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Despite more than two decades of extensive research focusing on nonalcoholic fatty liver disease (NAFLD), no approved 
therapy for steatohepatitis—the severe histological form of the disease—presently exists. More importantly, new drugs 
and small molecules with diverse molecular targets on the pathways of hepatocyte injury, inflammation, and fibrosis 
cannot achieve the primary efficacy endpoints. Precision medicine can potentially overcome this issue, as it is founded 
on extensive knowledge of the druggable genome/proteome. Hence, this review summarizes significant trends and 
developments in precision medicine with a particular focus on new potential therapeutic discoveries modeled via 
systems biology approaches. In addition, we computed and simulated the potential utility of the NAFLD polygenic risk 
score, which could be conceptually very advantageous not only for early disease detection but also for implementing 
actionable measures. Incomplete knowledge of the druggable NAFLD genome severely impedes the drug discovery 
process and limits the likelihood of identifying robust and safe drug candidates. Thus, we close this article with some 
insights into emerging disciplines, such as chemical genetics, that may accelerate accurate identification of the druggable 
NAFLD genome/proteome.  Clin Mol Hepatol 2020 Sep 10. [Epub ahead of print]
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INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) is a complex disorder 

that affects a large proportion of the world population of all 

ages.1 The disease pathogenesis involves a myriad of factors, in-

cluding genetic susceptibility and predisposing metabolic comor-

bidities, such as obesity and type 2 diabetes, as well as environ-

mental exposure and lifestyle, which jointly shape the NAFLD 

epigenome.2-4

Yet, despite more than two decades of extensive research in the 

field of NAFLD, there is currently no approved therapy for nonal-

coholic steatohepatitis (NASH)—the severe histological form of 

the disease. Moreover, none of the new drugs or small molecules 

with diverse molecular targets on the pathways of hepatocyte in-

jury, inflammation, and fibrosis can achieve primary efficacy end-

points.5-10 Diverse factors have been postulated to contribute to 

the low success rate in NAFLD/NASH drug discovery, including 

lack of robust animal models needed for preclinical studies, insuf-

ficient target engagement or target modulation by the novel 

drugs, absence or insufficient demonstration of a proof-of-con-

cept in early trials, and/or high false discovery rate (FDR) in phase 

2 trials.11 

Likewise, it has been hypothesized that, as data on the candi-

date drugs are not only insufficient but are also not corroborated 

by genetic inactivation, pharmacological inhibition, antisense oli-

gonucleotides, and/or small interfering RNAs, this poses an addi-

tional obstacle to achieve consistent and sustained effects on se-

vere histological outcomes, including improvement in fibrosis 

scores.11

The aforementioned pitfalls could potentially be overcome 

through systems biology analysis, aiming to integrate knowledge 

of signaling pathways,12 the genetic information of susceptibility 

genes,4 and multiple tissue-specific OMICs-related experiments 

that include large-scale transcriptomic, proteomic, and metabolo-

mic profiles,13,14 and more recently metagenomics of the liver tis-

sue.15 

Furthermore, the approach founded on precision medicine is 

expected to enhance the effectiveness of novel therapies, includ-

ing elucidation of predictors of drug response. Hence, this review 

summarizes significant trends and developments in precision 

medicine with focus on new potential therapeutic discoveries 

modeled by systems biology approaches.

THE PATH TOWARDS PRECISION MEDICINE: A 
SHORT CONCEPTUAL APPRAISAL 

The ultimate goal of precision medicine is to develop precision 

treatment strategies that rely upon a holistic understanding of dif-

ferences in genetic and underlying molecular pathogenic factors, 

as well as responses to environmental stressors, among patients. 

Figure 1 describes milestones in the path towards precision medi-

cine, which include the integration of big data, comprising infor-

mation from electronic health records of thousands of patients 

and machine learning strategies, such as artificial intelligence, to 

assist with the development of algorithms for combining and de-

coding such complex information. In addition, collections of bio-

logical samples in large biobanks linked to patient data increase 

the likelihood of finding robust disease pathogenesis signatures 

derived from OMICs state-of-the-art approaches. Knowledge in-

tegration and data modeling and analysis are vital processes at 

the interface with drug discovery. It should be emphasized that 

time and cost are presently the key limiting factors at these stag-

es. However, as the technological advances progress further, it is 

expected that, in the near future, the gap between the discovery 

of potential drugs and clinical validation will be considerably nar-

rowed. Still, even when complex algorithms aimed at multi-scale 

modeling of OMICs data succeed in identifying a potential drug 

target, only some of these medications will eventually be included 

into primary or secondary therapeutic protocols for treating the 

target disease. At this stage, at least three clinical scenarios will 

likely emerge. One possibility is that a putative drug “x” demon-

strates not only a good safety profile but also succeeds in achiev-

ing the objective endpoints in a large group of patients (Fig. 1). 

Another possibility is that, in a small group of patients, “x” would 

be contraindicated for diverse reasons, including safety concerns 

in some vulnerable groups, such as children, pregnant women, or 

patients suffering from chronic kidney disease, advanced cardio-

vascular disease, etc. It is also possible that certain patients will 

require a different kind of drug because their underlying molecu-

lar and/or genetic profile does not align with the molecular profile 

of the drug “x” (Fig. 1).

In addition, pathway-derived drugs may emerge from drug re-

purposing. A comprehensive algorithm for drug repurposing or re-

positioning in NASH, which primarily relies on identifying and de-

veloping new uses for existing drugs, was recently published.16 In 

fact, drugs which had an acceptable safety profile, but failed in 

achieving the expected response for some diseases, could be used 

to treat a different condition. It is also noteworthy that a large 
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number of discovered drugs fail and never pass preclinical testing. 

Hence, the ultimate role of precision therapy relies on defining ap-

propriate prediction strategies for implementing patient-based 

therapies. 

PRECISION MEDICINE AND LARGE-SCALE GE-
NOME AND EXOME SEQUENCING DATA 

Extant studies on the genetic component of NAFLD indicate 

that, after 12 years following the discovery that an allele in a pa-

tatin-like phospholipase domain containing 3 (PNPLA3) variant 

(rs738409 [G], encoding 148M) was associated with increased 

hepatic fat17 and NAFLD disease severity,18 knowledge of the dis-

ease heritability is still incomplete.3,4,12 The correlation between 

rs738409 and the risk of developing fatty liver, NASH, and fibro-

sis is perhaps one of the strongest worldwide-replicated effects 

for a common variant modifying the individual susceptibility of 

NAFLD and NASH (explaining ~5.3% of the total variance).3,4,18,19 

Indeed, available evidence indicates that homozygous carriers 

with the G-risk allele of rs738409 present 3.24-fold greater risk of 

higher liver necroinflammatory scores and 3.2-fold greater risk of 

developing fibrosis when compared with homozygous CC carri-

ers.19

Findings yielded by genome-wide association studies (GWAS) 

as a part of which the heritability of hepatic steatosis was ex-

plored at the population level and/or NASH was examined in pa-

tients with liver biopsy, consistently show that at least four loci 

(PNPLA3, transmembrane 6 superfamily member 2 [TM6SF2], 

glucokinase regulator [GCKR], and hydroxysteroid 17-beta dehy-

drogenase 13 [HSD17B13])17,20-22 are involved in the genetic sus-

ceptibility of the disease (Fig. 2). Conflicting results have been 

published regarding the rs641738 C/T located in transmembrane 

channel-like 4 (TMC4) exon 1 (p.Gly17Glu) and 500 bases down-

stream of the membrane bound O-acyltransferase domain con-

taining 7 (MBOAT7; TMC4/MBOAT7 ), which were initially de-

Figure 1. Milestones in the path towards precision medicine. The path involves the integration of knowledge derived from big data, electronic health 
records, large collections of biological samples in biobanks, and machine learning strategies that are linked to high-throughput OMICs experiments. 
Strategies pertaining to personalized medicine are also highlighted. 
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scribed in Italian population23 but could not be replicated in other 

populations around the world,24-26 including a large cohort of Eu-

ropean patients partaking in a GWAS, for whom NAFLD was di-

agnosed by liver biopsy.27 

Targeting disease-associated genes has been proven successful 

in the treatment of numerous human diseases, cancers in particu-

lar. In this field, target drugs are associated with the effect of a 

mutant protein and/or are designed to interfere at the gene or 

protein level. However, for this goal to be fully realized, full 

knowledge of the target genes/proteins is required, not only at all 

molecular levels, but also at the level of chemical-gene/protein in-

teractions, which would ultimately allow identification of potential 

active ligands. 

Likewise, drug discovery and precision medicine require com-

plete understanding of new technologies as well as gene and pro-

tein biology of the selected target. Radar plots depicted in Figure 

2 show the discrepancy in the level of knowledge on the four loci 

reproducibly implicated in the biology of NAFLD and the disease 

severity. For example, the plots show that, while extensive knowl-

edge on PNPLA3 at different levels already exists, ranging from 

metabolic aspects to epigenetic information and traits associa-

tions, that pertaining to HSD17B13 —the newly discovered gene 

with a putative loss-of-function variant implicated in protective 

effects against NASH and severe histological stages20,28—is limited 

Figure 2. Illumination graph of major genetic modifiers of NAFLD and NASH. Radar plot and knowledge table depicting the variety of information 
obtained by Pharos (https://pharos.nih.gov/) for PNPLA3, TM6SF2, GCKR, and HSD17B13. These radial plots summarize the level of accumulated knowl-
edge about each target. The greater the number of spikes in the plot, the greater the variety, with spike length indicating the quantity of that particu-
lar knowledge. The radar chart allows gene-attribute associations as recorded by the Harmonizome57 to be visualized. The tables below the charts 
represent the top five knowledge attributes in the illumination graph. The knowledge value property is on a 0–1 scale. PNPLA3, patatin-like phospholi-
pase domain containing 3; TM6SF2, transmembrane 6 superfamily member 2; GCKR, glucokinase regulator; HSD17B13, hydroxysteroid 17-beta dehydro-
genase 13; NAFLD, nonalcoholic fatty liver disease; OR, odds ratio; SNPs, single nucleotide polymorphisms; NASH, nonalcoholic steatohepatitis.
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at all levels of gene and protein biology (Fig. 2). The rs72613567 

insertion/deletion variant, the functional consequence of which is 

a splice donor variant of the HSD17B13,20 represents an interest-

ing model of a candidate molecule for treating NASH and fibro-

sis.29 In fact, although the information about druggable binding 

domains in HSD17B13 is scarce due to the lack of an experimental 

3D structure, other members of the protein family, such as HS-

D17B11 with high homology, present putative binding pockets for 

small molecules.30

As indicated in the PNPLA3 illumination graph, considerable 

knowledge has been accumulated on the gene and protein, in-

cluding gene-attributed associations, protein interactions, and 

high PubMed score; yet, no information on the active ligands of 

the protein is currently available (Fig. 2).

The protein encoded by PNPLA3 is a triacylglycerol lipase that 

mediates triacylglycerol hydrolysis, mostly in adipocytes.12 The en-

coded protein, which appears to be membrane-bound, may be in-

volved in the energy usage/storage balance in adipocytes.12 Figure 3A 

shows area under the receiver operating characteristics (AUROC; 

0.951) for predicted functional processes linked to PNPLA3, in-

Figure 3. PNPLA3 predicted functional associations. Predicted biological processes (GO) (A) and upstream transcription factors (ChEA) (B) assessed by 
the Harmonizome (http://amp.pharm.mssm.edu/Harmonizome/gene/PNPLA3).57 Tables show the top 10 predictions (the number provided in the first 
column). Table explanation: If a gene (gene set) shares high correlation with known members of a gene set, it is assigned a high z-score. Known func-
tions/gene set associations are highlighted in green. AUROC is provided by the algorithm available in the ARCHS4 (massive mining of publicly available 
RNA-seq data from human and mouse)58 accessible at https://amp.pharm.mssm.edu/archs4/. Specifically, AUROC shows how well-known annotations 
are recovered by the ARCHS4 algorithm. GO, gene ontology; PNPLA3, patatin-like phospholipase domain containing 3; AUROC, area under the receiver 
operating characteristics; ChEA, ChIP enrichment analysis. *From published ChIP-chip, ChIP-seq, and other transcription factor binding site profiling 
studies.59
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cluding triglyceride catabolic process (gene ontology [GO]: 

0019433) and triglyceride biosynthetic process (GO: 0019432) 

(prediction was done by the Harmonizome). Importantly, exten-

sive mining of publicly available RNA-seq data acquired through 

human and mouse experiments (https://amp.pharm.mssm.edu/

archs4/) uncovered interesting upstream transcription factors 

(AUROC, 0.666) in Figure 3B, including RXR (retinoid x receptor), 

LXR (liver x receptor, nuclear receptor subfamily 1 group H mem-

ber 3), and CLOCK (circadian locomotor output cycles protein ka-

put, formally known as circadian clock regulator). The protein en-

coded by the CLOCK  plays a central role in the regulation of 

circadian rhythms. In our previous publications, we reported for 

the first time that CLOCK genetic variation is associated with obesity 

and NAFLD.31,32 The haplotype of rs1554483G and rs4864548A 

was found to be associated with a 1.8-fold risk of overweight sta-

tus or obesity,32 whereas rs1554483 was shown to be associated 

with all histological traits of NASH, including fibrosis.31 Consid-

ered jointly, this body of evidence suggests that the putative 

cross-talk between PNPLA3 and CLOCK could explain the link 

among NAFLD genetic susceptibility, the environment, and the 

circadian regulation of liver metabolism. However, further experi-

ments are required to prove this hypothesis. 

TM6SF2, of which rs58542926 C/T (E167K) was initially associ-

ated with liver fat accumulation and aminotransferase levels in a 

large GWAS study21 and further replicated in subsequent stud-

ies,21,33-35 encodes for a protein involved in lipid metabolism.12 Di-

verse areas of molecular knowledge gained on this gene/protein 

are presented in Figure 2.

Radar plot of GCKR presented in Figure 2, of which rs780094 

presents a very modest36 effect (odds ratio [OR], 1.2) on NAFLD 

biology,3,12 and shows that considerable gene/protein knowledge, 

including at least 64 putative ligands, has been already acquired 

in this domain.4 

Precision medicine has emerged as a result of comprehensive 

knowledge of the druggable genome/proteome. Thus, advancing 

the chemical genetics research, which is based on the screening 

of low-molecular weight compounds that act by binding to specif-

ic receptors/proteins, is crucial to move this promising research 

domain forward in the right direction. It is worth mentioning that 

the incomplete knowledge on the druggable genome of NAFLD/

NASH severely undermines the drug discovery progress and re-

duces the chances of having robust and safe drug candidates. 

Therefore, the substantial gap between the knowledge of NAFLD-

predisposing genes and that related to putative protein ligands 

needs to be urgently addressed. 

NAFLD AND THE PUTATIVE CLINICAL BENEFITS 
OF POLYGENIC RISK SCORES (PRSs)

Estimating the susceptibility risk of a given patient to develop a 

particular disease and/or to progress into severe disease stages is 

the ultimate aim of precision medicine. Most researchers concur 

that the PRS distribution, which is based on the sum of all inde-

pendent risk single nucleotide polymorphisms (SNPs; ideally 

weighted by their size effects in a given population), could be ap-

proximated by the Gaussian (normal) curve (Fig. 4). PRSs are theo-

retically designed to explain the relative risk of a disease, as these 

scores provide information on how a person compares with others 

with different genetic susceptibility background. However, PRSs 

do not necessarily follow normal distribution, due to several fac-

tors, including differences in the population structure or admix-

ture.

In the case of NAFLD and NASH, PRSs could be conceptually 

very advantageous not only for allowing early disease detection, 

but also for implementing timely actionable measures (Fig. 4). For 

example, invasive diagnostic approaches, such as liver biopsy, as 

well as early pharmacological intervention, would be advised for 

high-risk populations (those at the right-tail of the PRS distribu-

tion curve pertaining to the relevant population) whereas low-risk 

individuals (i.e., those on the left-tail of the curve) would be moni-

tored until clinical risk becomes evident (Fig. 4). For those deemed 

at low or medium risk, which probably applies to the large majori-

ty of the affected patients, lifestyle changes would be advised, in-

cluding regular physical activity and dietary modifications aimed 

at optimizing body weight and controlling the key metabolic risk 

factors (lipid traits and glucose metabolism).  

Despite these benefits, several important concerns related to 

the clinical implementation of PRSs also exist, as noted in Figure 

4. In particular, use of PRSs in clinical settings will remain imprac-

tical until the heritability of NAFLD is fully elucidated, and rare 

and familial forms of the disease are revealed. Inclusion of addi-

tional genetic information will certainly aid in overcoming these 

issues as the predictive power of PRSs improves and the propor-

tion of individuals at risk diminishes. 

For instance, early detection of a rare nonsense GCKR mutation 

(rs149847328, p.Arg227Ter) in a NAFLD patient with associated 

comorbidities, including morbid obesity and type 2 diabetes, 

when combined with prompt pharmacological intervention, could 

potentially prevent or even reverse the disease progression into 

liver cirrhosis.37

Furthermore, the currently available knowledge on the repro-
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ducibility and replication of genetic variants of NAFLD across di-

verse populations around the world is insufficient (Fig. 4), and the 

effect sizes of most of the variants are yet to be established. In-

deed, in the large majority of GWAS focusing on NAFLD, the ge-

netic susceptibility in patients of European ancestry has been ex-

amined. This creates a considerable gap in extant knowledge, as 

SNP-based information on Caucasian and/or people of European 

descent may not be relevant for inferring the relative risk of 

NAFLD in non-European populations. Significant efforts have 

been made, however, to overcome this limitation. For example, 

Kawaguchi and coworkers conducted a GWAS in Japanese popu-

lation and demonstrated that patients with NASH are genetically 

and clinically different from other population subgroups.38 In ad-

dition, as a part of a large population-based GWAS that involved 

1,593 patients and 2,816 controls, Chung and coworkers charac-

terized the genetic profile of Korean NAFLD patients.39 With the 

exception of these remarkable examples from Asia, the percent-

age of non-European ancestry population in NAFLD GWAS stud-

ies, including those of African descent and/or other ethnic minori-

ties, is dramatically low.

In addition to these shortcomings, certain technical issues, such 

as model calibration and calculation algorithms, must be over-

come to fully benefit from the PRS implementation. 

Genetic markers are already being used as tools for personaliz-

ing clinical practice, including treatment decisions.4 Nevertheless, 

the utility of genetic variants in NAFLD risk estimation remains in-

ferior to classical predictive or imaging approaches, as explained 

earlier,4 In fact, knowledge of population structure and global 

heterogeneity of variants implicated in the disease progression is 

rather limited. 

Thus, to simulate the potential utility of a NAFLD-PRS we used 

population-specific distribution information on the four aforemen-

Figure 4. Polygenic risk score in NAFLD: Advantages and challenges. Theoretical frame for a PRS for NAFLD, showing advantages and potential cave-
ats. The figure shows a typical bell-shaped distribution, in which scores pertaining to most individuals will be in the middle, indicating average risk of 
developing the disease. Those with scores located at the left and right tail of the distribution curve will respectively carry very low and very high risk. 
NAFLD, nonalcoholic fatty liver disease; PRS, polygenic risk score; OR, odds ratio; GWAS, genome-wide association study.
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tioned SNPs (PNPLA3-rs738409, TM6SF2-58542926, HSD17B13-

rs72613567, and GCKR-780094) and the intergenic variant LY-
PLAL1- rs12137855.22 To compute the NAFLD-PRS, we used the 

GlobAl Distribution of GEnetic Traits (GADGET) web server avail-

able at https://gadget.biosci.gatech.edu/compute/; the formula 

used to compute the score is based on the original description of 

Chande et al.40 The GADGET web server provides access to pub-

licly available genotype data sourced from the 1000 Genomes 

Project (1KGP) Phase 3 data release and individual trait SNP sets 

parsed directly from the NHGRI-EBI GWAS Catalog annotations 

(https://www.ebi.ac.uk/gwas/).40 Box plots representing NAFLD-

PRS distribution by five major continental groups (Africa, Europe, 

South and East Asia, and America) are shown in Figure 5. Accord-

ing to this information, the overall predicted risk to individuals en-

tailed by the presence of NAFLD-implicated variants in their ge-

nomes is about ~0.20. Nevertheless, the PRS or genetic risk score 

(GRS) reflects disparities in NAFLD risk levels across different pop-

ulations (Fig. 5), which may be due to the disparities in genetic 

knowledge or may indicate real differences in the genetic risk. 

Thus, our analysis emphasizes the potential caveats of implement-

ing this strategy globally. Of course, our simulation-based ap-

proach, which is based on information available in public data-

bases, did not allow us to control for all possible effects, including 

demographic variables and/or other population risk estimates. 

Nonetheless, the GRS presented here provides a good starting 

point for illustrating the current situation, as well as for further in-

vestigations aimed at closing the gap in the knowledge needed to 

generate valuable advances in this field. It is worth noting that, as 

is the case for almost all human traits, variance in the NAFLD ge-

netic risk within each population is much greater than among 

continental groups. This fact does not, however, imply that there 

is no continental group-specific risk profile. Available evidence in-

dicates that certain trends exist at the global level, whereby the 

lowest GRS is associated with African population, intermediate 

GRS relates to European and Southeast Asian, and the highest 

GRS to East Asian and Admixed American groups. 

Figure 5. NAFLD PRSs (GRS) across the five major continental population groups. Box plots show population-specific distributions of genetic variants 
that have been associated with NAFLD in the literature (PNPLA3-rs738409, TM6SF2-58542926, HSD17B13-rs72613567, GCKR-780094, and the intergenic 
variant LYPLAL1-rs12137855), as well as medians and standard deviations. Admixed American (n=347, 0.0857±0.0387), African (n=661, 0.0306±0.0265), 
East Asian (n=504, 0.0837±0.0386), European (n=503, 0.0589±0.0351), Southeast Asian (n=489, 0.0589±0.0364). GRS: the relative risk of developing 
NAFLD based on the total number of variants associated with the disease the individual carries. The relative genetic risk of NAFLD within the popula-
tion is shown as log ORs, with F and P denoting summarized linear regression. The formula by which the GRS was calculated can be found in the origi-
nal contribution of Chande et al.40 NAFLD, nonalcoholic fatty liver disease; PRS, polygenic risk score; OR, odds ratio; GRS, genetic risk score; PNPLA3, pa-
tatin-like phospholipase domain containing 3; TM6SF2, transmembrane 6 superfamily member 2; HSD17B13, hydroxysteroid 17-beta dehydrogenase 13; 
GCKR, glucokinase regulator. 
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NAFLD GENES, PLEIOTROPIC RELATIONSHIPS, 
AND PRECISION MEDICINE

Available evidence suggests that genetic factors associated with 

NAFLD exhibit similar patterns of correlation with genetic factors 

related to other complex diseases.4 For instance, findings yielded 

by large GWAS studies indicate that PNPLA3 -r738409 and 

TM6SF2-rs58542926 are associated with extra-hepatic traits, in-

cluding hematological (plateletcrit and count) and lipid traits, and 

some other interesting pharmacogenetic associations (http://

www.phenoscanner.medschl.cam.ac.uk/) (Fig. 6). Importantly, the 

minor allele frequency of these two variants across different pop-

ulations supports the prevalent view that the major genetic modi-

fiers of NAFLD are likely ancestry-specific. Therefore, this observa-

tion should be specifically examined when designing precision 

medicine strategies. 

The genetic pleiotropy between the aforementioned variants 

and non-liver related traits includes known NAFLD-associated co-

morbidities, such as cardiovascular risk. Phenotypic covariation 

presents not only significant challenges in clinical practice but 

also imposes tremendous constraints on identifying novel thera-

peutic targets. The clinical paradox of TM6SF2‐ rs58542926 C>T 

is a clear example of that. The C (Glu167) allele has been consis-

tently associated with increased cardiovascular risk,41 and the T 

allele (Lys167) is known to be associated with a higher risk for 

NAFLD and NASH.21,33,42,43 These opposite effects are dependent 

Figure 6. PNPLA3, TM6SF2, and pleiotropic relationships. Pleiotropic associations with rs738409 (PNPLA3) and rs58542925 (TM6SF2) variants, explored 
by the PhenoScanner web tool available at http://www.phenoscanner.medschl.cam.ac.uk, a database of human genotype-phenotype associations. 
Associations are based on publicly available results from large-scale genetic association studies; Phenoscanner collated >5,000 genotype-phenotype 
association datasets. PNPLA3, patatin-like phospholipase domain containing 3; EAS, East Asian; EUR, European; AFR, African; SAS, South Asian; AMR, 
American; n, sample size; ALT, alanine aminotransferase; NAFLD, nonalcoholic fatty liver disease; CT, computed tomography; TM6SF2, transmembrane 
6 superfamily member 2.
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on circulating and liver triglyceride levels, respectively. Conse-

quently, TM6SF2 does not seem to be a useful drug target be-

cause any impact on the protein would eventually lower blood lip-

ids, which will in turn reduce the risk of myocardial infarction, 

while simultaneously increasing the risk of developing NAFLD.42

As explained in previous paragraphs, drug development is a 

long process characterized by highly uncertain outcomes. At pres-

ent, 10–15 years typically elapse between target discovery and 

clinical application. Hence, some computational solutions, includ-

ing modeling and over-representation analysis grounded in sys-

tems biology, may assist with more accurate prediction of drug 

candidates based on disease-associated genes/proteins. To illus-

trate this concept, we employed two different strategies. First, we 

leveraged existing information on the molecular targets (genes/

proteins) involved in NAFLD/NASH pathogenesis and performed 

over-representation analysis using a drug-related functional data-

base. The training set of genes/proteins was obtained by litera-

ture-data mining offered by the Genie web server (http://cbdm-

01.zdv.uni-mainz.de/~jfontain/cms/?page_id=281)—a tool that 

computes associations of genes with diseases using biomedical 

Figure 7. Prediction of genetic-drug/chemical interaction profiles. (A) Over-representation analysis using a drug-related functional database (drug_
GLAD4U). The training set of genes/proteins was obtained by literature-data mining offered by the Genie web server. Cut-offs used: P<0.01 for ab-
stracts and P<0.01 for FDR for genes. The list of retrieved genes/proteins was used to perform over-representation analysis in the web server WebGe-
stalt (WEB-based Gene SeT AnaLysis Toolkit). The bar chart shows ten categories that passed the FDR <0.05, with the gene number denoting the 
number of genes in the training list that belong to each of the drug categories. (B) Gene-chemical interactions. Gene target prediction was performed 
using the Comparative Toxicogenomics Database available at (http://ctdbase.org). The list of chemicals was manually curated to restrict interactions 
based on human data. According to the Comparative Toxicogenomics Database available, chemical-gene and protein interactions are curated from 
the published literature. Interactions may be retrieved by chemical, interaction type, gene, organism, or Gene Ontology annotation. Tutorial and algo-
rithms by which the list of gene-chemical interactions was done are available at http://ctdbase.org and http://ctdbase.org/documents/ctd_resource_
guide.pdf. FDR, false discovery rate; PNPLA3, patatin-like phospholipase domain containing 3; TM6SF2, transmembrane 6 superfamily member 2; GCKR, 
glucokinase regulator; HSD17B13, hydroxysteroid 17-beta dehydrogenase 13; DEET, N,N-diethyl-3-methylbenzamide; NAD, nicotinamide adenine dinu-
cleotide.

A

B

 0 1 2 3 4 5 6 7 8 9 10 11
Enrichment ratio

Over-representation analysis: Enrichment Categories: drug_GLAD4U
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literature annotations. Using this approach, 901 abstracts from 

PubMed were retrieved using the search terms “fatty liver” and 

“human” (taxonomic identifier 9606; no literature extension by 

orthology) with the abstracts from the all PubMed database serv-

ing as the background set. Supplementary Table 1, intended for 

online publication only, shows the final ranked list comprising of 

938 genes/proteins. 

The aforementioned list of retrieved genes/proteins was used to 

perform over-representation analysis in the webserver WebGestalt 

(WEB-based Gene SeT AnaLysis Toolkit)—a functional enrichment 

analysis tool available at http://www.webgestalt.org/. Drug terms 

were downloaded from ParmGKB by the WebGestalt, and individ-

ual drug terms associated with genes were inferred using the 

GLAD4U option. Accordingly, the drug enrichment results based 

on the NAFLD training set are shown in Figure 7A. The bar chart 

shows ten categories that passed the FDR <0.05, whereby cardiac 

therapy and cardiovascular system were overrepresented by the 

largest number of genes (263 and 591, respectively). Other ex-

pected drug categories are anti-inflammatory agents and bigua-

nides, which are probably justified by the significant enrichment 

of genes/proteins associated with inflammation and glucose me-

tabolism in the training set. In fact, the top ten genes/proteins of 

the training list were ADIPOQ (adiponectin), PNPLA3, PPARG and 

PPARA (peroxisome proliferator-activated receptor gamma and 

alpha), FGF21 (fibroblast growth factor 21), RBP4 (retinol binding 

protein 4), GPT  (glutamic-pyruvic transaminase), SREBF1 (sterol 

regulatory element binding transcription factor 1), LEP  (leptin), 

and NR1H3 (nuclear receptor subfamily 1 group H member 3, also 

known as liver X receptor alpha). Lastly, the analysis revealed sev-

eral anti-infection drugs, which were also expected because the 

training set presents several genes/proteins associated with im-

mune response. Hence, the chart may be useful for inferring drug 

classes or drug compounds that could be repurposed for the 

treatment of NASH.  

Our second strategy was based on using the four genes largely 

and reproducibly associated with NAFLD and NASH (PNPLA3, 

TM6SF2 , GCKR , and HSD17B13) to predict curated chemical–

gene/protein interactions in the Comparative Toxicogenomics Da-

tabase available at (http://ctdbase.org) (Fig. 7B). The aim of this 

approach was to infer and/or uncover potential associated disease 

mechanisms from genetic predisposing factors that can yield bio-

logically informative insights. Notably, some drugs were consis-

tently found to interact with three of the loci, for example valproic 

acid (valproate) (Fig. 7B). 

Valproate appears to impact on fatty acid metabolism, and the 

use of valproate has been linked to the development of obesity 

and probably NAFLD.44 Furthermore, valproate acts as a direct 

histone deactylase (HDAC) inhibitor.45 While tissue-specific DNA 

methylation in NAFLD and NASH, including 5-hydroxymethylcyto-

sine (5-hmC) has been previously studied,46-48 the role of other 

epigenetic mechanisms, including acetylation and deacetylation 

Table 1. Prediction of valproic acid pathways

KEGG pathway ID* Pathway name

hsa:00071 Fatty acid metabolism

hsa:00140 C21-Steroid hormone metabolism

hsa:00232 Caffeine metabolism

hsa:00250 Alanine, aspartate and glutamate 
metabolism

hsa:00280 Valine, leucine and isoleucine degradation

hsa:00380 Tryptophan metabolism

hsa:00410 Beta-alanine metabolism

hsa:00590 Arachidonic acid metabolism

hsa:00591 Linoleic acid metabolism

hsa:00640/hsa:00650 Propanoate metabolism/butanoate 
metabolism

hsa:00830 Retinol metabolism

hsa:00980 Metabolism of xenobiotics by cytochrome 
P450

hsa:00982/hsa:00983 Drug metabolism

hsa:03320 PPAR signaling pathway

hsa:04012 ErbB signaling pathway

hsa:04062 Chemokine signaling pathway

hsa:04080 Neuroactive ligand-receptor interaction

hsa:04110 Cell cycle

hsa:04270 Vascular smooth muscle contraction

hsa:04310 Wnt signaling pathway

hsa:04340 Hedgehog signaling pathway

hsa:04510 Focal adhesion

hsa:04610 Complement and coagulation cascades

hsa:04660/hsa:04662 T cell receptor signaling pathway/B cell 
receptor signaling pathway

hsa:04722 Neurotrophin signaling pathway

hsa:04810 Regulation of actin cytoskeleton

hsa:04910 Insulin signaling pathway

Prediction was performed by the Supertarget tool available at http://
bioinformatics.charite.de/supertarget/index.php?site=drugs.
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPAR, peroxisome 
proliferator-activated receptor gamma and alpha.
*Pathway IDs correspond to KEGG.
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of histones, remains to be fully ascertained.2 Likewise, the use of 

valproate has been associated with the inhibition of mitochondrial 

beta-oxidation and peroxisomal stimulation in rodent livers,49 

which reinforces the concept that the progression of NAFLD into 

severe clinical and histological forms involves mitochondrial dys-

function.48,50-52 Table 1 provides a complete list of predicted val-

proic acid-KEGG pathways, which involve alanine, aspartate and 

glutamate metabolism, arachidonic acid metabolism, retinol me-

tabolism, PPAR and insulin signaling pathway, regulation of actin 

cytoskeleton, and hedgehog signaling pathway, among many 

other pathways relevant to the NAFLD pathogenesis.12 In addition, 

the list of valproate-linked pathways contains propanoate and bu-

tanoate metabolism that has been linked to the NASH-associated 

tissue microbiome.12 

Another compound that appears to be linked to three of the 

genes (PNPLA3, TM6SF2, and GCKR) is quercetin, an antioxidant 

phenolic heterocyclic compound that is a specific quinone reduc-

tase 2 (QR2) inhibitor (Fig. 7B). Collectively, these genetic-chemi-

cal interactions provide valuable information about cellular and 

biological mechanisms of disease, suggesting that this strategy 

may be used as a complement in the target-based drug develop-

ment as well.

LIMITATIONS OF THE SYSTEMS BIOLOGY AP-
PROACH 

Some limitations of the systems biology approach must be high-

lighted, including the restricted possibility of adequately address-

ing the gender dimension of the disease. Sexual dimorphism is 

observed not only in the prevalence of NAFLD but also in the dis-

ease pathogenesis and diverse histological outcomes.53,54 Al-

though sex differences substantially contribute to the biology of 

NAFLD, there is limited information on the sex-specific genetic ar-

chitecture of the disease. We have addressed this aspect by meta-

regression analysis of studies that assessed the effect of rs738409 

on NAFLD, and we found a negative correlation between the 

male proportion in the studied populations and the effect of the 

SNP on liver fat content,19 suggesting that sexual dimorphism 

might be involved in the impact of the variant on NAFLD develop-

ment. Likewise, a recent study that involved large-scale analysis 

of transcriptomic profiles from human livers suggested the sexual-

ly dimorphic nature of NASH and its link with fibrosis and re-

sponses to drugs.55 

Unrevealing the genetic mechanisms that contribute to sex-spe-

cific NAFLD risk should be urgently addressed in further candidate 

gene association or GWAS studies of NAFLD. Elucidating the sex-

specific genetic architecture of NAFLD represents an important 

area for future research. Besides, there are many other important 

genetic and epigenetic factors,2,46,48 including mitochondrial ge-

netics,51,56 that play a substantial role in the disease biology, and 

that deserve a more detailed analysis. 

CONCLUSIONS

The utility of the systems biology approach for accelerating the 

NASH drug discovery process remains to be established. Still, to 

attain its full potential, refined genomic strategies must be imple-

mented to increase knowledge of genetic susceptibility across all 

ancestry groups. Although theoretically powerful, PRSs need to 

be validated and built, not only on validated GWAS-variants but 

also on robust and global genetic information, preferably specific 

to each ethnic group. Finally, disciplines such as chemical genetics 

must be used in tandem with traditional drug discovery approach-

es to accelerate the progress of precision medicine in NASH and 

to reveal the druggable NASH genome/proteome. 
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