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Abstract: Due to its high degree of contagiousness and like almost no other virus, SARS-CoV-2 has
put the health of the world population on alert. COVID-19 can provoke an acute inflammatory
process and uncontrolled oxidative stress, which predisposes one to respiratory syndrome, and in the
worst case, death. Recent evidence suggests the mechanistic role of mitochondria and vitamin D in
the development of COVID-19. Indeed, mitochondrial dynamics contribute to the maintenance of
cellular homeostasis, and its uncoupling involves pathological situations. SARS-CoV-2 infection is
associated with altered mitochondrial dynamics with consequent oxidative stress, pro-inflammatory
state, cytokine production, and cell death. Furthermore, vitamin D deficiency seems to be associated
with increased COVID-19 risk. In contrast, vitamin D can normalize mitochondrial dynamics, which
would improve oxidative stress, pro-inflammatory state, and cytokine production. Furthermore,
vitamin D reduces renin–angiotensin–aldosterone system activation and, consequently, decreases ROS
generation and improves the prognosis of SARS-CoV-2 infection. Thus, the purpose of this review is to
deepen the knowledge about the role of mitochondria and vitamin D directly involved in the regulation
of oxidative stress and the inflammatory state in SARS-CoV-2 infection. As future prospects, evidence
suggests enhancing the vitamin D levels of the world population, especially of those individuals with
additional risk factors that predispose to the lethal consequences of SARS-CoV-2 infection.

Keywords: SARS-CoV-2 infection; oxidative stress; mitochondrial dynamics; vitamin D;
renin-angiotensin-aldosterone system; COVID-19; inflammation; cytokines

1. Introduction

In terms of public health, the COVID-19 pandemic is the biggest challenge that humanity has
had to face in the last decade. Many other viruses have put the health of the population around the
world at risk, but few with the high degree of contagiousness of SARS-CoV-2 [1]. Despite the efforts of
multiple scientific groups from different nationalities, and the promising results obtained so far, the
possibility of having a vaccine against SARS-CoV-2 infection seems to be quite far yet [2].
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In this sense, it is essential to deepen the knowledge about the therapeutic targets and the
properties of active compounds already known that can help to prevent, combat, or alleviate the
symptoms of severe acute respiratory syndrome (SARS) caused by COVID-19 pathology [3,4].

The exacerbated and uncontrolled oxidative stress is one of the main causes of morbidity and
mortality by this respiratory syndrome in patients susceptible to this viral infection. For this reason,
the analysis of the role of cellular organelles and substances that are directly involved in the regulation
of oxidative stress is essential [5,6]. It is well-described that the antioxidant effects of vitamin D may be
very useful in the prevention and attenuation of COVID-19 symptoms, and that a deficient vitamin D
status would confer susceptibility to morbidity and mortality by SARS-CoV-2 [7–9].

In this review, the role of mitochondria and vitamin D is extensively examined in the context of
SARS-CoV-2 infection, with the aim of proposing a potential therapeutic alternative for this pandemic
that has become a nightmare for the world population, while waiting for the development of a vaccine.

2. Mitochondrial Dynamics: Role in Cell Physiology

Mitochondria are cell organelles that play a key role in the maintenance of cellular homeostasis.
They are involved in numerous functions and signaling pathways such as energy metabolism, innate
immunity, calcium homeostasis, apoptosis, aging, and others [10]. Mitochondria are not static, but
dynamic organelles involved in adaptation to changes in the metabolic environment of cells as well
as their survival or death, in order to maintain the quality of mitochondrial function. Mitochondrial
dynamics includes fusion, fission, and mitophagy processes as well as biogenesis (Figure 1). These
processes are not only involved in physiological situations, but also in pathological ones such as cancer,
cardiovascular, neurodegenerative, and metabolic diseases [11].Antioxidants 2020, 9, x FOR PEER REVIEW 3 of 22 
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Figure 1. Effects of viral infection on mitochondrial dynamics, the viral life cycle, and various aspects
associated with the internal metabolism of the mitochondria as well as its physiological processes.
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The fusion process is the union of two mitochondria in a single one [12]. Mitochondrial fusion
maintains an intact mitochondrial DNA (mtDNA) and participates in matrix metabolites exchanging.
The fusion process is mediated by Mitofusin 1 (MFN1) and MFN2 (outer-membrane proteins), and optic
atrophy-1 (OPA1), three large GTPases of the dynamin superfamily that mediates inner-membrane
fusion [13]. Mitochondrial fission is mediated by Dynamin-related Protein 1 (DRP1), which is regulated
by phosphorylation of DRP1 and acetylation and S-nitrosylation. The fission process is the division
of mitochondria into smaller ones, and helps in sorting damaged or impaired mitochondria that
are further eliminated by a mitophagy [14]. Mitophagy is a specialized form of autophagy in order
to degrade abnormal mitochondria, and is related to cell apoptosis. It is also a critical process for
maintaining proper cellular functions, and involves the formation of an autophagosome that fuses with
lysosomes to degrade mitochondria [15]. Mitophagy is mediated either by the PINK1-Parkin signaling
pathway or the mitophagic receptors BCL2 Interacting Protein 3 (BNIP3) and BNIP3-like, also known
as NIX [16,17]. Changes in mitochondrial membrane potential and other stress situations result in the
accumulation of PINK1 on the outer membrane, which phosphorylates numerous proteins including
PARKIN and E3 ubiquitin ligase. Activated PARKIN results in activation of the ubiquitin-proteasome
system that allows for the degradation of a number of membrane proteins external (MFN 1 and 2), thus
enhancing mitochondrial fragmentation (Figure 1). The actual level of mitochondria in cells depends
on the balance between biogenesis, and the degradation. Mitochondrial biogenesis is stimulated
by the peroxisome proliferator-activated receptor γ co-activator 1 α (PGC-1α), which modulates the
expression of nuclear respiratory factor 1 (NRF1). NRF1 stimulates the expression of mitochondrial
transcription factor A (TFAM), which is a final effector activating the duplication of mitochondrial
DNA molecules [16].

3. Coronaviruses and Acute Respiratory Syndromes

Coronaviruses (CoV) are a broad family of RNA viruses that can cause respiratory, gastrointestinal,
hepatic, and neurological diseases in animals, but only few known coronaviruses frequently cause
disease in humans. The infections start in animals and spread to people. Four coronaviruses produce
symptoms similar to those of the common cold, but three can cause severe and even fatal respiratory
infections in humans: SARS-CoV-2, MERS-CoV, and SARS-CoV [18]. SARS-CoV-2 is a new coronavirus
identified as the cause of the 2019 coronavirus disease (COVID-19) that started in Wuhan, China at the
end of 2019, and has spread worldwide. MERS-CoV was identified in 2012 as the cause of Middle East
respiratory syndrome (MERS). SARS-CoV was identified in 2002 as the cause of an outbreak of severe
acute respiratory syndrome (SARS) that started in China in late 2002. SARS-CoV-2 exhibits significant
person-to-person transmission through contact with secretions from respiratory droplets or through
contact with contaminated surfaces [19].

Some people with COVID-19 disease may have few or no symptoms, although others become
seriously ill and die. Symptoms may include fever, cough, dyspnea, chills or tremors, tiredness,
muscle pain, headache, odynophagia, loss of smell and/or taste, nausea, vomiting, and diarrhea. The
incubation time is between two and 14 days after exposure to the virus [20]. The risk of severe disease
and death during SARS-CoV-2 infection increases with age and in people with several pathologies like
cardiac, respiratory renal, hepatic diseases, diabetes, or obesity. Severe COVID-19 is characterized by
dyspnea, hypoxia, and extensive lung impairment, which can lead to respiratory failure shock and
death. Frequent complications of COVID-19 are arrhythmias, cardiomyopathy, thromboembolism and
pulmonary embolism, disseminated intravascular coagulation, hemorrhage and arterial clot formation,
sepsis, shock, and multi-organ failure [21].

4. Mitochondrial Dynamics and Viral Infection

The participation of mitochondria in innate immune signaling and their implication in viral
infections is an emerging field of investigation. It appears that mitochondria are targeted by viral
proteins and also influenced by alterations of the physiological cellular environment. It has been
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shown that during viral pathogenesis deregulation of calcium homeostasis, endoplasmic reticulum
stress, oxidative stress, and hypoxia exist, and viruses alter mitochondrial dynamics for the progression
of infection (Figure 1) [15,22]. The understanding of virus/host interactions will be useful for the
knowledge of viral infection pathogenesis and to design new antiviral therapeutic strategies, mainly
after the COVID-19 pandemic.

The steps of the viral life cycle include entry, translation, replication, assembly, and egress [23].
This dynamic process induces host cellular reorganization, which includes localization of the viral
proteins to an appropriate subcellular compartment. This is a viral strategy to modify the host
machinery and pathways to establish and perpetuate an infection [22,24]. Thus, viruses develop
strategies to survive and proliferate in cells by targeting specific cell organelles (nucleus, mitochondria,
endoplasmic reticulum, peroxisomes, and lipid droplets), which play an important role in innate
immunity and host defense [15].

The viral infection causes alterations that can affect mitochondrial dynamics at different levels. As
previously mentioned, mtDNA is crucial for synthesizing enzymes involved in respiratory chain and
optimal functioning of the organelle. Thus, viruses damage mtDNA to evade immune defense of the
host cell [25]. It has been shown that lymphoma cells infected with hepatitis C virus (HCV) suffered
mtDNA depletion [26]. Expression of UL12.5, an amino-terminally truncated UL12 isoform of HSV-1
has been shown to induce mtDNA degradation [27].

Mitochondrial membrane potential (MMP) provides energy for ATP synthesis and is essential
for adequate functioning of mitochondria. Increased MMP induces apoptosis, while decreased MMP
prevents apoptosis [25]. Mitochondrial permeability transition pore (MPTP) is responsible for the
maintenance of MMP and is vital for mitochondrial homeostasis. Alterations of MPTP leads to osmotic
water flux, swelling, outer membrane rupture, and release of proapoptotic factors leading to cell
death [28]. Viral infections result in an altered MPTP [29]. In general, viruses decrease MMP to prevent
cell death in order to promote their replication. However, in advanced levels of infection, they may
trigger an increase in MMP to release the progeny virions by apoptosis [22]. It has been reported
that M11L protein of myxoma poxvirus prevents the loss of MMP in kidney cells, HeLa cells, THP-1
human monocytes, and T lymphocytes [30]. In contrast, R protein of HIV-1 induces the loss of MMP in
lymphoblasts and T lymphocytes, resulting in apoptosis [31].

Viruses alter most of the mitochondrial metabolic pathways to maintain cellular energy homeostasis
in order to ensure efficient replication and to avoid mitochondrial antiviral response [32]. Some viruses
increase aerobic glycolysis and use glucose as an energy source, in order to maintain the availability of
fatty acids, lipids, and nucleotides for their replication [33,34]. In fact, the leukemia virus infection on
fibroblasts resulted in a significant increase in glucose uptake and lactic acid production [35]. Several
types of cells upon viral infection enhances the glycolytic pathway and directs the supply of carbon
from glucose to the stricarboxylic acid cycle, which facilitates fatty acid synthesis. However, it has
also been shown that viral infection directs the central carbon metabolism to produce pyrimidine
nucleotide components [36].

As mentioned before, mitochondria are involved in cell calcium homeostasis, which is of vital
importance for several functions. Many viruses also alter mitochondrial calcium homeostasis to attain
their needs during its life cycle [25]. It has been reported that human cytomegalovirus (HCMV) infection
causes calcium influx into mitochondria from endoplasmic reticulum [37]. In addition, expression
of 2B protein of coxsackievirus reduced signaling of Ca2þ between the endoplasmic reticulum and
mitochondria, resulting in the suppression of apoptosis [38].

Viruses modify the intracellular number and distribution of mitochondria either to get energy for
replication or to prevent the release of apoptosis mediators [10]. It has been reported that hepatitis B
virus (HBV) infection produces mitochondrial fission and subsequent mitophagy. This effect appears
to be due to the induction of mitophagosome formation, which leads to mitophagy and apoptosis
prevention, thus facilitating persistent infection [39]. In lung cancer cells, Newcastle disease virus (NDV)
induces mitophagy, which promotes replication by preventing caspase dependent apoptosis [40].
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Degradation of the mitochondrial antiviral-signaling protein (MAVS) is another way to enhance
mitophagy in order to attenuate the antiviral immune response, as shown in measles virus infection in
lung cancer cells [41]. Moreover, induction of mitophagy resulting in suppression of type 1 interferon
(IFN) response was reported in HEK293T infected by human parainfluenza virus type 3 (HPIV3) [42].

The mechanisms by which viruses evade the innate immunity system is poorly understood [43]. A
recent study revealed that SARS-CoV protein open reading frame-9b (ORF-9b) promotes degradation
of Drp1, leading to mitochondrial fusion [44]. This reduction was sensitive to proteasome inhibition,
but unaffected by inhibition of autophagy. Lowered Drp1 expression was also associated with impaired
MAVS signaling. This is contrast to the notion that MAVS signaling and IFN production are enhanced
and dampened by mitochondrial fusion and fission, respectively [45].

5. Oxidative Stress and Interaction with the Immune System in the Worsening of Viral
Infection Symptoms

The term oxidative stress refers to a disturbance in the oxidant–antioxidant balance, leading
to potential cellular damage. This imbalance could result from a lack of antioxidant capacity or an
overabundance of reactive oxygen species (ROS). In general, cellular metabolism produces ROS as a
by-product of the normal aerobic metabolism by a variety of enzymes in mitochondria, endoplasmic
reticulum, and peroxisome compartments, and simultaneously, the oxide is removed to keep the
balance [46]. ROS are reactive chemical species containing oxygen, and the main ROS are the superoxide
anion (O2

•−) and its derivatives hydrogen peroxide (H2O2) and hydroxyl radical (•OH), which have
been integrated in an essential way in intra- and intercellular signaling. To cite some examples, ROS are
mediators of essential cellular functions such as gene expression, protein phosphorylation, activation
of transcription factors, DNA synthesis, or cell proliferation. Ultimately, the biological impact of
these molecules will be determined by the amount of ROS, cellular defenses, and cellular adaptive
capacity. However, ROS play a bivalent role because if their production is uncontrolled, the result
is an indiscriminate oxidative attack on lipids, proteins, and cellular DNA favoring tissue damage,
inflammation response, and cell death [46–48].

ROS are produced during viral infections and significantly affect both the production of oxidizing
agents and the synthesis of antioxidant enzymes. The reproduction or replication of some pathogens is
enhanced in the oxidative environment and Peterhans [49] published the first evidence that a virus
could induce oxidative stress by increasing the ROS levels. Later, other studies showed that many
DNA and RNA viruses and retroviruses could cause cell death by generating ROS [50–52]. These
are generated during the process of immunological activity by myeloperoxidase (MPO), NADPH
oxidase (NOX), and inducible nitric oxide synthase (iNOS) to fight pathogens. As a consequence,
gene expression, cell adhesion, metabolism, cell phases, and the various possibilities of cell death are
modulated. Therefore, cell and tissue damage due to both the viral infection and the ROS produced
would contribute to the pathophysiology [53].

Mitochondria are the major source of ROS in cells. Balance between ROS production and
scavenging is essential for the optimal functioning of cells [54]. Viral infections affect the production of
mitochondrial ROS because viruses can induce or inhibit various mitochondrial processes in a highly
specific way so that they can replicate and produce progeny [25]. In general, viruses increase the
production of ROS, which activates certain host cellular pathways that favor viral replication. During
the process of interaction with the host, they can be produced by biotransformer enzymes such as
cytochrome P450, spermine oxidase, and xanthine oxidase. However, it seems that both increasing and
decreasing oxidative stress could be used as a survival strategy by viruses [55]. Furthermore, in some
viral infections, the inhibition of the expression of primary antioxidant enzymes such as superoxide
dismutase (SOD), glutathione peroxidase, and catalase as well as non-enzymatic antioxidants such as
vitamin C, carotenoids, minerals, and cofactors occurs as a consequence of the action of viral regulatory
proteins on cellular activity [52,56,57]. Alterations in the body’s antioxidant defense system have been
observed in various tissues of patients infected with a retrovirus such as the human immunodeficiency
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virus (HIV) in relation to SOD, ascorbic acid, glutathione, and selenium, among others [52,58]. In
infected mice, respiratory syncytial virus (RSV) decreased SOD and glutathione activity, in addition to
increasing MPO activity, nitric oxide (NO) production from iNOS, and •OH levels [59]. Similarly, the
activation of nuclear factor E2-related factor 2 (Nrf2) is considered an effective antioxidant defense
mechanism used by host cells to counteract oxidative stress [60]. Nrf2 has been identified as the master
regulator of several hundred genes involved in the antioxidant defense response to virus, bacteria,
and parasite infections. However, not much is known about the role of Nrf2 in infection by certain
viruses such as respiratory viral infections. Previous studies have shown that heme oxygenase (HO)-1,
one of the phase II detoxifying enzymes inducible through the activation of Nrf2, participates in an
important way in the cytoprotective function against inflammation and oxidative stress during viral
infection [60,61].

During an infection, some cells of the immune system including macrophages, neutrophils, and
dendritic cells are activated by generating enzymes such as MPO to produce ROS as hypochlorous
acid with potential virucidal and bactericidal activity that are generated to annihilate the pathogens
contained in phagosomes, but they, and some derived metabolites, also constitute signals that coordinate
the actions of various cell types. NOX has a similar function but produces superoxide anion. The
iNOS that generates NO is another of the ROS generating enzymes where during infections, it is
abundant in macrophages and other leukocytes. NO is not very toxic, but when it reacts spontaneously
with superoxide, peroxynitrite is produced, which is almost 1000 times more toxic than the radical
•OH. Peroxynitrite is very effective in the annihilation of pathogens although it is highly toxic [62,63].
Oxidative stress can also be initiated by metabolic activity of the pathogen or during alteration
of host metabolism as a consequence of interaction with the pathogen. In this sense, numerous
molecular components of pathogenic organisms in the biological medium must be biotransformed
for their elimination by enzymes such as some isoforms of cytochrome P450 (CYP3A4) that in their
majority generate O2

•− [64]. Other intracellular enzymes such as spermine oxidase also interact with
biomolecules of pathogens and generate ROS [65]. Some biomolecules of pathogens interact with
the endoplasmic reticulum, and in the mitochondria enhance their activity and alter the membrane
potential, thereby modulating the generation of ROS [10]. Oxidative stress can induce not only
molecular damage, but also disruption of regulatory processes as these oxidized products can interact
with molecular damage pattern recognition receptors and modulate transcription factor activation
and expression of genes. As a consequence, cell death processes such as necrosis, apoptosis, or
pyroptosis, which has characteristics of the previous two, can occur or otherwise cause survival
mechanisms [52,66,67]. Thus, ROS can facilitate or even promote viral replication, depending on the
type of cells and the type of virus involved.

In addition to ROS release due to virus-induced phagocyte activation, these activated cells of the
immune system can release pro-oxidant cytokines such as tumor necrosis factor (TNF) [68]. Generally,
the oxidative environment can enhance the activation of redox-sensitive transcription factors such as
nuclear transcription factor kappa B (NF-κB) and hypoxia-inducible factor 1 alpha (HIF-1α) [68,69]. In
this sense, TNF stimulates the release of NF-κB from cytoplasmic inhibitory protein IkB. As a result, this
transcription factor translocates to the nucleus and binds to DNA by inducing transcription of cellular
and/or viral genes and therefore increased viral replication [70]. Furthermore, viral infections develop
local hypoxia where phagocytic cells would activate HIF-1α, and this factor would stimulate the
expression of important genes related to phagocyte function. Several studies have shown that NF-κB
is one of the main links between innate immunity and the hypoxic response through its transcriptional
control of HIF-1α expression [71].

In general, SARS-CoV-2 infection is associated with oxidative stress, the proinflammatory state,
cytokine production, and cell death [5,72,73]. In experimental animal models of SARS, an increase in
ROS levels and an alteration of antioxidant defense were demonstrated during SARS-CoV infection [74].
In SARS-CoV 3CLpro (a viral protease) cell models, it significantly increased ROS production and
caused a pro-inflammatory and apoptotic state [75]. In this sense, innate immunity would in turn
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participate by activating various transcription factors such as NF-κB, which would cause an exacerbated
pro-inflammatory response of the host [5,72,73].

However, one of the most important effects is that it activates the innate immune system,
generating an excessive response that could be related to greater lung injury and worse clinical
evolution. Recent studies have described the activation circuit of this immune pathway from the
activation of CD4+ and CD8 + T helper (Th) lymphocytes in patients with SARS-CoV-2 pneumonia.
Furthermore, they describe a positive correlation between the proportion of IL-6-producing CD4 +

T cells and granulocyte-macrophage colony-stimulating factor (GM-CSF) and the severity of cases
of COVID-19 [76]. Other studies have observed the presence of elevated levels of IL-6 and other
proinflammatory cytokines in patients with severe COVID-19 [76–78]. This hyperactivation, however,
is insufficient to control the infection and leads to a lymphocyte depletion associated with increased
tissue damage. This hyperactivation has been called cytokine release syndrome (CRS), which would
be associated with SARS or acute respiratory distress syndrome, which has been described as the
main cause of mortality from COVID-19. CRS occurs when large numbers of leukocytes (neutrophils,
macrophages, and mast cells) are activated and release a high concentration of proinflammatory
cytokines [79]. CRS was initially described as an adverse effect of monoclonal antibody therapies, and
is also common in chimeric antigen receptor (CART) T-cell therapies [80]. The main cytokines involved
in CRS pathogenesis include interleukin 6 (IL-6), IL-10, IFN, monocyte chemotactic protein 1 (MCP-1),
and GM-CSF; other cytokines such as TNF, IL-1, IL-2, IL-2 receptor, and IL-8 have also been described
during CRS. This hyperactivation state has also been observed in other viral infections such as SARS,
MERS, or Ebola, in which the altered pathways are different.

6. Effects of Vitamin D in the Attenuation of Mitochondrial Oxidative Stress

Although vitamin E is one of the most famous and well-investigated radical-scavenging
antioxidants, vitamin D may also function as a powerful antioxidant, even showing in many
circumstances a higher effectiveness than that observed with vitamin E supplementation [81]. Vitamin
D may act as an antioxidant by mitochondrial function stabilization. For example, it is known that
cyanide causes neurotoxicity and neuronal cell death through mitochondrial dysfunction, which at low
doses of cyanide is potentiated by the induced upregulation of uncoupling protein-2 (UCP-2). In rat
primary cortical cell culture, vitamin D was able to attenuate the mitochondrial dysfunction provoked
by cyanide. This effect was reflected through the restoration of mitochondrial membrane potential and
cellular ATP by the downregulation of UCP-2 through the inhibition of NF-kB and the reduction in
oxidative stress [82].

One study also demonstrated that calcitriol, the active form of vitamin D, reversed the oxidative
cardiac injury induced by isoproterenol in a rat model. These effects were mediated by the reduction
in H2O2 levels accumulated in cardiac tissue and the increase in superoxide dismutase and catalase
activities as antioxidant mechanisms [83]. Paricalcitol, an analogous of vitamin D, which acts as a ligand
of vitamin D receptors (VDR), caused renal protection in spontaneously hypertensive rats through the
prevention of mitochondrial injury and a reduction in NOX activity (pro-oxidative enzyme). These
protective effects were mediated by an increase in the intracellular levels of heat shock protein 70 (an
antioxidant chaperone at intracellular but not extracellular level) and a decrease in angiotensin II (Ang
II) type 1 receptors in renal cortex cells from these animals [84]. Another beneficial effect of vitamin D
on cardiovascular health has also been reported, specifically preventing the death of endothelial cells.
Vitamin D may exert this action through a decrease in cellular apoptosis and autophagy-mediated by
the adequate maintenance of mitochondrial function and the reduction in O2

•− production, among
other protective mechanisms [85]. Monoamine oxidase is a mitochondrial enzyme that generates H2O2

as a degradation product from its corresponding substrates, causing a pro-oxidative state. This enzyme
is found induced in the aortas of diabetic rats, and vitamin D demonstrated to modulate its expression,
causing an improvement of endothelial dysfunction induced by diabetes. Vitamin D considerably
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restored vascular function, attenuated oxidative stress, and reduced monoamine oxidase expression in
vascular preparations from diabetic rats [86].

As a result of a clinical trial performed with pregnant women, it has also been suggested that
vitamin D could act as a competitive inhibitor of cytochrome P450scc in placental cells, avoiding the
lipid peroxidation and oxidative stress phenomenon that usually contributes to the development and
pathogenesis of preeclampsia. In this sense, it was observed that women suffering from this condition
had low vitamin D plasma levels, whereas vitamin D supplementation was able to prevent the onset
of preeclampsia or treat it [87]. Moreover, in an animal model of pregnant rats with preeclampsia,
vitamin D was also able to reduce the placental level’s oxidative stress. This effect decreased fetal
mortality and altered parameters observed in these female rats such as mean blood pressure and urine
micro albumin, among others [88].

Calcitriol may also prevent multiple alterations at the brain level associated with
hyperhomocysteinemia. It is known that high plasma levels of homocysteine could condition
the development of different neurodegenerative disorders. In vitro studies on cerebral cortices from
rats pre-treated with calcitriol and exposed to a mild concentration of homocysteine, demonstrated that
altered bioenergetics parameters and impaired mitochondrial functions promoted by homocysteine
were significantly attenuated by pre-treatment with calcitriol. Specifically, calcitriol reduced the
concentration of ROS and lipid peroxidation and increased the antioxidant enzyme activity, preventing
changes in mitochondrial brain cell [89]. This same protective antioxidant effect of vitamin D against
hyperhomocysteinemia was observed in heart tissue, where the accumulation of homocysteine may
contribute to the development of cardiovascular disease [90]. Vitamin D, combined with lipoic acid,
reduced the mitochondrial dysfunction in primary mouse astrocytes with oxidative stress induced by
H2O2. This action confirms that vitamin D could also act as a drug or an adjuvant in the prevention
or delay of aging and its related pathologies [91]. The antioxidant potential of vitamin D was also
observed in Alzheimer’s disease induced by streptozotocin in animals. Vitamin D reduced neuronal
oxidative stress as well as mitochondrial aberrations provoked in these animals. Therefore, vitamin D
could also be useful in the prevention or treatment of Alzheimer’s disease and other neurobehavioral
disorders associated with oxidative stress [92].

Calcipotriol, a synthetic analog of calcitriol, demonstrated its antioxidant potential on melanocytes
subjected to oxidative damage. This finding is of particular interest because melanocyte loss by
oxidative stress usually triggers the development of vitiligo. In this study, oxidative stress was
induced in human melanocytes through the treatment with H2O2. Calcipotriol was able to reduce
the concentrations of malondialdehyde, increase the levels of SOD, and suppress the reduction of the
MMP. Likewise, calcipotriol reduced the ultrastructural mitochondrial damage in melanocytes under
oxidative stress [93].

During peritoneal fibrosis, where the oxidative stress has a crucial role, an
epithelial-to-mesenchymal transition of mesothelial cells is produced from peritoneum mediated
by TGF-β1. In this sense, paricalcitol reduced the epithelial-to-mesenchymal transition by TGF-β1
through the modulation of oxidative stress associated with mitochondrial production of NOX [94]. In
an experimental model of cardiac dysfunction induced by chronic immobilization stress, vitamin D
treatment provoked an increase in tissue reserves of glutathione, ATP, SOD, and cardiolipin, which were
initially decreased. Moreover, vitamin D also caused a decrease in malondialdehyde concentrations,
which was elevated due to mitochondrial dysfunction and oxidative stress associated with chronic
stress [95].

The administration of vitamin D, both separately and in combination with polyunsaturated fatty
acids, caused attenuation of exacerbated oxidative stress and lipid peroxidation processes carried out in
the liver from rats with cancer. On the other hand, these treatments restored the hepatic mitochondrial
functional capacity in these animals, reducing the O2

•− generation and mitochondrial cytochrome c
release [96]. Continuing with liver diseases, it is known that oxidative stress produced during alcohol
metabolism plays a vital role in the development of the alcoholic liver disease. In this sense, it has
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been proven that vitamin D induces the expression of nuclear factor erythroid 2-related factor 2, which
could transcriptionally upregulate the expression of aldehyde dehydrogenase 2 in order to collaborate
in alcohol metabolization, exerting an antioxidant effect [97].

Annulus fibrosus cells isolated from young rat lumbar discs and subjected to different
concentrations of H2O2 were pre-treated with vitamin D to evaluate its antioxidant potential for
the prevention of intervertebral disc degeneration. In this regard, vitamin D caused an increase in both
cell viability and MMP and its ATP content. Furthermore, this pre-treatment provoked a reduction in
ROS production and preserved the enzymatic activity at the oxidative respiratory chain level, exerting
mitochondrial protection against the damage induced by H2O2. Furthermore, the ablation of VDR in
these cells avoided the mentioned protective effects of vitamin D [98].

Finally, vitamin D caused a reduction of oxidative stress induced by high glucose levels in a
human renal tubular cell line through the upregulation of the AKT/UCP2 signaling pathway. These
antioxidant effects were achieved by increasing the activity of superoxide dismutase and MMP and
decreasing malondialdehyde levels [99].

In the same way, it has been shown that hypovitaminosis D may cause a decrease in the intracellular
concentrations of glutathione, mediated by the enzyme c-glutamyl-transpeptidase, and a limited ability
to reduce the levels of produced ROS. This pro-oxidative environment could favor the development of
serious diseases such as multiple sclerosis [100]. In this sense, it has been suggested that during aging,
people have a natural reduction in vitamin D serum levels, promoting a pro-oxidative state associated
with mitochondrial dysfunction [101]. Lack of vitamin D also stimulates significant nitrosative stress
at the brain level, which could promote cognitive impairment in middle-aged and older adults [102].
Therefore, those who have vitamin D deficiency are usually more susceptible to suffering from different
pathologies associated with age such as Parkinson’s disease, Alzheimer’s, and cardiovascular disease,
among others. On the other hand, subjects with normal plasma levels of vitamin D are generally
less likely to suffer any of the diseases mentioned [103–105]. It has also been indicated that vitamin
D deficiency is related to a decrease in the expression of VDR and an altered activity of antioxidant
enzymes at the skeletal muscle level. Additionally, vitamin D modulates oxygen consumption at
the mitochondrial level. Therefore, vitamin D deficiency reduces the oxygen consumption rate and
stimulates mitochondrial dysfunction. In this context, it was suggested that all these alterations lead to
an increased probability of developing muscle atrophy and that vitamin D supplements could prevent
or reverse them [106,107]. These findings were confirmed in another study on muscle cells with
oxidative stress induced by tert-butyl hydroperoxide, where vitamin D also showed potent antioxidant
effects that are considered beneficial for muscle tissue homeostasis [108].

Of particular interest, VDR has a vital role in the antioxidant actions of vitamin D and its
analogs. In this regard, VDR has proven to be a cardioprotective and self-defensive receptor since it
reduces the oxidative stress generated during ischemia-reperfusion injury in mouse hearts through a
mechanism dependent on metallothionein. VDR activation by different agonists inhibited mitochondrial
impairment through the reduction in caspase-9 activation and mitochondrial cytochrome c release.
These cardioprotective effects were attenuated when VDR was silenced. Conversely, the over-expression
of VDR provoked a decrease in myocardial infarct size and enhanced cardiac function through
attenuating oxidative stress, among other protective mechanisms [109]. The silencing of VDR in a
spontaneously transformed aneuploid immortal keratinocyte cell line from adult human skin provoked
reliable increases in the mitochondrial membrane potential, causing sensitization of these cells to
oxidative stress. Moreover, it was found that transcription of the subunits II and IV of cytochrome c
oxidase were significantly increased after VDR silencing, suggesting an essential role of vitamin D in
the maintenance of normal mitochondrial function and anti-oxidation at the cellular level by VDR
activation [110]. In the same type of cultured keratinocytes, but without VDR silencing and under the
condition of oxidative stress, the treatment with both calcitriol and its analogs 20(OH)D3, 21(OH)pD,
and calcipotriol induced the expression of antioxidant enzymes such as superoxide dismutase and
catalase as well as the maintenance of mitochondrial membrane potential [111]. It has also been
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observed that in different diseases (renal, hepatic, cardiovascular, dermal, etc.), the deletion of VDR or
vitamin D insufficiency promotes the increase in oxidative stress. Conversely, both the activation of VDR
by different agonists and high levels of vitamin D provoke significant antioxidant effects. Of particular
interest, it has been demonstrated that vitamin D, through VDR activation, causes a considerable
increase in the expression of the alpha-klotho protein, an important antioxidant, and a circulating
antiaging factor. Moreover, other analogs of vitamin D such as paricalcitol and doxercalciferol have
also demonstrated several antioxidant effects in different cells and tissues by stimulating VDR [112].

7. Interrelation among Oxidative Stress, RAAS, and SARS-CoV-2 Infection

Renin–angiotensin–aldosterone system (RAAS) is formed by two axes, a beneficial antioxidant
axis composed of angiotensin-converting enzyme (ACE)-2 and Ang1-7/Mas receptor, and a deleterious
pro-oxidant axis composed of ACE and the Ang II/AT1 receptor. The latter causes a considerable
increase in oxidative stress in both tissue and plasma level [113]. It is known that many Ang II
signaling pathways are mediated, at least in part, by ROS such as O2

•− and mitochondria are the
main subcellular source of O2

•− induced by Ang II [114]. Despite O2
•− having a very short life, it

may rapidly react with nitric oxide (NO•−) and form peroxynitrite (ONOO−), a potent oxidant able
to induce cell apoptosis or necrosis [115]. Aldosterone induces both hypertrophy and fibrosis at the
myocardial level through the promotion of oxidative stress and inflammation [116]. Chronic RAAS
activation may alter mitochondrial function, and consequently may increase oxidative stress derived
by mitochondria. In fact, it has been proven that exogenous Ang II raises mitochondrial oxidative
stress at renal level in rats with heart failure, and increases renal mitochondrial dysfunction in aged
mice [117]. RAAS is also involved in vascular complications associated with diabetes, at least in part,
through the induction of oxidative stress. In this sense, it was confirmed that the blockade of AT1
receptors in human coronary artery endothelial cells reduces the endoplasmic reticulum stress and
superoxide anion production induced by high glucose levels [118]. It has been shown that RAAS is
over-activated in patients with kidney injury and that aldosterone induces chronic kidney disease
mainly through endoplasmic reticulum stress and oxidative stress [119]. RAAS plays a key role in
the pathophysiology of hypertension due, among other factors, to the fact that causes a significant
stimulation of oxidative stress at the systemic level [120,121]. The activation of RAAS observed after
myocardial infarction or heart failure leads to exacerbated production of ROS derived by increased
activity of the NADPH oxidase enzyme. This augmented oxidative stress causes dysfunction and
apoptosis of endothelial cells [122]. Oxidative stress dependent of RAAS over-activation has also been
related to heart fibrosis. In this regard, it has been shown that strong generation of ROS induced
by Ang II triggers activation of the pro-fibrotic TGFβ1-Smad2/3 signaling pathway and consequent
synthesis of collagen in cardiac cells [123]. Oxidative stress induced by an over-stimulated RAAS also
increased DNA damage both in vitro and in vivo models of hypertension. Ang II is the main factor
responsible for the pro-oxidative state that leads to accumulation of mutations in different organs
affected by hypertension such as kidneys. For this reason, hypertensive patients with over-activated
RAAS and high concentrations of Ang II would have an increased risk of developing renal cancer, in
accordance with the results revealed by different epidemiological studies [124].

Additionally, SARS-CoV-2 infection and its complications are associated, among other factors, with
redox imbalance or oxidative stress [5,125]. The elevation of cytokine levels produced by SARS-CoV-2
infection also contributes to exacerbation of oxidative stress observed in this severe acute respiratory
syndrome [126–128]. Oxidative stress induced by viral infections increases the DNA methylation
deficiency, probably provoking a greater ACE2 hypomethylation. The hypomethylation may lead
to an exacerbated expression of genes that encode ACE2. As ACE2 is the target receptor to which
SARS-CoV-2 binds to enter the cells, it is possible that hypomethylation caused by oxidative stress
enhances viremia. In this context, a vicious cycle of demethylation and augmented oxidative stress
could increase susceptibility to SARS-CoV-2 infection [129]. Moreover, the antioxidant capacity is
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usually lost with age, and this pro-oxidative state associated with aging could be one of the reasons for
which elderly people are more susceptible to being affected by SARS-CoV-2 infection [130–132].

Of special interest, it is known that the main risk factors for morbidity and mortality by COVID-19
are pathologies where there exist an over-activated RAAS such as hypertension, diabetes, cancer, and
obesity, among others. These evidences would reinforce the postulated relationship among oxidative
stress, RAAS, and SARS-CoV-2 infection [8]. Therefore, synergistic oxidative stress resulting from
an over-activated RAAS and the SARS-CoV-2 infection may contribute to create the “perfect storm”,
which leads to known lethal consequences of this respiratory syndrome.

8. Vitamin D Antioxidative Actions against SARS-CoV-2 Infection

An inverse relationship has been established between vitamin D concentrations and the exacerbated
oxidative stress associated with the RAAS activation, since lowered levels of vitamin D favor the
over-activation of RAAS and vice versa [101,133–135]. Such over-activation is usually associated with
elevated levels of renin, increased synthesis of Ang II [136,137], and augmented expression of ACE [138].
In this sense, it is known that both RAAS and VDR receptors are present at the mitochondrial level,
mediating antagonistic effects [101,133–135]. VDR regulates both the nuclear (COX4 and ATP5B) and
mitochondrial (COX2 and MT-ATP6) transcription of the proteins involved in ATP synthesis and
respiratory activity. The activation of VDR localized in the mitochondrial compartment is responsible for
cell metabolic control by reducing mitochondrial respiration and activating mitochondrial homeostatic
processes. Thus, the low stimulation of VDR at the mitochondrial level in people with vitamin D
deficiency may provoke mitochondrial dysfunction, an increased oxidative stress and, consequently,
cell death [139,140]. In relation to mitochondrial RAAS, Abadir et al. showed the expression of Ang II
type 2 receptors on mitochondrial inner membranes, which are colocalized with Ang II. Of interest,
the aging process causes an increase in the expression of Ang II type 1 receptors at the mitochondrial
level. Mitochondrial RAAS activation is associated with nitric oxide synthesis and an increase in
oxidative stress [141]. The interplay between vitamin D and RAAS could explain, at least in part, the
high incidence of cardiovascular pathologies in people with vitamin D deficiency [142]. Moreover,
the normalization of vitamin D levels in patients with deficiency of this vitamin caused a blockade of
peripheral RAAS [143]. In this regard, calcitriol has also been proven to be a modulator of liver RAAS,
which is usually upregulated during insulin resistance [144]. It has also been found that activation of
VDR causes the attenuation of acute lung injury by the RAAS blockade [145]. Long-term vitamin D
deficiency may induce pulmonary fibrosis by exacerbated deposition of extracellular matrix at lung
level due to an uncontrolled and chronic RAAS over-activation [146]. RAAS inhibition by vitamin D
was also able to reduce vascular oxidative stress, exerting an important regulatory function on blood
pressure modulation [147]. Paricalcitol has been demonstrated to decrease the expression of renin and
Ang II induced by lipopolysaccharides at the hypothalamic level [148]. Vitamin D could also attenuate
the complications associated with incident atrial fibrillation by RAAS inhibition [149] and normalize
the exalted brain RAAS of 1α(OH)ase knockout mice by an antioxidant mechanism [150]. Vitamin
D is able to suppress renin transcription mediated by VDR [151] and the activity blockade of Cyclic
AMP [152] independently of calcium or phosphorus extracellular levels [153]. Klotho induction by
vitamin D could also be a modulator mechanism of RAAS in order to avoid oxidative stress [154,155].
Exalted expression of Klotho reduces the production of many RAAS components including AT1,
angiotensinogen, renin and ACE, among others [156]. Hence, vitamin D may significantly ameliorate
the respiratory syndrome caused by SARS-CoV-2 infection not only through its own antioxidant effects,
but also through RAAS inhibition. Additionally, in relation to vitamin D and RAAS facing to viral
infections, it was observed that podocytes infected with HIV showed both downregulation of VDR and
over-activation of RAAS with an enhanced renin expression and increased Ang II production. Vitamin
D treatment reversed the RAAS over-activation and consequently free radical synthesis [157]. Similar
results were obtained in tubular cells infected with HIV, where vitamin D confirmed its protective
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properties on cell damage induced by HIV [158]. In this sense, the results observed with HIV could be
analogs to those obtained with SARS-CoV-2.

SARS-CoV-2 infection may produce multiple free radicals such as H2O2, O2
•− and •OH, among

the most prominent. Interactions between SARS-CoV-2 proteins and host cell mitochondrial proteins
cause the loss of membrane integrity and mitochondrial dysfunction, which provokes an exacerbated
increase in ROS production [159]. Although a certain level of ROS is important in the regulation of
immune response and the elimination of virus, its exacerbated production may destroy many cell
components in both virus-infected cells and normal cells, causing multiple organ failure [160]. As
previously mentioned, vitamin D is able to increase the expression of antioxidant enzymes such as
glutathione reductase. High levels of glutathione have a similar effect to vitamin C supplementation,
which act as an antioxidant and antimicrobial. Therefore, it has been proposed that vitamin D could be
useful in the prevention and treatment of COVID-19 [161]. As an antecedent at the respiratory level,
vitamin D stimulated the activation of the glucose-6-phosphate dehydrogenase signaling pathway and
the production of oxidized glutathione as antioxidant mechanisms against oxidative stress induced
by pollutant particulate matter in human bronchial epithelial cells. Therefore, vitamin D may exert a
protective antioxidant effect on lungs and airways under oxidative stress conditions such as asthma or
chronic obstructive pulmonary disease in smoking patients [162,163]. In this regard, it was observed
that patients with pulmonary pathologies usually have lowered vitamin D serum levels, which would
indicate a possible correlation between an impaired antioxidant defense and a susceptibility to suffer
lung disease [164]. Therefore, the antioxidant potential of vitamin D could attenuate COVID-19
complications, especially at pulmonary level (Figure 2).
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Figure 2. Possible participation of vitamin D on stages of SARS-CoV-2 infection.

There are no accurate data yet on the exact doses of vitamin D recommended to protect against
COVID-19. Some authors recommend high doses for a short time or low doses for a longer time.
For instance, Grant et al. recommended that people at risk of COVID-19 consider taking 10,000
IU/day of vitamin D3 for a month to rapidly increase their 25(OH)D concentrations, followed by 5000
IU/day during a few more weeks in order to reduce the infection risk [161]. On the other hand, other
authors have suggested that single oral doses >500,000 IU of cholecalciferol are able to rapidly increase
serum vitamin D concentrations in patients with severe vitamin D deficiency, without producing side
effects [165]. Anyway, the aim should be to raise vitamin D concentrations above 40–60 ng/mL, which
would be the range of protection by vitamin D against respiratory infections [161].

9. Conclusions and Prospect

In general, viruses including SARS-CoV-2 usually alter mitochondrial dynamics at different
levels for achieving the progression of infection. Some of these mechanisms include mitochondrial
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DNA damage, changes in mitochondrial membrane potential, alterations in mitochondrial metabolic
pathways and calcium homeostasis, modifications in number and distribution of mitochondria into
the cells, impairment of the body’s antioxidant defense, and increases in ROS levels, among others.

On the other hand, it is known that vitamin D is a hormone that may act as a potent
anti-inflammatory and antioxidant. It has also been observed that some of the individuals most
susceptible to being infected by SARS-CoV-2 are those who have some underlying pathology associated
with the over-activation of RAAS (obese, aged, male, hypertension, diabetic, and others). This
activation causes an increased production of ROS. Vitamin D is able to reduce the RAAS activation
and consequently decrease ROS generation and to improve the prognosis of SARS-CoV-2 infection
(Figures 2 and 3).

1 
 

 

Figure 3. Interplay between mitochondrial dysfunction, RAAS over-activation, and vitamin D levels
in the physiopathology of COVID-19. Solid lines indicate stimulation/induction, while dashed lines
indicate inhibition/blocking.

As a future prospect, we propose improving the vitamin D plasma levels of the world population,
especially of those individuals with additional risk factors that predispose them to the lethal
consequences of SARS-CoV-2 infection.
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