 other genes identified as inducers
or repressors of callus formation (31, 49). Genes that act as callus
inducers or repressors (31, 49) were equally likely to be up-
regulated or down-regulated in LGK GCs relative to WT GCs
(SI Appendix, Fig. S8C). Of genes associated with the “lateral root
program” through which regenerating cells may transit (48), only
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SCARECROW (SCR) is weakly up-regulated in LGK GCs (SI
Appendix, Fig. S8B), but SCR is also differentially expressed during
stomatal development. Taken together, these analyses suggest that
LGK GCs are not utilizing the known wound or hormone-based
reprogramming pathways.

As a demonstrated positive regulator of reprogramming,
WIND3 was expected to be more strongly expressed in repro-
gramming cells, but instead we observed a decrease in expression.
We therefore considered whether LGK GCs were actually sup-
pressing reprogramming via silencing of WIND3. We tested
whether silencing WIND3 during LGK-mediated reprogramming
was functionally relevant by reestablishing expression of WIND3 in
LGK GCs by expressing WIND3 under the SPCH promoter, which
is reactivated in LGK GCs upon reprogramming (19). The severity
of LGK GC reprogramming was increased by this manipulation
(Fig. 54), manifesting as increased frequency of previously docu-
mented (19) reprogramming events, or as novel, more severe
changes in GCs, overall comprising 5 classes of GC defects that
serve as evidence of reprogramming enhancement (Fig. 5 4 and
B). We confirmed that the WIND?3 overexpression levels in leaves
directly correlated with phenotypic severity (SI Appendix, Fig. S7 B
and C). When quantified, each of the phenotzpic defect classes
were present in almost all of the FAMA®X SPCHp:WIND3
plants scored (Fig. 5D), including the extreme case of stomata
forming inside of stomata that had formed inside of stomata (SIS
within SIS). Overall, there was a statistically significant increase in
the number of seedlings displaying enhanced phenotypes in
FAMA"C® plants expressing SPCHp:WIND3 (Fig. 5E) (Fisher’s
exact test, P = 1.006e-05). The strong reprogramming phenotype
was dependent on the FAMAM®K background as expression of
SPCHp:WIND3 in the WT (Col-0) background had no discern-
able phenotypic effect (ST Appendix, Fig. S7D).

Most of the enhanced GC defects we observe in FAMAM®¥
plants expressing SPCHp:WIND3 involve increasing the number
of cell divisions in LGK GCs (e.g., Fig. 5 4 and C). It was for-
mally possible that WIND3 expression in LGK GCs indirectly
enhanced reprogramming events by increasing the number of cell
divisions. We therefore scored another measure of reprogramming
that was independent of cell division—cell lobing (19). When we
compared FAMA"“® and FAMA™X 4+ SPCHp:WIND3 plants,
the latter exhibited a significant increase in the number of sto-
matal complexes exhibiting lobes as well as the severity of ectopic
lobes (Fig. 5F, strong lobe illustrated in Fig. 54, Left and moderate
lobe in SI Appendix, Fig. S1B, double arrow). This indicates that
reprogramming occurs more profoundly (or more rapidly) when
FAMALCX plants express SPCHp:WIND3 and supports the idea
that LGK GCs suppress further reprogramming by silencing
WIND3 (Fig. 5G).

Discussion

Understanding cell identity establishment and maintenance is
critical to our understanding of developmental biology. To ap-
proach the mechanistic basis of cell identity maintenance and
reprogramming in plants, we obtained transcript, H3K27me3,
and H3K4me3 profiles from a single cell type, the Arabidopsis
GC, and from GCs undergoing reprogramming to precursor
stages in planta. We demonstrated that, although H3K27me3
distribution is cell type-specific, reprogramming can occur with
minor H3K27me3 redistribution. H3K27me3 marks transcrip-
tional and developmental regulators, so even minor remodeling
can have major transcriptional consequences. For instance, the
SPCH locus is depleted of H3K27me3 in reprogrammed GCs,
and SPCH binds to nearly 6,000 genes (50). This can help to
explain how we found 10 times more differentially expressed
genes than genes with differential H3K27me3.

Loss of H3K27me3 in Arabidopsis by broad perturbation of
PRC2 activity leads to cellular reprogramming (7-9). The FAMA™CX
manipulation, however, revealed that in GCs, H3K27me3 remodeling
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was nearly evenly split between increased and decreased H3K27me3
enrichment, allowing us to experimentally demonstrate that global
depletion is not a necessary condition of reprogramming in vivo.
Taken further, the increases to H3K27me3 at some loci suggest
that “native” reprogramming events such as wound repair and
lateral root initiation may even require active reorganization of
H3K27me3. This is reminiscent of the directed conversion of
mammalian ESCs into B cells that requires PRC2 and, therefore,
active reestablishment of H3K27me3 marks (51). Given our ob-
servations of limited H3K27me3 changes in the GC context, as well
as little overlap between the gene expression programs character-
ized for FAMA™®* or wound-induced reprogramming, it also ap-
pears that Arabidopsis cells have access to previously unidentified
reprogramming strategies.

Why might we observe H3K27me3-mediated repression of the
proreprogramming factor WIND3 in FAMA"®¥ GCs (Fig. 5G)?
Parallel situations can be seen during animal regeneration, for
example in Drosophila the expression of the transcription factor
engrailed differs during wound repair and normal development
(52). Engrailed is needed in both contexts, but failure to execute
wounding-specific control of engrailed expression leads to ectopic
cellular reprogramming. Thus, tissues have mechanisms by which
they sense wounding to ensure that when repurposing develop-
mental genes, they do so in a way that is appropriate for a tissue
that has a history and existing pattern. We hypothesize that in
plants, due to their constant creation of new organs and their
exposure to wounding, it may be even more essential to build in
molecular brakes to separate downstream progression of de-
velopmental programs. FAMALCX artificially triggered repro-
gramming without wounding; the response in GCs seems to
indicate they may sense the occurrence of reprogramming itself.
This mechanism, although speculative, may be relevant in contexts
such as lateral root initiation or root apical meristem regeneration.
In this case, roots need to sense whether they are rebuilding a
tissue or generating a new one and regulate gene expression ac-
cordingly. In the case of our LGK reprogramming, loss of terminal
guard cell identity is not accompanied by a wound signal, and
therefore complete dedifferentiation is unproductive. The en-
hancement of reprogramming we observe upon reestablishment
of WIND?3 expression (Fig. 5 A-F) demonstrates that silencing
this network is functionally relevant in this context. One hy-
pothesis for this phenotypic enhancement is that reestablishment
of WIND3 expression influences the expression of some of the
367 genes with differential H3K27me3 (Fig. 4B). We performed
a search using algorithms in ref. 53 for the WIND3 binding motif
derived from DAP-seq data (54) in the promoters of these 367
genes and found a total of 94 motif occurrences in 64 of the
promoter sequences (Dataset S1). This does not constitute an
overrepresentation of WIND3 motifs among these loci but does
indicate that WIND3 may regulate a subset of these genes.

In addition to helping us understand cell identity, single-cell
type datasets can inform the way we think about the behavior of
histone modifications themselves. Much of our understanding of
H3K27me3 establishment dynamics in Arabidopsis comes from
close examination of the FLC locus in whole tissues (reviewed in
ref. 55). Studies of FLC have the power to reveal fascinating
chromatin dynamics, but to what extent these dynamics are
employed at other loci remains an open question. The averaging
effect of mixed cell populations are liable to mask locus-specific
dynamics for genes that show tissue-specific behavior, as we show
for H3K27me3 enrichment of meristem genes STM and HECI in
GCs (Fig. 3D). Although the impetus of these studies was to
evaluate the genome-wide changes in gene expression and his-
tone modifications during a specific reprogramming transition,
the high-quality single-cell type ChIP-seq datasets enable ex-
ploration of other genome-wide histone modification questions
such as cooccurrence of different histone modifications (SI Ap-
pendix, Fig. S9).
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Fig. 4. Few, but critical, H3K27me3 peaks are differentially enriched in WT relative to LGK GCs. (A) SPCH and stemness regulators WIND3, BLH2, and BLH4
have differential H3K27me3 levels in WT and LGK GCs, but MUTE and FAMA are not differential by DiffBind analysis. The y axis is represented as the
signal P value and is scaled consistently between tracks for each gene. (B) Differential binding analysis shows only ~5% of peaks change in H3K27me3
enrichment during reprogramming. Those that change are split nearly equally between increased and decreased enrichment. (C) H3K27me3 enrichment
at genes associated with differentially modified peaks. Intensity is represented as the signal P value. Genes with increased enrichment in WT GCs are
shown in purple. Genes with increased enrichment in LGK GCs are shown in orange. (D) Top 25 enriched GO terms for genes with differentially enriched
H3K27me3 peaks. (E) Confocal images of 9 dpg seedlings with stomata in stomata (reprogramming) phenotypes. The top two images are from seedlings
expressing a FAMAp-driven artificial microRNA against CLF and SWN. The bottom two images are from FAMA® seedlings. Stomata within stomata are

false colored in orange.
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Fig. 5. Reestablishing WIND3 expression in LGK GCs enhances the reprogramming phenotype relative to FAMA®X, suggesting plant cells sense and resist
inappropriate reprogramming. (A and B) Representative DIC images of the different manifestations of the enhanced LGK phenotype (4) and the novel
phenotypes (B) caused by SPCHp:WIND3 expression in FAMA®X GCs in 12 dpg cotyledons. White arrowheads denote instances of the referenced phenotype.
SIS are false-colored in orange. Meristemoids in stomata are false-colored in green. Original stomatal complexes are false-colored in purple. (C) Image of
excessive stomatal complex divisions. Here, white arrowheads indicate SIS, the yellow arrowhead indicates a division within an SIS, and the blue bracket points
out the entire original complex. (D) Quantification of the prevalence of each class of enhanced phenotype among seedlings of the parental FAMA®¥ line (n =
19), and a T2 line expressing SPCHp:WIND3 in FAMA®K (n = 18). Values represent the number of seedlings having 1 or more instance of each enhanced
phenotype. (E) Overall prevalence of phenotype enhancement per seedling. The total number of seedlings with enhanced phenotypes in each population are
statistically different by Fisher’s exact test, P = 1.006e-05. (F) Quantification of GC lobing events per field of view (384 um x 486 um) in DIC images of 12 dpg
cotyledons in the same lines used in 5A. There is a statistically significant increase in the total number of lobing events (P = 0.0002687) and the number of

formation. PRC2 regulates WIND3, limiting the extent of reprogramming. Asterisks indicates statistically significant P value, less than 0.0001.
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strong lobing events (P = 0.000256) in the line expressing SPCHp:WIND3 in FAMA"®® by Welch’s t test. (G) Failure to silence WIND3 in LGK GCs causes
reprogramming enhancement via increasing the number of cell divisions and the extent of dedifferentiation, which are also processes involved in callus
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The stomatal lineage has distinct phases of self-renewing pre-
cursors followed by committed precursors, and it is intriguing that
the reprogramming proceeded back to the earliest lineage stage,
but not beyond, even with enhanced WIND3 expression. It is
interesting to contrast the reprogramming potential of GCs from
intact Arabidopsis leaf tissue with those derived from Beta
vulgaris epidermal peels where 100% of the GCs give rise to callus
and then regenerate to form plantlets in culture (20). Inclusion
of underlying vascular tissue, however, strongly or totally sup-
pressed GC regeneration capacity, consistent with a block being
set up by tissue context (20). Extrinsic cues, therefore, may still
enforce epidermal fates in LGK GCs ectopically expressing
WIND?3. This is different from global overexpression of WIND3
(9), where all cells dedifferentiate and presumably normal cell-
cell communication is lost in the process. As such, our findings
support the conclusion that perturbations to intrinsic regulators
of cell identity can remove some barriers to reprogramming but
cannot alone override cues from extrinsic sources like tissue
identity to fully unlock cell fate.
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