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Inhibitory autapse mediates anticipated synchronization between coupled neurons
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Two identical autonomous dynamical systems unidirectionally coupled in a sender-receiver con-
figuration can exhibit anticipated synchronization (AS) if the Receiver neuron (R) also receives a
delayed negative self-feedback. Recently, AS was shown to occur in a three-neuron motif with stan-
dard chemical synapses where the delayed inhibition was provided by an interneuron. Here we show
that a two-neuron model in the presence of an inhibitory autapse, which is a massive self-innervation
present in the cortical architecture, may present AS. The GABAergic autapse regulates the internal
dynamics of the Receiver neuron and acts as the negative delayed self-feedback required by dynam-
ical systems in order to exhibit AS. In this biologically plausible scenario, a smooth transition from
the usual delayed synchronization (DS) to AS typically occurs when the inhibitory conductance
is increased. The phenomenon is shown to be robust when model parameters are varied within a
physiological range. For extremely large values of the inhibitory autapse the system undergoes to a
phase-drift regime in which the Receiver is faster than the Sender. Furthermore, we show that the
inhibitory autapse promotes a faster internal dynamics of the free-running Receiver when the two
neurons are uncoupled, which could be the mechanism underlying anticipated synchronization and
the DS-AS transition.

PACS numbers: 87.18.Sn, 87.19.ll, 87.19.lm

I. INTRODUCTION

Flexible communication among neuronal networks re-
quires that the same anatomical connectivity can present
different functional connectivity patterns [1]. At the neu-
ronal level, microcircuits producing coherent oscillations
can be viewed as building blocks of the effective net-
work dynamics in the brain. This means that the struc-
tural connectivity of neuronal motifs and the intrinsic ex-
citability of each neuron modulate the information flow
in the network [2]. In particular, the presence of autaptic
connections (or autapses), which could be synapses from
the axon of a neuron to its own somato-dendritic domain,
have been shown to influence both the firing rhythm of
the neuron and the synchronization properties of the net-
work [3–6].

The first observation of autapses was reported more
than forty five years ago in pyramidal neurons from the
neocortex [7]. Since then, neurobiologists have changed
the status of these connections from not relevant struc-
tures that only appears in experimental cultures to a
massive self-innervation present in the cortical architec-
ture [6]. Inhibitory autapses can be axo-axonic, axo-
dendritic or dendo-dendritic and have been found in the
cerebellum [8, 9], neocortex [4] and hippocampal cul-
tures [10, 11]. However, autaptic connections are rarely
included in cortical circuit diagrams and it is not known
whether they present any kind of plasticity [12]. Even
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though the functional role of the autapses is still lacking,
it has been speculated for decades that they could act as
self-inhibitory function [10].
Here we propose that autapses could act as the neg-

ative delayed self-feedback required by unidirectionally
coupled dynamical systems in order to present antici-
pated synchronization (AS) [13]. AS has been shown
to be a stable but counter-intuitive solution of a system
described by the following set of equations:

Ṡ = f(S(t)), (1)

Ṙ = f(R(t)) +K[S(t)−R(t− td)].

f(S) is a vector function that describes the autonomous
dynamical system, K is the coupling matrix and the de-
layed termR(t−td) is the self-feedback [13]. The solution
R(t) = S(t + td), characterizes the anticipated synchro-
nization and has been verified in a variety of theoreti-
cal [13–19] and experimental [20–22] studies. The strik-
ing aspect of this solution is that in a time t the Receiver
R predicts the state of the Sender S in a future time
t+ td.
The first verification of anticipation in a neuronal

model was done by Ciszak et al. [23] with two FitzHugh-
Nagumo neurons diffusively coupled in such a way that,
apart from an external stimulus, they could be modeled
by Eq. 1. AS has also been verified between two Rulkov
map-based neurons in the presence of synaptic delay and
a memory term as the self-feedback [24], as well as in
a three-neuron motif coupled by chemical synapses in
which the self-feedback was mediated by an interneu-
ron [25]. The later result has been extended to show
that AS is robust against noise [26] and spike-timing
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FIG. 1: (Color online) Neuronal motif: Sender (S) and
Receiver (R) neurons unidirectionally connected by an exci-
tatory chemical synapse. The Receiver neuron presents an
inhibitory chemical autapse which is a dynamical version of
the negative delayed self-feedback in Eq. 1 .

dependent plasticity [27]. AS has also been verified in
cortical-like populations in the presence of excitatory
and inhibitory neurons [28], which could explain a posi-
tive and unidirectional Granger causality and a negative
phase difference between cortical areas of a non-human
primate [28–31].
Furthermore, it has been shown that the internal dy-

namics of the Receiver neuron may control the rela-
tive phase between the Sender and the Receiver neurons
if they are synchronized [19]. In fact, anticipation in
spike synchronization has been shown between two uni-
directionally coupled nonidentical chaotic neurons when
the mean frequency of the free post-synaptic neuron is
greater than the pre-synaptic one [32]. AS has also been
verified between two Hodgkin-Huxley neurons coupled by
a nonlinear excitatory synapse in which the depolariza-
tion levels (but not the synaptic conductance) determine
the phase differences [33]. More recently, AS has also
been verified in population neural models representing a
microcircuit of sthe ongbird brain involved in song pro-
duction in which the Receiver dynamics is faster than the
Senders [34].
Here we show that a two-neuron motif with an in-

hibitory autapse in the post-synaptic neuron can present
an anticipatory regime. The autapse can act as a dy-
namical self-feedback and it can regulate the internal
dynamics of the Receiver neuron. We employ numeri-
cal simulations to show that GABAergic autapses can
be a biologically plausible mechanism for AS in neuronal
motifs. For very small values of the inhibitory conduc-
tance the neurons synchronize with the usual pre-post
order which is called the delayed synchronization regime
(DS). As we increase the inhibition the system presents
a conductance-induced DS-AS transition. In Sec. II we
describe our simple motif as well as the neuronal and
synaptic models. In Sec. III, we report our results, show-
ing that AS can be mediated by an inhibitory autapse
in physiological regions of parameter space. Concluding
remarks and briefly discussion of the significance of our
findings for neuroscience are presented in Sec. IV.

II. MODEL

Our motif is composed of two Izhikevich neuron mod-
els [35] and chemical synapses as shown in Fig.1. The

spiking activity of the Sender (S) neuron is described by
the equations bellow:

v̇S = 0.04v2S + 5vS + 140− uS + I (2)

u̇S = a(bvS − uS). (3)

The Receiver (R) neuron has similar equations but with
two extra terms which accounts for the excitatory (E)
and self-inhibitory (I) synaptic currents:

˙vR = 0.04v2R + 5vR + 140− uR + I +

+ gErE(EE − vS) + gIrI(EI − vR) (4)

u̇R = a(bvR − uR). (5)

For both neurons the reset condition is given by: if vi ≥
30 mV, then vi ←− c and ui ←− ui+d. The variable vi is
the equivalent of the membrane potential of the neuron
and ui represents a membrane recovery variable. The
subscript i indexes each neuron i = R,S. We employ
the same set of parameters for both neurons: a = 0.02,
b = 0.2, c = −65 and d = 8. I is the external constant
current which determines the neuronal firing rate.
The R neuron is subject to one excitatory synapses

from the S neuron mediated by AMPA receptors with
synaptic conductance gE. R is also subject to the in-
hibitory autapse mediated by GABAA receptors with
autaptic conductance gI . The AMPA and GABAA re-
versal potentials are respectively EE = 0 mV and EI =
−80 mV. The fraction of bound (i.e. open) synaptic re-
ceptors rj is modeled by a first-order kinetic dynamics:

ṙj = αj [T ](1− rj)− βjrj , (6)

where αj and βj are rate constants. The index j repre-
sents the excitatory synapse and the inhibitory autapse
j = E, I. [T ] is the neurotransmitter concentration in
the synaptic cleft. In its simplest model it is an instan-
taneous function of the pre-synaptic potential vpre [36]:

[T ](vpre) =
Tmax

1 + e[−(vpre−Vp)/Kp]
. (7)

In our model Tmax = 1 mM−1, Kp = 5 mV, Vp = 2 mV.
Unless otherwise stated, the rate constants are αE =

1.1 mM−1ms−1, βE = 0.19 ms−1 , αI = 5.0 mM−1ms−1,
and βI = 0.30 ms−1 similarly to the ones in Refs. [25, 36].
However, these values depend on a number of different
factors and can vary significantly [37, 38].

III. RESULTS

Initially, we describe our results for the scenario where
both neurons are subjected to a constant current I >
5 pA. Unless otherwise stated we keep the excitatory con-
ductance fixed as gE = 0.3 nS which is larger enough to
promote a phase-locking regime between the two neurons
when there is no autapse. For different sets of inhibitory
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FIG. 2: (Color online) Characterizing the phase-
locking and phase-drift regimes. (a) Time series of
the Sender and the Receiver neuron after a transient time for
different values of the autaptic inhibition gI and fixed external
current I = 10 pA. (b) The spike-timing difference τi between
S and R as a function of the i-th cycle. A pre-post firing order
characterizes the usual delayed (DS) synchronization regime
(upper panels, gI = 0.15 nS). The anticipated synchronization
regime (AS) occurs when the Receiver neuron fires before the
Sender (middle panels, gI = 1.0 nS). When neurons fire with
different frequencies, the spike timing difference changes ev-
ery cycle and the neurons are in a phase-drift (PD) regime
(bottom panels, gI = 2.0 nS).

conductance values gI our motif can exhibit different be-
haviors as shown in Fig. 2. In order to characterize each
regime, we define tSi as the time in which the membrane
potential of the Sender neuron is larger than the thresh-
old (vi ≥ 30 mV) in the i-th cycle (i.e. its i-th spike
time), and tRi as the spike time of the Receiver neuron
which is nearest to tMi . The spike-timing difference τ
between S and R is defined as:

τi ≡ tRi − tSi . (8)

When τi converges to a constant value τ , a phase-
locked regime is reached [39]. By definition, if τ > 0
we say that the system exhibits delayed synchronization
(DS) and the neurons fire in the usual pre-post order
(see upper panels in Fig. 2a and b, for gI = 0.15 nS) . If
τ < 0 we say that anticipated synchronization (AS) oc-
curs and the neurons fire in a non-intuitive post-pre order

(see middle panels in Fig. 2a and b, for gI = 1.0 nS). If
τi does not converge to a fixed value, the system is in a
phase-drift (PD) regime [39] (see bottom panels Fig. 2a
and b, for gI = 2.0 nS).
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FIG. 3: (Color online) Transition from delayed to
anticipated synchronization regime. Spiking time dif-
ference normalized by the period of the phase-locking τ/T as
a function of inhibitory conductance gI for different values
of external current I . Positive values of τ characterizes DS,
whereas τ < 0 represents the AS regime. The stars mark
the end of the phase-locking regime and the beginning of the
phase-drift (PD). In PD the value of τi in each cycle does not
converge to a fixed value τ as shown in Fig. 2(b).

A. The conductance induced transition from DS to
AS

The spike-timing difference τ is a continuous and
smooth function of gI . The transition from delayed to
anticipated regime through a zero-lag regime may be in-
duced by the inhibitory autaptic conductance as shown
in Fig. 3. To compare the transition for different values
of external current we normalized τ by the firing period
T which depends on I. Both AS and the DS-AS transi-
tion can be found in a large region of parameter space.
Typically, AS occurs for gI > gE . The relation between
τ/T , excitatory and inhibitory conductances for different
values of I is shown in Fig. 4. Results are independent of
initial conditions and perturbations. The phase-locking
regimes are always reached after a transient time.
It is worth to mention that the presence of the autapse

in the post-synaptic neuron, even for very small values
of inhibitory conductance, decreases the spike-timing dif-
ference between the neurons. This means that autapses
could be biologically important to overcome synaptic de-
lays between distant areas. Moreover, for enough inhi-
bition, the neurons can fire exactly at the same time.
Therefore, autapse can be also considered as a mecha-
nism to promote zero-lag synchronization[40, 41] which
does not require bidirectional connections.
We show here that autaptic weights may control the

spike-timing difference between pre and post-synaptic
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neurons through a conductance induced DS-AS tran-
sition. This result can be computationally considered
as the other way around of the spike-timing dependent
plasticity (STDP) [42], which is a biological mechanism
that allows the spike-timing differences between pre and
post-synaptic neurons to control changes in the synaptic
weights.
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FIG. 4: (Color online) Normalized spike-timing dif-
ference τ/T (right bar) in the (gI ,gE) projection of
parameter space for different values of external current I :
DS (blue, mostly at the upper part in which gI > gE and
τ/T < 0), AS (red, middle), and PD (white, meaning that no
stationary value of τ was found).

B. GABAergic autapse promotes a faster internal
dynamics

Occasionally inhibitory synapses are viewed as a bio-
logical mechanism to avoid neurons to fire. However, we
show here that the GABAergic autapse can allow the
neuron to fire with higher frequencies. In the phase-
locking regimes (both DS and AS) the period of the Re-
ceiver is the same of the Sender (TR = TR = T0 which is
the period of a neuron without an autapse gI = 0). As
we increase the inhibition, the spike-timing difference de-
creases and eventually, the system loses the phase-locking
regime. For gE = 0.3 nS and I ≥ 8 pA, as we increase
gI the system exhibits a second transition from AS to a
phase-drift regime in which TR < T0 (see Fig. 5(a)). This
means that in the PD regime the Receiver fires faster
than the Sender. The return map of the Receiver period
in each cycle TR

i−1 versus TR
i characterizes the phase-

drift (see Fig. 5(b)) which is a quasi-periodic regime.
This counter-intuitive effect of inhibition has also been
reported for a neuron participating in a inhibitory loop
mediated by an interneuron [25].
For small values of external current I < 8 pA and gI >

3.6 nS the membrane potential of the Receiver neuron
does not reach the condition for reset, which means that
it does not fire a spike. Thus, it is not possible to define

τi. In fact, for this region of the parameter space the
inhibition can silence the neuron.
The effect of the autapse in the internal dynamics of

the Receiver can also be studied for the uncoupled case
gE = 0. For this situation, as we increase gI , the firing
period of the neuron subjected to the autapse initially
decreases and T/T0 < 1 for any value of external current
I (see Fig. 6). This result is in agreement with previous
studies showing that the mechanism underlying antici-
pated synchronization is a faster internal dynamics of
the Receiver [19, 32, 43].
The inhibitory autapse can also promote the transition

from DS to AS when the sender and the receiver neu-
rons are not described by the same equations or param-
eters. If the receiver neuron is a fast spiking neuron [35]
(with model parameters a = 0.01, b = 0.2, c = −65 and
d = 2) the transition from positive to negative τ is still
continuous and smooth. In such case the external cur-
rent in each neuron should be different in order to ensure
that their natural frequencies are similar. For example, if
IS = 16 pA, IR = 4.5 pA, gE = 0.3 nS, βI = 0.188 ms−1,
βE = 0.3 ms−1 the system exhibits DS if gI . 0.1 and
AS if 0.1 . gI . 0.5 nS (data not shown).
Moreover, if the receiver neuron is modeled as a two-

compartment neuron, the system can also exhibit AS. We
have considered that the compartments are connected
by an electrical synpase with synaptic current given by
I = gelectrical ∗ (Vpre − Vpost) and the second compart-
ment sends an inhibitory chemical synapse to the first.
For gE = 1 nS, gelectrical = 0.2 nS, I = 10 pA the system
undergoes a transition from DS to AS when we increase
gI from zero to 2.5 nS (data not shown). Further in-
vestigation on how anticipated synchronization depends
on more complex dendritic trees, other types of neurons
and slower synaptic currents mediated by NMDA and
GABAB are beyond the scope of this paper and should
be reported elsewhere in the future.

IV. CONCLUDING REMARKS

To summarize, we have shown that the presence of
a GABAergic autapse can promote anticipated synchro-
nization between two coupled neurons. Here, the in-
hibitory self-innervation acts as a dynamical delayed neg-
ative self-feedback [13, 23] or the inhibitory loop medi-
ated by a third neuron [25, 28] required by previously
studied systems in order to exhibit AS. This also means
that even in a very simple microcircuit of two neurons,
the characteristic time scale and conductance of the exci-
tatory connection are not enough to determine the phase
difference between two synchronized neurons. Moreover,
autapses could be a biologically plausible mechanism to
overcome synaptic delays.
We have also shown that the neuron subjected to the

inhibitory autapse can fire faster than without it. Such a
result is in consonance with previous studies [19, 32, 43]
showing that the mechanism underlying AS and the DS-
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FIG. 5: (Color online) Characterizing the phase-drift
regime induced by the inhibitory autapse: the Re-
ceiver is faster than the Sender. (a) The mean period
of the Receiver normalized by its own period when gI = 0,
TR/T0 coincides with the mean period of the Sender for DS
and AS regimes, but it is smaller for PD. (b) In PD, the return
map of the period in each cycle of the Receiver is consistent
with a quasi-periodic system.

AS transition can be a faster internal dynamics of the
Receiver system. Moreover, previous work on AS have
investigate the phenomenon for neurons with firing rates
larger than 60 Hz [25, 27]. Typically cortical neurons
in vivo do not fire at rates greater than ∼ 30 Hz. Here
we show that AS can occur for firing rates around 20 Hz
which means that AS is a robust phenomenon at different
time scales.
The DS-AS transition could possibly explain com-

monly reported short latency in visual systems [44–49],
olfactory circuits [50], songbirds brain [34] and human

perception [51, 52]. Differently from the first papers
about AS [13, 23], here the anticipation time is not hard-
wired in the dynamical equations, but rather emerges
from the autapse dynamics. The spike-timing difference
between post- and pre-synaptic neurons decrease as we
increase the inhibitory autaptic conductance. Eventu-
ally the system presents a conductance induced transition
from delayed to anticipated regimes similarly to what has
been reported in a three neuron motif [25, 28]. This AS-
DS transition could synergistically work together with
spike-timing-dependent plasticity [27, 42, 53] to deter-
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g
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1.000

T
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0

I
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I
MS
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I
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I
MS
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 =10 pA

FIG. 6: (Color online) Inhibitory autapse promotes
a faster internal dynamical of the free-running Re-
ceiver, which could be the mechanism promoting AS and
the transition from DS to AS. For the uncoupled situation
(gE = 0) the period of the free-running Receiver (normal-
ized by its own period for gI0, TR/T0) decreases as we in-
crease the inhibitory conductance gI . For external currents
I = 5, 6, 7 pA the minimum value of T/To can also be related
to the minimum value of τ in Fig. 3. For I ≥ 8 pA the system
undergoes a transition from AS to PD regime before TR/T0

reaches the minima.

mine the circuit dynamics and synaptic conductances.
Including effects from synaptic plasticity in the model
presented here is a natural next step which we are cur-
rently pursuing.
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