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ABSTRACT. The feature selection (FS) process is a key step in the Quantitative Structure-Property 

Relationship (QSPR) modeling of physicochemical properties in Cheminformatics. In particular, the 

inference of QSPR models for polymeric material properties constitutes a complex problem because 

of the uncertainty introduced by the polydispersity of these materials. The main challenge is how to 

capture the polydispersity information from the molecular weight distribution (MWD) curve to 

achieve a more effective computational representation of polymeric materials. To date, most of the 

existing QSPR techniques use only a single molecule to represent each of these materials, but 

polydispersity is not considered. Consequently, QSPR models obtained by these approaches are being 

oversimplified. For this reason, we introduced in a previous work a new FS algorithm called Feature 
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Selection for Random Variables with Discrete Distribution (FS4RVDD), which allows dealing with 

polydisperse data. In the present paper, we evaluate both the scalability and the robustness of the 

FS4RVDD algorithm. In this sense, we generated synthetic data by varying and combining different 

parameters: the size of the database, the cardinality of the selected feature subsets, the presence of 

noise in the data, and the type of correlation (linear and nonlinear). Moreover, the performances 

obtained by FS4RVDD were contrasted with traditional FS techniques applied to different simplified 

representations of polymeric materials. The obtained results show that the FS4RVDD algorithm 

outperformed the traditional FS methods in all proposed scenarios, which suggest the need of an 

algorithm such as FS4RVDD to deal with the uncertainty that polydispersity introduces in human-made 

polymers.

KEYWORDS. Feature Selection, Polymer Informatics, Synthetic Database, Polydisperse Data

BRIEF. Evaluating the FS4RVDD algorithm for polymer informatics using synthetic polydisperse 

datasets.

1. INTRODUCTION

Feature selection (FS) is the task of detecting a set of significant variables (or features) to define 

a computational model [1]. The main hypothesis to apply an FS method is that data usually contain a 

large number of irrelevant or redundant variables that can be eliminated without losing significant 

information. The avoidance of the course of dimensionality, the improvement in the interpretability 

of the models, and the reduction of overfitting and computational efforts during the training phase of 

a model are fundamental reasons for applying FS techniques in predictive modeling. Feature selection 

is a well-known combinatorial optimization problem widely studied for different real-world domains, 

which typically requires the designing of novel approaches to deal with emerging fields [2] or 

problems such as imbalanced databases [3].
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In Cheminformatics, the area that interfaces between chemistry and computing [4], FS 

techniques are frequently applied in the initial stage of Quantitative Structure-Activity/Property 

Relationship (QSAR/QSPR) modeling [5]. QSAR/QSPR models are inferred to predict a biological 

activity or chemical property in terms of molecular descriptors. A molecular descriptor (MD) 

represents a portion of information derived of the chemical structures. QSAR/QSPR approaches are 

applied in order to estimate physicochemical and biological properties of interest, acting as drug 

prioritization strategy for pharma discovery [6, 7]. In this scenario, the process of choosing the most 

relevant MDs subgroup for the activity to be modeled is a particular case of the FS problem.

Material discovery is increasingly being impelled by machine learning (ML) methods that 

extract patterns from preexisting datasets [8]. A singularly challenging issue of QSPR modeling occurs 

in Polymer Informatics [9, 10], which is an interdisciplinary field that combines tools and knowledge 

from the computer science and polymer chemistry areas. The key aim behind it is to advance the 

understanding and design of new custom polymeric materials. This field is focused on the 

development of algorithms to polymer investigation by methodical computational studies mainly 

founded on ML algorithms as knowledge recovery techniques [11]. Polymer Informatics, like 

Cheminformatics, is mainly a design-oriented field; however, for polymer informaticians the modeling 

of chemical structures is much more complex and demanding in terms of computation than the 

chemicals studied in drug discovery projects [12]. In this respect, the Polymer Informatics demands a 

cautious modeling of macromolecules, where each of them is integrated by several large chain-like 

molecules that consist of many structural repetitive units (SRUs).

Significant efforts are continuously being made in Polymer Informatics as regard the QSPR 

modeling of polydisperse polymers. A polymeric material consists of various polymer chains of 

diverse lengths and molecular weights. Unlike a classic drug-like compound, a synthetic polymer is 

featured by a molecular weight distribution (MWD) rather than by a single molecular weight. In 

polymeric materials, this phenomenon is termed as polydispersity; it implies that each MD of a human-

Page 3 of 44

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



made polymer has a related distribution of values that could be generated by computing the descriptor 

value for the diverse polymeric chains and their frequencies [13].

A wide variety of FS methods have been proposed in the area of combinatorial optimization for 

a variety of application fields [1, 2, 14], including the MDs selection [15-18]. Most published studies 

use synthetic molecular models; that is, they characterize polymers through MDs calculated either on 

a single SRU [19-26] or on the central unit of the trimer [27, 28]. Nevertheless, polydispersity has not 

been considered in most contributions to QSPR modeling in Polymer Informatics [29] in which 

polymers were characterized by the use of their SRUs or their monomers. Therefore, MDs are only 

computed for a minimum representation of polymers, which constitutes a simplified view of a 

polymeric material. In a recently published work [30], MDs corresponding to SRU Molecular Weights 

(MW) and MDs associated with two representative average molecular weights of polymeric materials: 

Number Average Molecular Weight (Mn) and Weight Average Molecular Weight (Mw), were 

integrated into a single database to go through an FS process and train a QSPR model. In this way, the 

MDs of each polymer were characterized by three values: MW, Mn, and Mw (in Section 2.1, there is 

a description of this topic). The reported results confirm that predictive models inferred from databases 

that include several weight instances of polymer representations obtain better performances in terms 

of generalizability than predictive models generated from typical SRU-based representation databases. 

This characteristic constitutes a promissory antecedent that supports the experimental efforts of this 

paper to achieve a better understanding of the impact of polydispersity on the QSPR modeling of 

polymeric material properties.

In a previous work [13], we addressed the selection of the most relevant features in QSPR 

modeling in the context of polymeric materials. We presented a FS algorithm to deal with the 

uncertainty that introduces the polydispersity of polymeric materials. We generated synthetic data - 

created computationally instead of being taken from real-world events- to evaluate both the scalability 

and generalizability of the method. However, the experimentation was performed to conduct a proof 
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of concepts. In this sense, the synthetic data generated did not include aspects such as the introduction 

of noise and the modeling of nonlinear relationships between the synthetic target and the MDs. 

Therefore, in the present paper, we present the following new contributions in terms of the 

experimental analysis of the proposed FS method:

1. The use of synthetic targets associated with MDs in both linear and nonlinear ways 

2. The analysis of method robustness by introducing noise in the synthetic data.

3. Another approach to evaluate the statistical performance of the novel FS method, contrasting 

the new approach with the traditional FS algorithms applied to different simplified polymer 

representations.

In brief, we evaluate the performance of a novel method called Feature Selection Algorithm for 

Random Variables with Discrete Distribution (FS4RVDD) [13], whose accuracy to detect those MDs 

randomly correlated with the synthetic target was obtained using classification metrics. FS4RVDD use 

a discrete distribution for represent the value of each MD, and this is the principal difference with 

traditional representation, which use a single value for each MD. This single value can be calculated 

or measured on representation of SRU, Mn, Mw or other single instance of weight (simplified 

representation). On the contrary, FS4RVDD allow to represent the polymer by multiples weights by 

using a discrete distribution (more details in the following sections).

In other words, we intend to answer the following research question: given a probabilistic 

characterization of MDs by using discrete distributions in combination with the FS4RVDD method, is 

it possible to achieve a more accurate identification of the most relevant MDs than the one obtained 

from traditional approaches that use a simplified representation of MDs?

2. MATERIALS AND METHODS

In this section, we present the generation of synthetic data used in the experiments, together with 

a summary of the FS4RVDD algorithm proposed in Cravero et al. [13]. Regarding data, we computed 
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various sizes of synthetic databases. In addition, we explored two scenarios (with and without noise). 

Figure 1 shows the key steps followed for synthetic data generation, which will be detailed in the next 

subsections.

Figure 1. Main steps for the generation of synthetic data.

2.1. INTRODUCING THE POLYDISPERSITY PHENOMENON INTO THE MOLECULAR 

DESCRIPTOR

A key issue in Polymers Informatics is the lack of benchmark databases [31]. Moreover, the 

generation of a database with real values of MDs for polymers with high molecular weight is 

computationally expensive since the main variability factor (i.e., polydispersity) that characterizes a 

polymeric material database must be modeled. For this reason, the use of synthetic data becomes an 

advisable approach in this context. Additionally, the random generation of synthetic data is more 

suitable for scalability and robustness performance tests [32].

For the synthetic generation of these databases, it must be considered that polymeric materials have 

a molecular weight variability called polydispersity; that is, they do not have a single molecular weight 

(MW), but an MWD represented by an MWD curve. In most current databases and general papers in 
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the literature, only average molecular weights are reported and not the corresponding MWD curves, 

which is why we had to model the curves of each polymer in our synthetic databases. The MWD 

curves are characteristic for each material, and they can follow, among others, a normal or a lognormal 

distribution, and it is crucial to model the polydispersity. In order to solve this problem, we followed 

a lognormal distribution because it is by far the most commonly observed distribution within 

asymmetric distributions and the most invoked one in the literature [33, 34]. To represent the 

polydispersity curve, each chain length under the curve must be correctly modeled; subsequently their 

MDs must be calculated for each of them. At present, it is not possible to perform this kind of 

computation with the available software tools for molecular modeling and MDs calculation [35, 36]. 

In this context, we propose a method for synthetic data generation, which poses a challenge and an 

opportunity of contribution.

Polymers consist of many SRUs. These SRUs are chemically bonded forming long chains [37]. As 

previously mentioned, the MW of a human-made polymer is not a single value like occurs with a small 

molecule. Polymeric materials are polydisperse since they are integrated by a distribution of chain 

lengths. Accordingly, they must be represented by an MWD curve. The typical MWD curve of a 

polymeric material is shown in Figure 2. The x-axis represents the different weights of molecular 

chains (weight), and the y-axis represents the molecular chain number of each weight of a polymer 

(frequency). As explained before, the lognormal distribution is the one typically used for polymeric 

materials and the most modeled one. Furthermore, it can describe a broad distribution with two 

parameters: number average molecular weight (Mn) and weight average molecular weight (Mw) [38], 

which results adequate for the kind of materials we study.
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Figure 2. Graph of the classic molecular weight distribution (MWD) curve of a human-made 

polymer, where number average molecular weight (Mn) and weight average molecular weight (Mw) 

are denoted.

For a better understanding of this topic, it is necessary to know how Mn and Mw are calculated (eq. 

1 and eq. 2, respectively).

𝑀𝑛 =
∑

𝑖𝑁𝑖𝑀𝑖

∑
𝑖𝑁𝑖

(1)

𝑀𝑤 =
∑

𝑖𝑁𝑖𝑀2
𝑖

∑
𝑖𝑁𝑖𝑀𝑖

(2)

Where Mi is the molecular weight of one chain length and Ni is the number of chains of that 

molecular weight. In contrast to Mn, Mw denotes the molecular size instead of just an arithmetic mean 

[39].

Because polymer properties are dependent on MWD, it becomes crucial to know this feature [40, 

41]. At this point, it is intuitive to infer that the descriptor values of each chain length of the MWD 

curve are needed for QSPR modeling.
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Knowledge of the chain length of a polymer is required for the understanding of the polymer physical 

properties, such as ductility, brittleness and mechanical strength [42]. Because the properties of a 

polymer are dependent on its molecular weight distribution, the MDs involved in the QSPR model 

that predict these properties should be characterized considering the polydispersity of the polymer 

materials (lognormal distribution).

In this context, it was necessary to generate synthetic polymers characterized by this discretized 

lognormal distribution to obtain the synthetic database (see Fig. 3). This distribution has two 

parameters  and  that correspond to the mean and standard deviation, respectively. In this way, 𝜇 𝜎

given two randomly-generated values for each polymeric material corresponding to the parameters of 

molecular weight distribution, it was possible to generate the curve for each polymer in each database 

(see Fig. 3, part A). Hence, databases of three different sizes were built for this work, namely, with 

400, 800, and 1600 materials.

Figure 3. Description of steps for introducing the polydispersity phenomenon into the molecular 

descriptor characterization.
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As a second stage, a vector of values for each descriptor was computed by generating  and 𝑠𝑡𝑎𝑟𝑡

, two random numbers. Then, the first value of each vector was  and the following values 𝑠𝑡𝑒𝑝 𝑠𝑡𝑎𝑟𝑡

were obtained by adding consecutively the  value until to complete the vector. These observations 𝑠𝑡𝑒𝑝

represent the values of the MD incrementally computed for different molecular chain weights for a 

polymeric material (see Fig. 3, part B). Accordingly, a vector of coordinates for each material was 

saved in the material database; the first coordinate symbolizes the different molecular weights (x-axis) 

and the other one represents the frequencies (y-axis). Figure 3, part C shown this.

2.2. CONSTRUCTION OF THE SYNTHETIC DATABASE

The database was defined as a matrix in which rows are associated with polymeric materials and 

columns are associated with descriptors (see Fig. 4 part A). For each cell , the dispersion curve 𝐶𝑖𝑗

corresponding to the i-th material  was associated with the vector of values associated with the j-th 𝑀𝑖

descriptor  (see Fig. 4 part B). Then, a discrete distribution of values for each descriptor , and for 𝐷𝑗 𝐷𝑗

each material  could be obtained; the frequency of each descriptor value in the distribution was 𝑀𝑖

recovered from the dispersion curve. In particular, in this work, these distributions were obtained by 

taking 100 samples  from the molecular weight dispersion curves generated in the first stage (see 𝑘

Fig. 4 part C). Each sample corresponded to a molecular weight instance and matched with a descriptor 

value. Finally, a correlation between each sample  and the target values, expressed by the mean and 𝑘

the variance (  and  values), is necessary (see Fig. 4 part 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

D). This is explained in detail in section 2.2.1. Note that different databases were generated by varying 

the number (400, 800, and 1600) of polymeric materials, but the total number of descriptors included 

in each database remained fixed at 100.
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Figure 4. Graphical scheme of the conceptual construction of the database. Note that it contains 

polydisperse data and not a unique value.

2.2.1. BUILDING THE TARGET

The third stage is the target value calculation. To build the targets, we used the dispersity curves and 

the descriptor value vector generated in the previous steps. Firstly, MDs were randomly selected, 

generating three different scenarios by picking 5, 10, and 20 descriptors. Then, simple mathematical 

operations were used to correlate these descriptors with the target variable. Two scenarios were 

created: linear target and nonlinear target. In the linear scenario, the linear target ( ) was generated 𝑌𝐿

by adding the  values of the selected descriptors (eq. 3), where  is the total number of descriptors 𝑠 𝑠

selected.
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𝑌𝐿 =
𝑠

∑
𝑖 = 1

𝐷𝑝𝑖 (3)

On the other hand, the nonlinear target ( ) was calculated by adding the product of selected 𝑌𝑛𝐿

descriptors taken in pairs (eq. 4). The sub-index in  are the positions of the chosen descriptor and s 𝑝

is the total number of descriptors involved in building the target. For example, when the descriptors 

randomly selected are five, the nonlinear target is . The formula 𝑌𝑛𝐿 = 𝐷𝑝1 ∗ 𝐷𝑝2 + 𝐷𝑝3 ∗ 𝐷𝑝4 + 𝐷𝑝5

used for target building was inspired in the label target functions called sum and nonlinear available 

in RapidMiner [43] for synthetic data generation. The methodology for generating these two scenarios 

is shown in Figure 5.

𝑌𝑛𝐿 =
𝑠

∑
𝑖 = 1

(𝐷𝑝𝑖 ∗ 𝐷𝑝𝑖 + 1
) + … + (𝐷𝑝𝑠 ― 1 ∗ 𝐷𝑝𝑠

) (4)

Figure 5. Target generation for both linear and nonlinear targets.

At this point, we had databases with 400, 800, and 1600 polymeric materials, and we generated for 

each of them a target for each quantity of selected descriptors (5, 10, and 20). These combinations 
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provided nine possible scenarios (400-5, 400-10, 400-20, 800-5, 800-10, 800-20, 1600-5, 1600-10, 

and 1600-20).

2.2.2. SCENARIOS WITH AND WITHOUT NOISE

Experiments were conducted for two scenarios: data with noise and data without noise (see Fig. 1). 

The noise scenario was generated using the jitter library of R [44]. For this scenario, we considered a 

random percentage of noise ranging  5%, simulating the error level within the instrument accuracy ±

of  5% corresponding to a Waters Scientific Chromatograph model 150-CV (Size Exclusion ±

Chromatography). This technique is applied to measure the MWD of polymers [45]. We added this 

noise percentage to the MD values. This process was performed for all polymeric materials in the 

database. Therefore, including these two new alternatives, we defined a combination of eighteen 

possible scenarios; that is, the nine scenarios mentioned in the previous section, but considering the 

options with noise and without noise.

2.3. FEATURE SELECTION FOR POLYDISPERSE DATA USING FS4RVDD

The selection of the most relevant subset of MDs for a specific property is a crucial step in the 

inference of QSPR models. In the case of polymeric materials, this issue is a special and particular 

case of FS problems in which the variables are polydisperse data (i.e., they present uncertainty). In 

this sense, the FS4RVDD algorithm was implemented to deal with discrete distributions such as input 

variables. The method is summarized in this subsection (see Fig. 6), but a detailed presentation of the 

FS4RVDD can be found in Cravero et al. (2018) [13]. The algorithm consists of two key phases: the 

MDs ranking and the MDs elimination based on the correlation among them. The first phase is 

generated based on the linear correlations between MDs and target property (see Fig. 4 part C and Fig. 

5). In the second one, MDs that are highly correlated with each other are eliminated. These two phases 

are detailed as follows.
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Figure 6. Global methodology for our Feature Selection Method.

2.3.1 FIRST PHASE OF FS4RVDD

The correlation between each MD and the target variable is measured. This correlation is computed 

using the Kendall's Tau distance [46]. Each descriptor  is represented by several samples  of the 𝐷𝑗 𝑘

discrete distributions this descriptor has in association with each polymeric material . Then, the 𝑀𝑖

method calculates the existing correlation between each sample  and the target values, obtaining a 𝑘

distribution of correlation values. Next, the method obtains a correlation measure for each descriptor 

expressed by the mean and the variance (  and  values) 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

of this distribution of correlation between descriptor  and target  calculated for  values 𝐷𝑗 𝑌 𝑘 = 100

(see Fig. 4 Part D). Finally, a descriptor ranking is generated, sorting them from the biggest to the 

smallest  values. This ranking is the output of the first phase.𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

2.3.2 SECOND PHASE OF FS4RVDD
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Those DMs that have a correlation value ( ) lower than a predefined threshold are 𝑝𝑜𝑖𝑛𝑡_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

eliminated and they are not part of the ranking (see Fig. 6). The objective here is to obtain a subgroup 

of MDs with a small level of redundancy. For this procedure, a pairwise contrast is performed with 

the remaining MDs in the ranking to identify MDs that have similar discrete distributions. The 

Bhattacharyya Distance [47] is applied to compare the distributions of each pair of MDs for each 

material. If two MDs present a higher degree of similarity than the threshold, the DM located further 

down the ranking is eliminated. Finally, the final subgroup of selected descriptors is defined 

considering the maximum cardinality that user had previously settled.

2.3.3 PERFORMANCE EVALUATION

In a previous work [13], the FS4RVDD method was evaluated by generating QSPR models from the 

selected variables and discussing the accuracy of these models as an undirected way for assessing the 

quality of the FS output. In the present paper, we sought to evaluate the FS method using a more 

straightforward approach instead of computing QSPR models. The idea was to determine the 

capability of the FS method for detecting the MDs that had been formerly correlated with the target 

variables in the generation process of the artificial datasets. In this way, this new approach for the 

performance evaluation of the FS4RVDD method can be analyzed as a classification problem in which 

the FS selection algorithm classifies the MDs into two classes: correlated and not correlated with the 

target variable. Therefore, the metrics used for assessing the method performance can be the ones 

typically used in binary classification: Percentage of Correctly Classified (%CC), also known as 

"Accuracy" in Machine Learning community, or the Non-Error Rate (NER). The %CC represents the 

number of correct predictions obtained on the total number of samples. On the other hand, the value 

of NER is the arithmetic mean of class sensitivity, that is, the average of the percentages of samples 

that were correctly classified for each class.
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An additional challenge is to define a fair experimental framework for performance comparisons 

with other approaches, because there are no similar methods that work with descriptors characterized 

by discrete distributions. For this reason, we decided to compare our method with state of the art FS 

methods using representations based on a single value. In polymer modeling, representations based 

on SRU [18-29] and representations based on average weight values (i.e., Mn and Mw) [30, 35, 48] 

are the most reasonable and sane single value representations. Therefore, we decided to use the 

smallest value of the MWD of a polymer as an analogue for the SRU-based representation of this 

polymer. Similarly, we decided to use the average value of the MWD of a polymeric material as an 

analogue for the Mn-based representation of this material. In this way, two additional databases with 

single value representations of MDs could be defined: one of them considering only the first value of 

the discrete distribution as the descriptor value and another one considering only the average value of 

discrete distribution as the descriptor value.

Regarding the FS methods used for these single value representations, we worked with the Weka 

tool [49]. We used the AttributesSelection method included in Weka, where the attributes correspond 

to the MD of our databases. It provides a fair and direct comparison with respect to our FS method in 

terms of classification metrics. In particular, we used the following parameters: 

CorrelationAttributeEval as Attribute Evaluator and Ranker as Search Method. 

CorrelationAttributeEval evaluates the worth of an attribute by measuring its Pearson's correlation 

with the target and Ranker builds a rank among the attributes considering their individual evaluations.

3. RESULTS AND DISCUSSIONS

In this section, the experiment results are discussed in terms of classification metrics. The variables 

(MDs) selected by the FS method that matched those that had been initially selected to create the target 

property were labeled as True Positive (TP), whereas those MDs that were incorrectly selected by the 

method (i.e., those that were not part of the group considered to build the target) were labeled as False 
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Positive (FP). At this point, it is important to remember that three synthetic databases integrated for 

400, 800, and 1600 polymeric materials had been created. Each database contained one hundred MDs 

and different scenarios had been defined by changing the conditions for creating the target variables. 

Targets had been generated by varying the number of MDs randomly selected (5, 10, or 20), changing 

the type of correlation (linear and nonlinear), and adding (or not) noise to the data. Therefore, the 

combinations of these experimental conditions provided 36 different scenarios. Additionally, we 

computed different metrics that will be explained in other subsections.

3.1 PERCENTAGE OF DESCRIPTORS CORRECTLY CLASSIFIED BY THE FS4RVDD 

METHOD

Figure 7 shows the percentage of MDs correctly classified (%CC) for the noiseless scenario. 

Regarding the obtained results, the algorithm accuracy increased as the database size (number of 

polymers) increased, but it decreased when the number of MDs used for creating the synthetic targets 

increased. These results correspond to the expected performance behavior. When comparing the 

results obtained for databases with equal sizes, we can conclude that misclassifications increased when 

more MDs had to be retrieved. On the other hand, the performances improved when the databases 

were bigger, which is a logical consequence of the increase in the number of polymers available for 

detecting the MDs correlated with the target. In other words, when more data were available for the 

MDs and the targets, it was easier to detect a pattern among them. Regarding the type of correlations, 

the performance behaviors were quite similar.
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Figure 7. Percentage of MDs correctly classified by FS4RVDD for noiseless experiments.

Incorrect experimental data hinders improvement of QSAR models; counterintuitively, adding noise 

can improve their performance in some adaptive algorithms [50]. Figure 8 shows that the behavior in 

terms of %CC had similar tendencies to the ones reported for the noiseless scenario. The only 

difference was a slight performance improvement in general terms. The phenomenon in which a signal 

that is normally too weak to be detected by a sensor can be boosted by adding white noise to the signal 

is known as stochastic resonance. A similar effect could happen in this case; as data were sufficiently 

similar, by adding noise the method could better detect the different features (MDs).

Figure 8. Percentage of MDs correctly classified by FS4RVDD for experiments with noise.

3.2 NON-ERROR RATE VALUES OBTAINED BY THE FS4RVDD METHOD

Percentage classification accuracy is not always enough to evaluate a model when some imbalances 

occur between classes because its value will be biased to the most numerous class. In our experiments, 
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in the scenarios in which the number of MDs to be selected was low (5 or 10), the unbalance was 

relatively high. A recommended measure to correct these situations is the Non-Error Rate (NER) [51].

The following graphs show the results obtained for the Non-Error Rate for both scenarios: without 

noise (Fig. 9) and adding noise (Fig. 10). For the smallest databases, in all scenarios, the performance 

decreased. In the remaining cases, the performance measures also had a lower decrement. This general 

reduction in terms of the percentages reported by NER values in comparison with the %CC values is 

reasonable because NER metric makes corrections in the presence of unbalanced samples and %CC 

does not. Note that, as it had happened with the %CC results, the addition of noise improved the NER 

values.

Figure 9. Non-Error Rate measures obtained by FS4RVDD for noiseless experiments.

Figure 10. Non-Error Rate measures obtained by FS4RVDD for experiments with noise.

3.3 COMPARING THE FS4RVDD METHOD WITH OTHER APPROACHES
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Once evaluated the performance of our method (FS4RVDD), it is time to compare it with the state of 

the art methods. In polymer informatics, the SRU-based representation (or monomers) is typically 

used to make QSPR models. As previously explained, the lowest value of the reported weight 

distribution curve is used as an analogue for SRU. Figure 11 shows the results for the Non-Error Rate 

for the lowest value (analogous to SRU) for noiseless scenarios and Figure 12 shows the results for 

scenarios with noise. The analysis of these results becomes a chance to answer our research question 

from the synthetic data generated for this work. It is evident that the performance dropped abruptly in 

contrast with the results achieved by FS4RVDD. In addition, it did not show a notorious improvement 

when noise was added, as it happened for the representation that considered the whole polydispersity 

curve. For this reason, we can conclude that the SRU-based representation did not contain enough 

information to capture the structural complexity of polydispersity, making it difficult to identify the 

most relevant MDs for the target variable under study.

Figure 11. Non-Error Rate obtained by a traditional FS method using Lowest Value based-

representations (analogous to the SRU-based representation) for noiseless experiments.
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Figure 12. Non-Error Rate obtained by a traditional FS method using Lowest Value based-

representations (analogous to the SRU-based representation) for experiments with noise.

Finally, our group considered the average molecular weights as the representative instance of 

polydisperse materials [30]. To represent this instance, the mean value of the polydispersity curve was 

taken into account. In general, the NER values for noiseless scenarios shown in Figure 13 and the ones 

for scenarios without noise shown in Figure 14 were larger than the ones reported in Figure 11 and 

12. In fact, they are more similar to the results obtained by FS4RVDD. As the average descriptor values 

are more informative of polydispersity than the lower ones, it was expected that the performance 

showed improvements. Therefore, there was no disagreement between the obtained results and the 

expected ones. Neverthless, in the noiseless scenarios for nonlinear targets, the NER values were low, 

comparable to those obtained for Lowest Value based-representations. An explanation of these results 

could be that a simplified representation that summarizes the MDs distributions in average values, as 

it occurred in this case, might require more effort to find more complex targets (nonlinear scenario).

From these experiments, we can conclude that the representation based on average molecular weights 

could be more suitable than representations based on SRU in terms of the results obtained for these 

analogue synthetic representations. Nevertheless, if we compare the performances achieved by both 

single value based-representations with the results obtained by the FS4RVDD method, it is clear that 

the characterization of MDs by means of discrete distributions is the best representation to capture 

polydispersity.
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Figure 13. Non-Error Rate obtained by a traditional FS method using Mean Value based-

representations (analogous to the average weight-based representation) for noiseless experiments.

Figure 14. Non-Error Rate obtained by a traditional FS method using Mean Value based-

representations (analogous to the average weight-based representation) for experiments with noise.

Another correlation study was relevant to exclude the possibility that the MDs wrongly selected by 

the method (false positives) were highly correlated with those that were not selected by mistake (false 

negatives). If false positives and false negatives correspond to well correlated MDs, this means that 

the method did not make a serious mistake during the selection process; it was only replacing the 

correct selections with good alternatives, which invalidates our previous analyses and discussions. 

This correlation study allowed us to discard this concern, because in all cases the correlations between 

false positives and false negatives were low. The complete report of this study is included as 

Supporting Information.
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As a summary, we can conclude that the representation based on the whole polydispersity curve 

always achieved competitive results for all scenarios (note that these models included frequency 

information). The other single value based-representations (lowest and mean) had poor performances 

in most cases. Therefore, to answer the formulated research question, it can be said that the 

characterization of polydispersity by the probabilistic distributions derived from the MDs from the 

curve and their frequencies allow a better selection of the variables involved in the target construction 

than other instances of representation with less associated information.

4. CONCLUSIONS

In this work, we present a stringent performance evaluation of an FS algorithm for discrete variables 

with uncertainty called FS4RVDD, designed for addressing a challenging application in the area of 

QSPR for Polymer Informatics. This new experimental study required the generation of synthetic data 

to emulate the polydispersity phenomenon, which plays a central role in the design of new polymeric 

materials. In this regard, we proposed several scenarios considering different numbers of materials 

(400, 800, and 1600) and selected MDs (5, 10, and 20), the kind of correlations with the target (linear 

and nonlinear), and the presence (or not) of noise in the data.

The performance achieved by FS4RVDD was contrasted with traditional FS approaches used in 

Polymer Informatics, in which polymers are typically characterized by simplified representations. In 

particular, the main goal of this study was to respond to the following question: given a probabilistic 

characterization of MDs by using discrete distributions in combination with the FS4RVDD method, is 

it possible to achieve a more accurate identification of the most relevant MDs than the one obtained 

from traditional approaches using a simplified representation of MDs?

The analysis of the experiment results provides evidence to answer this question affirmatively, 

because in all scenarios the FS4RVDD algorithm outperformed, or at least achieved similar 

performance, in comparison with the other FS alternatives. In this sense, the motivating idea behind 
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this paper is to reinforce the arguments about the need of a special FS algorithm designed for Polymer 

Informatics, since the uncertainty in the polymerization process requires specialized algorithms for 

representing and dealing with this phenomenon. Since the market demand for custom polymeric 

materials is growing, we hope that the results of this work show an open field of research and 

encourage the possibility of new design alternatives for the production of novel industrial polymeric 

materials.
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Main steps for the generation of synthetic data. 
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Graph of the classic molecular weight distribution (MWD) curve of a human-made polymer, where number 
average molecular weight (Mn) and weight average molecular weight (Mw) are denoted. 
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Description of steps for introducing the polydispersity phenomenon into the molecular descriptor 
characterization. 
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Graphical scheme of the conceptual construction of the database. Note that it contains polydisperse data 
and not a unique value. 
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Target generation for both linear and nonlinear targets. 
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Global methodology for our Feature Selection Method. 
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Percentage of MDs correctly classified by FS4RVDD for noiseless experiments. 
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Percentage of MDs correctly classified by FS4RVDD for experiments with noise. 
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Non-Error Rate measures obtained by FS4RVDD for noiseless experiments. 
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Non-Error Rate measures obtained by FS4RVDD for experiments with noise. 
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Non-Error Rate obtained by a traditional FS method using Lowest Value based-representations (analogous to 
the SRU-based representation) for noiseless experiments. 
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Non-Error Rate obtained by a traditional FS method using Lowest Value based-representations (analogous to 
the SRU-based representation) for experiments with noise. 
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Non-Error Rate obtained by a traditional FS method using Mean Value based-representations (analogous to 
the average weight-based representation) for noiseless experiments. 
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Non-Error Rate obtained by a traditional FS method using Mean Value based-representations (analogous to 
the average weight-based representation) for experiments with noise. 
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