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ABSTRACT

Stable oxygen and carbon isotop€®(and'*C) and the trace elements,
manganese (Mn) and strontium (Sr) were analyzeddhaeological bivalve
(Diplodon chilensiyshell fragments recovered from Parque Diana CRaggonia,
Argentina, to analyze the temporal trends of huo@mupation of the North
Patagonia forest with climatic conditions recordédegional scale but poorly known
at local scale for this site. We established aigtaphic sequence of thirteen 10 cm
thick layers spanning the period c. 2370 BP tad86. BP and grouped these layers
into three cultural components

According to this region’s climate, with rain anabsv concentrated in winter and
dry summers, our data suggest that these compoarent®ntemporary with three
climatic periods. A dry period indicated by higHues of5'®Oshell,5**Cshell and
Sr/Ca ratio (Mn/Ca ratio does not show any sigaifictrend), in the Lower
component is associated with brief incursions oftbrirgatherers from the eastern
steppe. In the Middle component, [6WOshell,5**Cshell and Sr/Ca ratios, suggest
a humid climate with increased supply of meteond/ar melt-water along with
terrestrial plants organic matter and soil carbesi& the river. According to the
archaeological evidence, in this period, huntehgagrs from the Pacific coast and
forest started to colonize the area across the fodgdlillera. At the beginning of the
Upper component, which is mostly contemporary i expression of the
Medieval Climatic Anomaly (MCA), the proxies aretrtotally coincident but a
tendency to progressively drier conditions couldriferred. Except for layer 4 for
5'®0shell and layer 5 for Sr/Ca rati&}®Oshell,5**Cshell and Sr/Ca ratio show
consistently high levels in the Upper than in thieldfe component. In layer 5,
8'®0shell ands**Cshell are elevated with respect to the Middle conemt while
Sr/Ca ratio remains low. In layer &3Cshell and Sr/Ca ratio are high while
5'®0shell shows a negative peak. In layers 3 &%shell,5**Cshell and Sr/Ca ratio
remain at high levels, indicating an arid-warm @tewith high aquatic plant
productivity, in coincidence with the expressiortlod MCA reported for this region
in a partially contemporaneous period (1080 - 12B(. At this time, the occupation
of the site by groups of the same origin as theesgnt in the Middle component
became permanent. Extensive and intensive usealfiesources in this period can

be inferred from the quality and quantity of atifarecovered.
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1INTRODUCTION

This paper reports a study of palaeoenvironmeiahges recorded at the
archaeological site of Parque Diana Cave (PDC)dgeaia, Argentina. Our
methodology is based on the analysis of isotopios#*C ands'®0) and trace
elements, manganese (Mn) and strontium (Sr) il &lagiments from the freshwater
musseDiplodon chilensigGray 1928). The sequence of valves analyzed
corresponds to archaeological ecofacts accumutatedgh alimentary and
technological activities (Pérez and Batres 2008020

Two worldwide climatic events have been extensivagcribed for a period
which is partially coincident with the period repeated in the PDC sequence, the
“Warm Medieval Period”¢ensu_amb 1965), 800 - 1400 AD and the “Little Ice Age
(1400 -1700 AD, Soon and Baliunas 2003). Severdlars have proposed that these
climate events have influenced cultural changeb miaterial correlates in the
archaeological record (see Arnold 1992; Jones. &98I9; Larson and Michaelsen
1990; Larson et al. 1994; Larsehal.1996). The former event, which has also been
reported as “Medieval Climate Anomaly” (MCA) (Stia894), has been
characterized as a period of increased global gedmmperature with intermittent
and sometimes extreme droughts. The warm climatkspef the MCA extended
over several decades, showing regional and eva (less than 100 km)
particularities (Bryson and Bryson 1997; Soon aatiudias 2003). Thus, global
changes could have affected distant human popuotasignchronically but it is
necessary to know the magnitude of the changegsrectat local scale and the
historical context of each population in order togose hypotheses related to
specific adaptive responses.
According to Dean et al. (1985), the impact of thmate on human societies
depends on four main factors: 1) magnitude, dumadiad frequency of the climatic
events; 2) Preexistent adaptive strategies; 3)efigonse of important natural
resources; 4) the size and density of the humampgtdalstead and O"Shea (1989)
propose that human societies cope with the shodbhgesources derived from
environmental changes by means of a wide rangarattices which they defined as
“buffering mechanisms”, These mechanisms can irgludes, myths alimentary

taboos, alternative agricultural practices, andlfstmrage and exchange.
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In archaeological research, climate events sutheasCA allow the observation of
the diverse adaptive responses of hunter-gathevapg. For example, several works
suggest deteriorated climate conditions associaitdrelatively rapid and dramatic
cultural changes during the MCA in South West ©@allifa (Larson et al. 1994;
Larson et al. 1996; Raab and Larson 1997; Jonals £899). The latter authors
reviewed the main cultural responses for South W& during MCA, which can

be summarized as four basic strategies: 1- soocrapexity; 2- mobility,

abandoning areas which had limited resourcestleoge in the Mojave desert and, in
colonial times, deserting of the Santa Barbara illiny the Chumash population
towards the Jesuit missions at the California cehBnResource intensification: a
wide range of passive or active practices aimegliden the subsistence system by
exploiting a wider diversity of plants and animaisl/or larger and more varied
foraging areas (Halstead and O"Shea 1989). Theané&rhs recorded for the MCA
include increased dependence on storage (Tes@2),&oduction of goods for
exchanging at long distances (Arnold 1992), teabgiokl innovations (Jones et al.
1999), and economic diversification (Halstead anfil@a 1989). For example,
Larson et al. (1994) proposed that long droughibgsrproduced a stress condition
related to food shortage, stimulating the poputatibthe Santa Elena channel to
intensify their diet by consuming an increasingetgrof marine resources; while
other authors like Arnold (1992) suggested the petidn of necklace beads made of
mollusk shells by island groups for trading withaimd groups; 4- Territorial

behavior: apparently, another consequence of MC# tee competition for scarce
resources, both from marine and terrestrial souibmses et al. 1999). The
necessities to control food resources and to remaxnto reliable freshwater sources
seem to have further consolidated the populatiemgdrial limits and fostered their
territoriality. For example, in sites at the ceht@ast of California, the diets were
not widened and the commerce horizons were rettapteducing demographic
problems, which were not solved by adaptive adjestsior population mobility

(see Larson et al. 1994).

1.1 Patagonia
The climate of Austral Patagonia (Fig. 1) during Hiolocene has been subject of
many palaeoclimatic reconstructions. Favier Dulf@@94) reviewed the previous

palaeoclimatic data, proposing a correspondenaedeet the beginnings of the
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development of the palaeosol named “Pedologic EMagallania” and the expression
in Austral Patagonia of climate anomalies relatethe MCA. This event has been
reported to occur contemporarily in North America an Austral Patagonia (Jones et
al. 1999; Larson and Michaelsen 1990; Larson €t36; Stine and Stine 1990; Stine
1994). Stine 1994 compared data from this periadden California and Austral
Patagonia, reporting marked changes in humiditymRthese data he suggested that
this was a global event and that, in the Amerittzss changes in the precipitation regime
were probably more important than those in tempegain the last decades, the
number and the resolution level of palaeoclimaticlies have greatly increased (Kilian
and Lamy 2012). Recently, Echeverria et al. (20XE reconstructed the palaeohydric
balance variations of forest, steppe and ecotaealseof Austral Patagonia during the
Holocene by analyzing pollen data obtained fromesesites and discussing previous
literature (Fig. 1). These authors have proposgeneral trend for the eastern side of
the Andes range, with the intensity of the soutlveesterly winds (SWW) and
precipitations being positively correlated in thestern forest areas, less positively
correlated in the forest-steppe ecotone and negatborrelated in the steppe. This is
coincident with data from numerous studies reviewedilian and Lamy (2012),

which show a high positive correlation of SWW irgégy and precipitation in the west
side of the Patagonian Andes, this correlationehses towards the east, reaching
slightly negative values in extra Andean Patagohie resulting West-East humidity
gradient has varied in intensity along the Holocgane to asynchronic changes in the
precipitation regimes of forest, forest-steppe stegppe environments (Echeverria et al.
2017).

In contrast with Austral Patagonia, there are faa@oclimatic reconstructions
covering the late Holocene in North Patagonia.alih (1990, 1994) has studied
growth rings from 1120 alerc&ifzroya Cupressoidgdolina) Johnston 1924) trees in
the area of Rio Alerce (Rio Negro province, ab@@ Km southwards of the PDC, Fig.
1) and established the following chronology: Colety®00 - 1070 AD / Warm-dry,
1080 - 1250 AD, corresponding to MCA / Cold-wet802 1670 AD with peaks in
1340 and 1650, related to the European Little Ige.A'his chronology is coincident
with results reported for Austral Patagonia (e.@yMt al. 2008) but differs from others
(e.g. Fey et al. 2009). Discrepancies betweenesyakerformed in North and South
Patagonia could respond to climatic factors sudih@se explained by the atmospheric
circulation model described for this period by Ladp (1997) (Favier Dubois 2004).
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Alternatively, regional scale differences couldrekted to the ecologic factors
described above, e.g. differential effects of SWiWfarest and steppe environments
(Echeverria et al. 2017; Fey et al. 2009; Garredwad. 2013; Kilian and Lamy 2012).

1.2 Diplodon chilensis

The long-lived freshwater musdeiplodon chilensigHyriidae) is common and
abundant in rivers and lakes of Northwest (Anddatpgonia, Argentina (32°52’ S;
68°51’ W to 45°51’ S; 67°28’ W, Bonetto 1973) amdJouthern Chile (34° 58’ S;
71° 48 W to 46°37’ S; 74°10' W, Parada and Per2@dd2).D. chilensisconstitutes
an abundant and predictable freshwater resouroaghout the year and is the most
frequently found mollusk in archaeological depobibsn continental Patagonia
(Pérez and Batres 2010). Valves of this species haen frequently found in
archaeological sites in the western side of Thee&nttom the transition between
the early and middle Holocene. This includes Andgtes, such as Alero Marifilo 1
(Mera and Garcia 2004), Pucon VI and Colico 1 (Mevat al 2011) and Central
Valley sites, Alero Quillén 1 and Alero Quilo (Jaok and Jackson 2008). However,
these valves have not been used for paleoenviraahregonstruction so far.

1.3 Parque Diana Cave (PDC)

The PDC is a rocky shelter which allowed us toldigh the temporal sequence
of human occupation of the “Meliquina Archaeologjiicacality” (MAL). This
locality includes five archaeological sites witp@tential functional linkage, and is
located 18.5 km South West of San Martin de losesnelty, within the Lanin
National Park, (40° 19" S 71° 19" W), at an algtoefl 970 masl (Fig. 1). This area is
part of the “Andino-Patagonico Forest” phytogeotiiapegion, which extends on
the hillside of both slopes of the Andes mountaimge. On the Argentine side, this
region limits to the East with the Patagonian ségppvast semi desert-desert area,
which stretches eastwards to the Atlantic coast. dlimate in MAL is moderately
cold and wet, typical of North Patagonian AndesnRad snowfalls occur mostly in
winter with 1500 to 2000 mm annual average preaijoih. Figure 2 shows details of
the excavation and part of the PDC walls.

The sedimentary layer of PDC is presently 2 m déap 3). Due to the site’s
location, the main agents of accumulation are ttaral disaggregation of mother

rock and, to a lesser extent, external sourcesygfir deposition of small wind-borne



201 particles. Another accumulation factor is the reenr use of the shelter by human
202 groups and animals (Pérez et al. 2008). Our amalyseve from three assemblages
203 of faunal remains, defined as Lower, Middle and &fpgultural components. The
204 nearest provisioning source Bf chilensisto the PDC is a shallow bank of the Rio
205 Hermoso, 50 m from the site.

206 The Lower component (present only in PDC) compriggsrs 9 to 12, 1.2 t0 1.5 m
207 from current ground level. Layer 9 and most patagér 10 contain large blocks of
208 mother rock, which separate them from the loweelsyThe Lower component has
209 been radiocarbon dated at layer 10 to 2370 = 7(28B-762 cal. BC, LP-1704 vegetal
210 coal, 2 sigma“C age calibration using Calib 3.0 software, Stuaed Reimer 1993)
211 and shows a low frequency of human activity. Thusupation corresponds to a

212 transient camp in a late exploratory stage of tka éBorrero 1994-1995), by hunter-
213 gatherers (Pérez 2010). The diet faunal comporfeatservids and few. chilensis
214 remains), the kind of lithic and animal raw matki@.g. petrified wood, which is
215 available in specific zones of the steppe but nahis area and guanaco bone) and the
216 technology used suggest groups coming from contesmpgsteppe occupations, such as
217 Casa de Piedra de Ortega and Epullan Grande catres upper Limay River basin
218 (Crivelli Montero 2010, Fig.1). The lack of evidenan the use of local alimentary
219 resources or raw lithic materials along with theeite of debitage from tool

220 manufacturing, suggest that these groups werejpmbring the zone (Pérez 2010).
221 Between the Lower and Middle components, theredis@ontinuity of about

222 1000 years in the artifactual or ecofactual remaassociated to detachment of

223 mother rock from the walls. This event made PDCuitable for human occupation
224 until wind-borne sediments and animal remains (nbtéenes and excrements) made
225 the surface regular again.

226 The Middle component, dated at layer 8 to 990 BBQ(901-1206 cal. AD, LP

227 1720 vegetal coal) and layer 6 to 900 + 60 BP (102®4 cal. AD, LP 1713 vegetal
228 coal), shows the first evidence of contemporarynogites, which might have been
229 functionally linked to PDC (Pérez 2010).These sitesin the form of localized

230 accumulations or concentrations of vegetal coglassted one from each other by up
231 to 300 m along the banks of local streams and Mékquina and suggest sporadic
232 occupation of the area with low reoccupation ratee lack of steppe resources and
233 the predominance of forest and lacustrine resowagesg the remains, suggest that

234 these hunter-gatherer groups had a better knowlefipe environment. These



235 archaeological features can be attributed to agei colonization (Borrero 1994-
236 1995) by people who already possessed technolaggiv@ntages to effectively

237 exploit forest environments from Central-South €lffPérez 2010). These people
238 were complex societies characterized by a hungathering and fishing economy
239 with, at least, access to cultivated plants or petglderived from corn. They

240 possessed pottery technologies (including pattedeedration, incised and painted
241 by reserve technique), and used native metalsasicbhpper, among other features
242 (see Hayden 1981, 1995). In this component, theaaaogical evidence shows a
243 gradual replacement of artifacts manufactured with-local raw materials by others
244  manufactured with local rocks, e.g. obsidian charazed by the chemical groups
245 found in the nearby area (Pérez et al. 2019) aadical clay for pottery (Pérez
246  2010). This suggests a gradual increase in knowldadtgraction with and use of

247 local resources. The faunal remains associatdtegetsites are predominantly, if not
248 exclusively, from forest and freshwater environmsgeand include necklace beads
249 and artifacts made from Pacific mollusks shellsiciwtare progressively replaced by
250 shells from local freshwater mollusks (Pérez anttd3a2010). The vegetal remains
251 include the first record for Argentinian Patagooidsevuina avellanauts (Pérez

252 and Aguirre 2019) plus the most austral evidenagutifgens such as maize for pre-
253 Hispanic America. Both vegetal resources have laésm recorded in

254  contemporaneous archaeological sites in forestareidne Chilean Andes and

255 Central valleys (Adan and Mera 2011; Adan et aL&@érez and Erra 2011; Pérez
256 and Aguirre 2019).

257 The Upper component is dated in layer 3 to 760 BBQ1163-1388 cal. AD, LP
258 1697 vegetal coal) and layer 2 to 580 + 60 BP (12839 cal. AD, LP1695 vegetal
259 coal). This component includes 300 years of atsfacd ecofacts deposition, between
260 0.3 and 0.8 m deep from the current ground levails Tomponent shows the site’s
261 highest richness and variability in archaeologreahains. It is characterized by the
262 superimposition of structures related to combusdinod/or the maintenance of artifacts.
263 This is the period of most stable and recurrentipaton of MAL, with enhancement
264 of the tendencies observed in the middle compotheriy, in PDC and in the open sites
265 placed on the coast of Lake Meliquina. The numibetements characteristic of the
266 contemporary populations of the Western side ofthées is increased, including the
267 presence of copper artifacts. The interaction #ithenvironment is more evident in

268 this component, with local production of pottergraents with adequate size and shape
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to efficiently collect and process a great var@tyegetal and animal food items from
freshwater and forest sources (Pérez 2011), inofuttie preparation of fermented
beverages (Pérez et al. 2016). This tendencyaseaislent in the selective use and
management of the sources of lithic raw materiath sas obsidian (Pérez et al. 2019),
resulting in changes in the shape of extractivenelgs such as arrow points, among
other evidences of technological specializatiore &hsence of steppe materials, along
with the use of the forest resources, accomparyeadrhinor portion of Pacific coast
species, shows the reoccupation of the area byaime groups that had been in this
region since about 900 AD (Pérez 2010; Pérez atd8a010).

The aim of this work is to reconstruct a palaeoalicmultiproxy sequence with
adequate scale and resolution to discuss the atveavironmental events associated to
the human occupations of MAL. We hypothesize tlesttain parts of the North
Patagonian forest-lake area were appraised duramgnand/or dry episodes framed in a
climatic anomaly period registered at a biggeresbalt whose expression at local scale
is still unknown.

The predictions for contrasting this hypothesis ajelhere is a correlation
between environmental changes and human behavibe iIMAL cultural sequence;

b) These changes must give some advantages fomhoicoapation to the forest
environments on the East of the Andes; ¢) Someabkas inherent to these changes,
such as intensity and duration should influencéucal responses, such as mobility,

technological change, economic intensification tamdtoriality.

2. MATERIALSAND METHODS

2.1 Sediment analysis

In order to detect possible differences among Ryethe quality and quantity of
the bivalve remains recovered due to taphonomiblenos related to soil quality,
sediment pH and the shell fragmentation index (&vayl984), adapted to bivalves
by Batres (2008), were measured throughout thegtahic sequence.

2.2 Shdll analysis

This study is based on 168 specimens, identifidd. ahilensiswhole shells and
shell fragments, according to the number of ideedispecimens (NISP) defined by
Grayson (1984), recovered from the PDC (Fig. 4indas were obtained from

10
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10cm thick layers, which were subsequently combinaalthree units or

components to correlate the obtained results eitvant aspects of human behavior
in the frame of an ecological model of space w@tilan in Patagonia (Borrero 1994-
1995). For stable isotopes, we analyzed one fragperayer (10 layers containing
valve fragments) plus two additional samples faheaf the radiocarbon dated

layers excepting layer 8, from which only one add#l sample could be obtained.
One fragment per layer was split in two halves. @aléwas used for measuring
stable isotopes and the other was analyzed fon@drace elements (see below). We
analyzed valve fragments larger than 5x5 mm; remtasg valve growth of 2-8

years.

Stable isotopes were analyzed with a Delta S Famigat triple collector
spectrometer, at the INGEIS, Buenos Aires by ththotedeveloped by McCrea
(1950) with minor modifications. Carbonate was canmed to CQ with HsPO, at
60°C. CQ was purified in a vacuum line, using cryogenip&#o eliminate other
volatile compounds and analyzed by mass spectrgniét€ ands'®0 values were
reported relative to standard V-PDB (Vienna-PeelzdeBnitella) (Coplen 1994),
with errors of £ 0.1 and + 0.05 %o, respectively.

The trace elements Mn and Sr, and Ca were measuarg@ shell fragments, one half
of fragment per layer. Shell fragments were washi¢id 5mM EDTA solution to
remove externally adhered ions and then digestadmicrowave oven with nitric acid
and hydrogen peroxide (2:1, v/v). Organic mattes geparated as an insoluble film,
which accounted for ca. 5% of the sample massiugallvas added to these
dissolutions, as internal standard. Aliquots ofilOwere placed in a quartz reflector for
analysis by total X-ray reflection fluorescence i) (Prange and Schwenke 1992).
Spectrum evaluation and quantitative analysis weréormed using the QXAS
software package from IAEA, using least-squareaggion analysis and calibration
curves within the range 1-20 ppm. Detection limitse 0.02 and 0.05 ug/g, for Mn
and Sr, respectively, with an error of 10% (SeeaBabet al. 2009 for more detailed
explanation of the method). Results were expreasedement/Ca ratio x 1000.

To compare trace element proportions, Mn, Sr, EeZzanwere measured as
described above for Mn and Sr in duplicate on \&d. chilensistaken alive from
Rio Hermoso near the PDC and in water samples tihensame site. The relevant

literature to support and interpret paleoenvirontalereconstruction based on the

11
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analysis of stable isotopes and trace elementllusks shell remains is described
in Appendix A.

2.3 Interpretation of the palaeoenvironmental data

Soldati et al. (2009; 2010) have characterized semand winter growth bands in
valves of living individuals oD. chilensisfrom about 150 km south to our study site.
These authors report 10320 in summer bands, assigning these values to higher
temperatures according to previously published (atsmca and Mutvei 2001; Dunca et
al. 2005; Schone et al. 200#)igh Mn/Ca, Sr/Ca and Ba/Ca ratios have also been
detected in these summer bands (Soldati et al.)200% & **Ognerin Summer growth
lines could be related to the effect of temperaturésotopic fractionation during shell
carbonate deposition (Carré et2005; Dettman et al. 1999; Epstein et al. 1953;
Gordillo et al. 2015; Grossman and Ku 1986; Yosharet al. 2010). However, Soldati
et al. (2009) have reported that the temperatuckesycalculated fror *®Ogney andd
180,.ater Underestimate the actual summer-winter differéndbeir study site. Among
other hypotheses, these authors have suggesteslittatinderestimation could respond
to seasonal changesdn®OyaterWhich, in turn, affecD. chilensiss **Ogner

In the area of the present study, precipitatiacoiscentrated in winter and stream
discharge is high in winter-spring. During relatiwbumid years, high altitude wetlands
and lakes accumulate water, and snow remains imtuntains until summer.
Therefore, during such years, rivers like the Rérhbso receive abundafio-
depleted water from lakes and streams fed by maiemthroughout the year. Under
such conditions, the effect of evaporation wouldtill and lows **0yaer andd*¥0gper
would be recorded in summer. In contrast, during periods, snow is already absent in
spring and high-altitude reservoirs with meteoratev are reduced or even depleted in
summer. This reduced input ¥D-depleted water along with higher evaporation aoul
increases *°0,, in Rio Hermoso with respect to humid years. Acragly, reduced
stream discharge and increased evaporation topiegn ratio have been previously
reported to reduce or even overcome the effedisnoperature of **Ogpne; (Bar-Yosef
Mayer et al. 2012; Gajurel et al. 2006; Kaandorale2003; Marwick and Gagan 2011,
Scholl-Barna 2011; Versteegh et al. 2010; 20A%)we have analyzed the total
carbonate content of shell fragments, which spaaraéyears of shell growth, our data
reflect the combined effects of the hydrologicadl @mvironmental parameters described

above, averaged among seasons.

12
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Kaandorp et al. (2003) have reported covarian@’ef,aer andsd *¥0yaier from an
Amazonian floodplain with high records of both hg&otopes during dry periods
and withd"*Cgnen andd #0sneiresponding to water compositiofhese authors relate
the increased *®0,awer to a strong evaporation effect, while elevation'8€ater
could be responding to depletion of the light ipetalue to selective uptake by
aquatic plants. On the other hand, Gajurel e28I06) have reported th&t’C of
dissolved inorganic carbon in Himalayan rivers dases downstream because of
soil derived alkalinity and land plant productivigdditionally, increased
phytoplankton productivity or terrestrial plant rea&l input to the river can
stimulate mussel metabolic activity, which in terrauld lead to higher proportion of
metabolic C being deposited in the shell and thuswerd'*Cgpei (Se€
McConnaughey and Gillikin 2008, for a review).

High Mn/Ca ratio has been reported as an indicaifdrigh aquatic primary
productivity (Langlet et aR007; Carroll and Romanek 2008). ParticularlyBor
chilensis which shows maximum growth rate in winter (Saol@atal. 2009;
Rocchetta et al. 2014), Risk et al. (2010) haveatet! Mn peaks in winter growth
lines interpreting that increased precipitationd awer discharge can augment
erosion, liberating soluble Mn. According to Lealaiilson (1969), Sr/Ca ratio is
expected to show positive correlation with reduceer discharge and/or with
increased evaporation. However, trace elementsratie not easy to interpret and
should, thus, be interpreted in combination witheotproxies (Peacock and Seltzer
2008). In this regard, Sr concentration has beparted as covarying with*°0 in
fossil shells oDiplodon longulushigh values of both variables indicating dry

season (Kaandorp et al. 2006).

2.4 Statistics
Consistency among the different proxies was andly@eSpearman correlation.
8'80snen andd*Cepe values were compared between the upper and middle

components through Student’s t test. Results wamsidered significant at P < 0.05.

3RESULTSAND DISCUSSION
3.1 Sediment analyses

Sediment pH ranged from 7.3 to 7.9 (Table 1). Bhghtly alkaline soil favored
the preservation of archaeological materials, aaffjg €CaCQ; containing shells, as
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was previously reported for similar environment®orth Patagonia (see Pérez et al.
2008 and citations therein). The fragmentation xn@&ayson 1984, modified by
Batres 2008) showed that, various taphonomic peaseacted in the Lower
component. The high rates of sample fragmentatand in layers 9 and 10
coincide with the lowest NISP for the site. In &ldle and Upper components, pH
was almost constant. NISP values, in the Middlemament are higher than in the
Lower one. A trend to increased bivalve collectigrhuman groups is evident,
although NISP remains low. The Upper component shibe largest number ©f.
chilensisshell remains. The fragmentation index remainstort between the
Middle and Upper components, which indicates thatlarger number of items
recovered in the Upper component is not due to daaghonomic factors but to

increased bivalve collection activity (Table 1).

3.2 Trace elementsin modern shellsand water samples
Mn, Sr and Fe were present in shells and in watsin@lar proportions. Table 2
shows Ca and trace element concentrations in Rimé® water and in valves

taken from live mussels collected from the sam® sit

3.3 Stratigraphic analyses

Due to sample limitation, trace elements were mmeakim one valve fragment per
layer while stable isotopes were measured in tfieggments from layers 2, 3, 6, and
10, two fragments from layer 8 and one fragmennfftayers 1, 4, 5, 7, and 9.
Therefore, we interpreted our results taking irdocaunt that results from only one
fragment should be analyzed with care. Spearmaysasahowed significant
correlation betweed'®Ogher ands*Cenen only after excluding data from layer 9,
which showed an extremely high’Osner value (P = 0.037, R = 0.71). Similarly,
5'80snen sShows good correlation with Sr/Ca ratio if layes @xcluded (P = 0.024, R=
0.75).8"Cenenand Sr/Ca ratio are also correlated (P = 0.0154083) only if data
from layers 5 and 7 are excluded. These correlat@wa consistent with the results
reported by Risk et al. (2010), who have found inpeaks o6 *°0 and Sr/Ca and
Ba/Ca ratios in the same species in Chile in sungrewth lines, considering that
summer is the dry season in both Chilean an ArgerRRiatagonia. In our study, the
Mn/Ca ratio was not considered for the analysisabse it does not show any

significant trend along the sequence and is noetaied with the other proxies. All
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the data excluded from the correlation analysesespond to layers in which only
one shell fragment was used.

The Lower component shows higHfOgnen andd**Csnen along with high Sr/Ca
ratio in layer 10 (Fig. 5), suggesting arid coraiis according to Kaandorp et al.
(2006).Similarly, Echeverria et al. (2017) have reported negativacodlydric
balance for several forest environments of SoutRatagonia during a period which
includes the corresponding to this component. f®sne; value recorded in layer 9
is extremely high compared to the rest of the segei@hiled™*Cshenand the Sr/Ca
ratio decrease in this layer pointing to less aadditions. However, these data
correspond to a single fragment from a layer wisimell archaeological sample,
typical of a transient camp used for specific atiés. Hence, we discuss the
palaeoclimatic information from this component nhpbiased on layer 10 data.

It could be interpreted that small groups of huigfatherers from the eastern
steppe used rocky shelters like PDC in the areaAbf as temporal camps, possibly
logistically integrated from base camps describgdther researchers to the eastern
steppe (Crivelli Montero 2010), including transitéd sectors of cypress forests in
Valle Encantado (Hajduk and Albornoz 1999; Hajdukle2011) and some
occupations of forested sites in the Traful arelwé¢a 1996, 1999). This would
have been favored by arid conditions that had obéupgrt of the forest area and
related wetlands into grasslands suitable for grably steppe herbivores, especially
guanacos, which do not tolerate wet soils. Adddlbn these incursions could have
also been related to the gathering of obsidian fsoorces located in the forest area
near the MAL. This is supported by the presenaebsfdian characterized by the
same chemical groups and tools with similar lamipas those found in PDC in
steppe sites (Pérez et al. 2019). This occupat@ymave not persisted as a result of
climate changes not recorded because of the absésbell remains in the hiatus
between the Lower and Middle components and/orusecthe rock detachment
from the cave’s walls made this site not suitablehuman use.

In the Middle component, the three analyzed proaiesmostly coincidens e
shows low values with a negative peak in layeri@.(5), which could indicate a long
humid period (lower effect of evaporation &Ouawe). St/Ca ratio is also low in layers
6 and 7, with the negative peak in the same lay8t®®se), reinforcing the idea of a
wet period with high river discharge, at leastagdrs 6 and 7. Records &fCgneyare

slightly lower in this component than in the othigré&ayer 8 and show a marked
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negative peak in layer 6, suggesting higher inp@idrest-derived organic matter and
soil alkalinity due to increased runoff. Terredtplant material can provide lo&°C
organic compounds, which would be reflecte@'f{Csne through deposition of
metabolic C in shell carbonate (Gajurel et al. 26G@& McConnaughy and Gillikin
2008, for a review). In turn, soil derived alkatincontributes with lows**C HCOQy,
which is the main source of shell carbonate (eemg.and Marshall 2004). Taken
together, the three analyzed proxies reflect highildity and high river discharge in the
middle component (990-1050 AD), especially in Isy&rand 7. The fact that the
amplitude of the changes 3°Ogeiis lower than that of the other proxies could
indicate that this period was also cold, sift#gheiin D. chilensisincreases as
temperature decreases (Soldati et al. 2009), whaakid partially counteract the effect
of the humid conditions. Villalba (1990, 1994) meviously reported a cold humid
period (900 - 1070 AD) in the same region basedlerce tree rings, while Moy et al.
(2008) have interpreted positive moisture baldreteveen 850 and 1100 AD frosi’O
records orPisidum spvalves and on the fine fraction of Lago Guanasmtireents in
the Southern Chilean Patagonia.

At the time corresponding to the Middle compondr®DC, hunter-gatherer
populations from South-Central Chile, which posedsscomplex economy, including
pottery, fishing, incipient agriculture, and comntmrial grounds (Aldunate 1989;
Dillehay 1990; Adan et al. 2016; Campbell et alL0 began to colonize this area,
possibly as a result of the temporary segmentatidawrge groups, including a more
recurrent occupation of the eastern side of thee&n(Aldunate 1989; Pérez 2010. The
increased precipitation rate suggested by the pscamalyzed above is
contemporaneous with an increase in the inten$i8vV8W that was reported to occur
in several areas of Southern Patagonia (e.g. Edoti@et al. 2017). The climatic models
for Patagonia predict a strong positive effect W\8 on precipitations on the West side
of the Andes, which becomes weaker on the Eastfardst area and neutral to negative
in the forest-steppe ecotone and in the steppeecésely (Kilian and Lamy 2012;
Garreaud et al. 2013). Thus, these human groupstfie western side of the Andes
could have increased their residential mobility aods the Eastern forest and the
neighbor ecotone during the time of precipitati@als. This geographic expansion
could also be partly related to brief abrupt clienalhanges, accompanied by volcanic
episodes and forest fires, which have been repéotetie west side of the Andes range

during this period (Pérez 2010). In general, trecimitation peaks, volcanic activity
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episodes and fires were short duration catastrapreats, which were recurrent in this
period and favored the fragmentation of large gsoapd their mobilization to more
benign areas as an adaptive response (Joned 898). These were short-term
responses and the groups returned to their origpeation when the extreme events
were over. Accordingly, Torrence (2002) has propgaseesponse to volcanic episodes
of short duration in New Guinea, with human groapgrating to unaffected areas and
returning to the original area when conditions wekerable again.

The archaeological evidence in the Middle composegygests the recurrent
occupation of MAL by people with forest adaptatiamshe form of short-term camps
both, under rocky shelters and in open sites. Thesgps interacted with the local
environment and made intensive use of the localuregs, as is detailed in 1.3, but no
changes in their way of life or technology are ewitdfrom the quality of the artifacts
recovered, which does not change throughout trerdeaf this component (Pérez 2010;
Pérez et al. 2017).

The Upper component (layers 5-1) is partially comgeraneous with a warm and
dry period between 1080 and 1250 AD, reported bkaNa (1990; 1994) as an
expression of the MCA in the area of Los Alercesidveal Park, North-West
Patagonia (Figs. 1,5) and with a period of highpevation in Lago Guanaco (Moy et
al. 2008). In this componeri:®Ogne Starts to rise in layer 5 and is high throughout
the component except for a negative peak in layaivich does not correlate with
the values of the other proxies. If this negatiealpis excluded, pooled®Ogheyin
this component is significantly higher than in Meldle component (Student’s t test,
p < 0.05). Similarlys™Cqnenis significantly higher in the upper than in thiddie
component, considering all the layers (Studenst, p < 0.05), and the Sr/Ca ratio
is consistently high between layers 4 and 1. Algio8r/Ca ratio remains low as in
the middle component in layer 5, this value iscmtelated with the other two
proxies.

In layer 3, which coincides with the highest lesEbccupation of the MAL, all
the three proxies considered in this discussiorcansistent at maximum values,
pointing to a dry-warm climate with high aquatiapis productivity. This result is in
agreement with the conditions described by Villgb@90; 1994) for the same
period (Fig. 5). From the archaeological analyiss, layer seems to be an
occupation floor, in which the maximum human atyivor this site can be inferred

from a high artifact deposition rate (Pérez 20Rtrording to the artifactual
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evidence, at this time, the PDC occupants remaméute site for several decades
(Pérez 2010, Pérez et al. 2019). Layer 2 is conbeanp with a cold period thought
by Villalba (1990; 1994) to be a local expressidthe Little Ice Age. Although we
have recorded slight changessifiCsner and in Sr/Ca ratio with respect to layer 3,
8'%0snen does not change. Thus, no clear evidence poittitige expression of the

Little Ice Age in the area of MAL can be observedhe sequence studied in this

work.

The Upper component shows a new colonization eaféeit a period of no or
scarce occupation of the area. The reoccupatitmedfAL included potentially
articulated camps in open sites and rocky shettade by the same populations
which had temporarily expanded their mobility dgrihe Middle component. In this
component, the increment in residential mobilitgwted in the context of a new
stage of colonization (Borrero 1994-1995). At vada with the Middle component,
this mobility was not correlated with environmentadtability but with increasing
aridity.

This climatic event persisted for many decadeshlemgathe effective occupation
of the territory (Borrero 1994-1995). The relatiwstable environmental conditions
recorded between layers 5 and 1 have probablyéavitre intensification, in this
case, related to an evident increase in the irtierawith the local resources, with
predominant use of local raw materials, such agl@sand clay. This would have
also stimulated changes in the organization ofouericultural aspects (Jones et al.
1999), including the production of large combuststuctures related to the local
production of pottery described by Pérez (2011)tastinological innovations, such
as lithic sinkers for fishing lines and new shajpethe projectile pointsPérez et al.
2017).

The resulting capacity to exploit local resources/rhave allowed these groups to
cope with the increasing aridity recorded from keyewith peak in layer 3 by taking
advantage of the increased aquatic productivitytikis period, previous papers
describe an active exchange of resources and tegyn@among populations of the
Pacific coast, the Central valleys of Chile andAingentine side of the Andes Range
(Aldunate 1989; Pérez 2010; Campbell et al. 204i8)ilar to the described by
Arnold (1992) for island and inland populationsG#lifornia and Santa Barbara

channel, in the Northern hemisphere.
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4 CONCLUSIONS

We have reconstructed a palaeoclimatic multipreequence based on stable
isotopes and trace metals measured in archaedl@yichilensisshell remains,
which allows to correlate the sequence of humanmaions of the MAL with
environmental changes at a resolution scale witamecedents for this region. We
have detected climatic change pulses and the éqakssion of climatic events,
such as the MCA, which have previously been regadtéor only one site in North
Patagonia, which covers an area with a radius 0fkbd. (Villalba, 1990, 1994). Our
results allow to extend the geographic area in kvthe expression of the MCA is
evident in North Patagonia by ca. 300 km to thetiNand could contribute to the
development of regional interpretations. Sibcechilensisis one of the most
abundant species in the archaeofauna of a widerregimprising North-West
Patagonia, Argentina and South-Central Chile,rthifti-proxy approach is a
promising tool for the interpretation of landscapes climates in which human
populations migrated into and developed in the.past

Goiii et al. (2019) proposed that in Austral Patéaahe climatic fluctuations
occurred along the last 2500 years, especialljtGé and other events caused the
reduction of the residential mobility of huntergater groups of the Center-West of
Santa Cruz province (Fig. 1). In contrast, we hdeatified palaeoenvironmental
trends, which can be associated with changes inlitypbechnology and use of
natural resources in the MAL by human populatiorth @ifferent ways of life and
territoriality. The occupations of the area occinew it becomes comparatively
advantageous relative to the areas occupied bsrdiff human populations. For
example, the archaeological remains found in thedracomponent of PDC suggest
exploratory incursions from the Eastern steppe tiyjoslated with the gathering of
lithic raw materials and favored by arid conditionghe forest area, which extended
the steppe herbivores distribution range towardddhest-steppe ecotone, ca. 2.300
BP.

In the last millennium, when the MAL became advgetaus relative to the West
side of the Andes, it was colonized and effectivadgupied by populations from
South-Central Chile, which possessed an efficiectiiology for exploiting forest
and freshwater resources. The first colonizatiothiege groups, with recurrent
short-term occupations, took place during a huneidaa with high precipitation

rates and environmental instability (ca.990-108D)Aelated to increased intensity
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in the SWW. This effect was milder in the Eastdapss of the Andes, where the
influence of the SWW is less important than in\Western side. The second, and
more permanent occupation by the same groups wesraporary with the local
expression of the MCA (ca. 1080 and 1250 AD), aiad probably favored by
increased productivity of the rivers and lakes.i@es, the effective occupation with
increasing degree of interaction with the locabreses from the lower to the upper
component was stimulated by the longer duratioin@ffavorable environmental
conditions.

Finally, the MAL record allows us to propose tha tifferent models that
suggest social complexity, mobility, resource isi@oation and territorial behavior
during moments of environmental instability asstadao the MCA are probably not
monothetic and / or contradictory, but rather tbag be complementary and / or

concurrent.
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Captionsto thefigures

Figure 1.Meliquina Archaeological Locality (MAL, 1) includgthe Parqu®iana
Cave(PDC)and associated open (Meliquina Lak#gs,and related steppe sit€x 4),

in North-West Patagonia, Argentina. The locatiot#L (1) and reference sites for
paleoclimatic reconstruction in North-West (2) adstral (5) Patagonia are shown in a
regional map. SWW, South Westerly Winds.

Figure 2. A- Excavation in Parque Diana Cave shgwiart of the cave’s
wall. B- South profile and layer 10 (Lower compot)éd- Planimetry of the
three components showing the distribution of tlehaeological remains.

Fig.3. Stratigraphic sequence at the Parque Diaaae Cconsisting of
thirteen 10 cm thick layers pooled into three aalkucomponents.
Left, East profile of the cave; center, percentafjgecoveredDiplodon

chilensisshells per layer; right?C chronology.

Fig.4. Diplodon chilensisshells collected from the different layers of
Parque Diana Cave.

Figure 5. Stable isotope ratios (V-PDB %o, rightxysa and element/Ca ratios (mg/g,
left y axis) recorded in shell carbonatePgblodon chilensigrom the stratigraphic
sequence of Parque Diana Ca&0 (open triangles) anit*C (closed triangles)

data are plotted as mean, n = 3 for layers 2,810, n = 2 forlayer8and n =1

for layers 1, 4, 5, 7 and 9. Sr/Ca and Mn/Ca raresrepresented by open and closed
circles, respectively, n = 1.The human activitigeiipreted from the archaeological
record of the Parque Diana Cave are shown belogrdgeh. The arrow indicates the
expression of the Medieval Climatic Anomaly (MCA)the same region, according
to Villalba (1990; 1994).
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Table 1. pH, Number of identified specimens (NISZg fragmentation
index (F.l.) in the 10 layers of the site Parquariai cave which contained

Diplodon chilensishell remains.

Layer pH NISP F.I

1 7.58 10 0.20
2 7.69 52 0.30
3 7.32 77 0.26
4 7.91 10 0.36
5 7.71 4 0.25
6 7.78 3 0.33
7 7.73 5 0.20
8 7.56 4 0.25
9 7.64 1 0.00
10 7.29 2 0.50

Table 2. Element concentrations measured by TXREdHermoso water

and in the shells of livin@iplodon chilensis

Ca Mn Sr Fe Zn

Water 5695 0.012 0.031 0.113 0.044
(Hg/mL)

Shell (mg/g) 216.3 0.168 1.144 1.308 0.428
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APPENDIX A
Antecedents of paleoenvironmental reconstructiomgustable isotopes and trace

elements, with emphasis on freshwater bivalvedishe

Stable isotopes

Stable isotopes, especially those of oxygen (18@)carbon (13C), have been widely
used as proxies for palaeoclimate reconstructiocesthe early works by McCrea
(1950) and Epstein et al. (1953). For this purpss#opic ratios, e.g. 180/160, are
expressed in delta notation (e5¢80) relative to internationally accepted standards
8180 palaeothermometry is based on the principleiticarbonates (or phosphates)
precipitate in equilibrium with the surrounding wgtthe isotopic ratio in the mineral
depends only on water isotopic ratio and precijitetemperature. Thus, if wat&t80

Is known, temperature can be estimated from theocetes180 (reviewed in
Grossman 2012).

Stable isotopes have been recorded in samplesdreat variety of biogenic materials,
such as carbonates from foraminifers and limpetisteg. Barker et al. 2005;
Ferguson et al. 2011), carbonates or phosphatesfossil groups like branchiopods,
belemnites and conodonts (Grossman 2012), phospaatecollagen from extinct
mammals (e.g. Gonzalez Guarda et al. 2017), ahdas# from tree rings (Lavergne et
al. 2017).

Bivalve mollusks are especially good candidategpfdaeoclimate reconstruction since
they deposit carbonate in equilibrium with ambiemater, their shells present
conspicuous annual growth lines, and are relatiwaly preserved through time.
Particularly,6180shell is closely related to the host water igisteomposition and
temperature (Carre et al. 2005; Dettman et al. 1BpStein et al. 1953; Ferguson et al.
2011; Gordillo et al. 2015; Grossman and Ku 198@&sSman 2012; McCrea 1950; Yan
et al. 2009; Yoshimura et al. 2010.

Valve growth, structure, mineralogy, and isotopid @hemical fractionation, can be
affected by variations in environmental parametgush as water isotopic composition,
temperature, food supply, type of substrate, sglidissolved oxygen concentration or
oxygen/carbon ratio. Thus, shell isotopic patte&mnsigns can serve as archives of
environmental history (Dettman et al. 1999; Gajetedl. 2006; Goodwin et al. 2003;
Kaandorp et al. 2003; Schone et al. 2007).

Freshwater bivalves
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Hydrological and climate conditions such as riviecharge and the balance between
precipitation and evaporation can also be prindigetors affecting180Owater and thus
6180shell. (Gajurel et al. 2006; Kaandorp et al.2@D06; Marwick and Gagan 2011;
Ricken et al. 2003; Rodrigues et al. 2000; Schaliria 2011; Versteegh et al. 2010;
2011). Carbon isotopic ratidX3Cshell) can covariate witi180shell and has also
been discussed in previous papers as an isotomy por reconstruction of marine
palaeoenvironments (e.g. Surge and Walker 2006)esiwater environments,
813Cshell can be affected by biological factors,chmodify the proportion of
metabolic C deposited in the shell and by manyrenwmental factors such as
temperature, evaporation, soil derived dissolvedaraand the kind and productivity of
the dominant plants (or phytoplankton) (Geist eR@D5; Gillikin et al. 2009; Goewert
et al. 2007; Goodwin et al. 2012; Kaandorp et @3 Keller et al. 2002; Klein et al.
1996; Krantz et al. 1987; Leng and Marshall 200zkr&in et al. 2004; McConnaughey
and Gillikin 2008; Moy et al. 2008; Surge and Walk806).

Trace elements

Since different divalent cations can substitutectacium in biogenic carbonates, their
presence in carbonate deposits or in the shelsgadtic species has been widely
studied as proxies for environmental reconstructfkmtording to Barker et al. (2005),
trace element ratios can be analyzed in parallil 680 measured in the same sample
for obtaining more robust temperature estimatiéios.marine mollusks, Ferguson et al.
(2011) report that both Mg/Ca ratio astBO in modern shells of limpets (Patella spp.)
reflect the seasonal regime of surface seawatgrdrature (SST) of the western
Mediterranean. In contrast, Fullenbach et al. (2@t§ue that the incorporation of Sr
and Mg is often strongly controlled by physioloditzctors, and thus Sr/Ca and Mg/Ca
ratios are not reliable as palaeothermometers.

Besides their relative suitability for palaeothematry, trace elements can supply
information about past environmental conditions¢sishell element/Ca ratios reflect
the concentration of elements, such as Mn and Breimmbient water at the time of
calcification (Carroll and Romanek 2008; Jeffrealetl995). Peacock and Seltzer
(2008) have recorded increased Sr/Ca ratio in évahells from the late Holocene and
discussed such results in terms of aridity, whisaKdorp et al. (2006) have correlated
Sr concentration in bivalve shells with precipibatievaporation cycles in Amazonian

freshwaters. Besides water chemistry, temperasoieerosion, primary productivity
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and processes associated with growth exert strongats on the incorporation of trace
elements, together with other physiological factehsch can vary among different
species (Carré et al. 2006; Carroll and RomanelB;2bitas et al. 2006; Fullenbach et
al. 2015; Klein et al. 1996; Langlet et al. 200@zhret et al. 2003; Takesue and van
Geen 2004; Tynan et al. 2006).
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