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Abstract

Let F1, . . . , Fs ∈ R[X1, . . . , Xn] be polynomials of degree at most d, and

suppose that F1, . . . , Fs are represented by a division free arithmetic circuit

of non-scalar complexity size L. Let A be the arrangement of Rn defined by

F1, . . . , Fs.

For any point x ∈ Rn, we consider the task of determining the signs of the

values F1(x), . . . , Fs(x) (sign condition query) and the task of determining

the connected component of A to which x belongs (point location query). By

an extremely simple reduction to the well-known case where the polynomials
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F1, ..., Fs are affine linear (i.e., polynomials of degree one), we show first that

there exists a database of (possibly enormous) size sO(L+n)) which allows the

evaluation of the sign condition query using only (Ln)O(1) log(s) arithmetic

operations. The key point of this paper is the proof that this upper bound

is almost optimal.

By the way, we show that the point location query can be evaluated using

dO(n) log(s) arithmetic operations. Based on a different argument, analogous

complexity upper-bounds are exhibited with respect to the bit-model in case

that F1, . . . , Fs belong to Z[X1, . . . , Xn] and satisfy a certain natural gener-

icity condition. Mutatis mutandis our upper-bound results may be applied

to the sparse and dense representations of F1, . . . , Fs.

Keywords: Constraint databases, Query evaluation, Computational

complexity

1. Basic notions and notations

Throughout this paper we shall use the following notation: let n, s, d, h

and L be given natural numbers, let X1, ..., Xn be indeterminates over R, let

X := (X1, ..., Xn) and let F1, . . . , Fs ∈ R[X1, . . . , Xn] be given polynomials

of degree at most d.

In case that F1, . . . , Fs belong to Z[X1, . . . , Xn], we suppose that the max-

imal bit-length of their coefficients (i.e. the logarithmic height of F1, . . . , Fs)

is bounded by h.

Furthermore, we assume that the polynomials F1, . . . , Fs are represented

by (the output nodes of) an arithmetic circuit β in R[X] with inputsX1, ..., Xn

such that β satisfies the following conditions:
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• β uses only R-linear operations and multiplications of polynomials (i.e.,

β is division-free);

• β contains at most L multiplications of polynomials which are counted

at unit costs, whereas R-linear operations are free (i.e., the non-scalar

size of β is at most L).

Observe that for k ∈ N the dense and k-sparse encodings of F1, . . . , Fs are

special instances of the circuit representation of polynomials, with L = O(dn)

and L = O(kd) in each case, respectively.

A sign condition σ ∈ {−1, 0, 1}s, with σ = (σ1, ..., σs) determines a poly-

nomial inequality system of the form∧
1≤i≤s

sign(Fi) = σi. (1.1)

We call σ consistent if there exists a point x ∈ Rn satisfying the condition

1.1.

The consistent sign conditions on the polynomials F1, . . . , Fs define a

semi-algebraic partition A := A(F1, . . . , Fs) of Rn, called an arrangement.

Suppose now that there is given another semi-algebraic partition P := P(F1, . . . , Fs)

of Rn which refines A and depends only on F1, . . . , Fs. Then P defines a

query QP(F1, . . . , Fs) which determines, for each x ∈ Rn the (unique) ele-

ment P ∈ P with x ∈ P .

In case P = A, we call QP(F1, . . . , Fs) the sign condition query for

F1, . . . , Fs. If P is the partition of Rn into the connected components of

(the elements of) A, we call QP(F1, . . . , Fs) the point location query for

F1, . . . , Fs.
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If F1, . . . , Fs are affine-linear and represented by their coefficients, the sign

condition and the point location query may be evaluated using O(n5 log(s))

arithmetic operations in R (see [1, 2, 3]).

The algorithm of [2] may be interpreted as follows: A first preprocessing

yields a constraint database represented by an algebraic computation tree Γ

of size sO(n) which allows the evaluation of the sign condition query. While

the size of the database (and the cost of its construction) are not taken into

account, the evaluation of the sign condition query can be performed in time

O(n5 log(s)).

In this paper we analyze the complexities of the sign condition and point

location queries under a constraint database point of view. In the same

spirit as the arithmetic circuit representation of polynomials, we use algebraic

computation trees to represent constraint databases (see [4, 5, 6] for the

background on constraint databases and algebraic complexity theory).

In the next section we are going to expose our results, indicating in the

most simple cases also the proofs. As part of these results, we present an algo-

rithm that performs the evaluation of the sign condition query for F1, . . . , Fs

in time (Ln)O(1) log(s) and we show that this upper-bound is tight.

In the particular case that the polynomials F1, . . . , Fs are given in dense

representation, our method evaluates the sign condition query in time dO(n) log(s).

By a mathematically different and more sophisticated method, a similar up-

per bound has already been derived in [7] for the coarser algorithmic model

of algebraic decision trees (where the evaluation of any polynomial is free).

However, restricting our attention to computational models where arith-

metic operations have a cost, the previous best time-upper-bound for the
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evaluation of this query is based on an application of general cylindrical al-

gebraic decomposition method and results in a time bound that depends

doubly-exponentially on n (see [8] and [9] for a discussion of this issue).

2. Results

2.1. Upper complexity bounds. Algorithms

Our first result relies on an extremely simple reduction argument to the

case treated in [2], namely when the polynomials F1, ..., Fs are affine-linear.

Theorem 2.1. Suppose that F1, . . . , Fs can be evaluated by a division-free

arithmetic circuit of non-scalar size L.

Then there exists a constraint database represented by an algebraic compu-

tation tree of size sO(L+n) such that in this database the sign condition query

for F1, ..., Fs can be evaluated by this database in time O((L + n)5 log(s)) =

(Ln)O(1) log(s) (counting arithmetic operations and comparisons at unit costs).

Proof. Let Y = (Y1, . . . , YL) be new indeterminates. From [5], Section 9

and [6], Exercise 9.18 we deduce that there exist polynomials G1, . . . , GL ∈

R[X] and polynomials of degree one H1, . . . ., Hs ∈ R[Y ] having the following

properties:

G := (G1, . . . , GL) can be evaluated using L polynomial multiplications

and therefore, counting also R-linear operations at unit costs, by means

of O((L + n)2) arithmetic operations. Furthermore the condition F1 =

H1(G), . . . , Fs = Hs(G) is satisfied.

For any x ∈ Rn, we compute first G(x) and apply then the algorithm

of [2] to H1, . . . , Hs and the input G(x) in order to determine the signs of

F1(x), . . . , Fs(x). ut
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If for k ∈ N the polynomials F1, ..., Fs are k-sparse, Theorem 2.1 remains

correct when we replace the parameter L by kd.

Suppose now that the polynomials F1, ..., Fs are given in dense represen-

tation. Then Theorem 2.1 implies immediately that the sign condition query

for F1, ..., Fs can be evaluated in time dO(n) log(s).

Taking into account that the connected components of the arrangement

A(F1, . . . , Fs) are definable by sndO(n
4) polynomials of R[X] of degree at

most dO(n
3) (see e.g., [10], Theorem 16.18), we obtain finally the following

result.

Corollary 2.2. The sign condition and the point location queries for F1, . . . , Fs

can be evaluated in time dO(n) log(s) by a constraint database consisting of

an algebraic computation tree of size sO(d
n).

We are now going to consider the sign condition and the point location

queries under the aspect of their bit-complexity. For this purpose we assume

that F1, . . . , Fs are polynomials of Z[X] of logarithmic height at most h.

Furthermore we suppose that the family F1, . . . , Fs is generic in the fol-

lowing sense: for any 1 ≤ r ≤ n and any 1 ≤ i1 < . . . < ir ≤ s the

polynomials Fi1 , . . . , Fir form a regular sequence in Q[X] or generate the

trivial ideal.

By a considerable more elaborated method, based on arithmetic argu-

ments from effective algebraic geometry [10], we obtain the following result

in the spirit of [1].

Theorem 2.3. There exists a constant c ∈ N such that for δ := 2−hd
cn2

any

hypercube R ⊂ [0, 1]n of side length δ has the following property: at most n

of the polynomials F1, . . . , Fs change their signs in R.
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By means of Theorem 2.3 we are able to construct a constraint database

D which consists of the partition of [0, 1]n into hypercubes of side length

δ. To each of these hypercubes we assign the indices and the signs of the at

least s−n polynomials among F1, ..., Fs which do not change their signs on it

(observe that this preprocessing requires a consistency test for semi-algebraic

constraint sets; see e.g. [11]). We obtain now the following statement.

Corollary 2.4. For any real algebraic input point x ∈ [0, 1]n of degree d′ and

logarithmic height h′, the sign condition query for F1, . . . , Fs can be evaluated

in the database D using (h + h′)dO(n
3)d′O(n) bit operations. The database D

can be represented by an algebraic computation tree of size 2hdO(n3)
.

As remarked in Section 1, simple minded and unspecific applications of

geometric elimination methods lead in Corollary 2.2 and Corollary 2.4 to

complexity bounds which are doubly exponential in n.

2.2. Lower Complexity Bounds for the Evaluation of Sign Condition Queries

We may now ask whether, and in which sense, the runtime of our query

evaluation algorithms may be improved.

In order to clarify this question, we are going to exhibit two examples

which certify, in worst case and up to a polynomial expression in n, L and

log(s), the optimality of the evaluation algorithms of [2] and Section 2.1 for

the sign condition query. We limit ourselves to the algebraic complexity

model. First, let us state the following technical result.

Lemma 2.5. Let be given an algebraic computation tree Γ which real-

izes the evaluation of the sign condition query for F1, . . . , Fs. Then Γ

satisfies the following conditions.
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(i) The branching complexity of Γ is at least log3(#A(F1, . . . , Fs)).

(ii) Suppose that the polynomials F1, . . . , Fs are irreducible, defining each

a hypersurface (i.e., a codimension one subvariety) of Rn. Then there

exists for each 1 ≤ i ≤ s a branching node of Γ which tests the sign of

a polynomial of R[X] which is a multiple of Fi.

Example 1. Assume s > n2 and that F1, . . . , Fs are generic linear forms of

R[X] represented by their coefficients. Then the evaluation of the sign con-

dition query for F1, . . . , Fs (by means of an algebraic decision tree) requires

at least n log3(s)
2

= Ω(n · log(s)) arithmetic operations.

Proof. From the genericity of F1, . . . , Fs we deduce #A(F1, . . . , Fs) ≥
(
s
n

)
.

Let Γ be an algebraic computation tree that realizes the evaluation of the

sign condition query for F1, . . . , Fs. Lemma 2.5(i) implies that the branching

complexity of F is at least log3(#A(F1, . . . , Fs)) ≥ log3(
(
s
n

)
) ≥ n(log3(s) −

log3(n)) ≥ n log3(s)
2

= Ω(n · log(s)). ut

We remark that [2] implies for Example 1 the upper complexity bound

of O(n5 log(s)) = O((n log(s))5) in the model of linear decision trees. We

observe that this upper bound is polynomial with respect to the lower bound

of Ω(n log(s)) in the more general setting of algebraic computation trees.

Example 2. Let n ≥ 2 and s > n2. We extend the family of linear polyno-

mials F1, . . . , Fs of Example 1 by the polynomial F0 := X2L

1 −X2 and suppose

that F0, . . . , Fs are represented by a division-free arithmetic circuit in R[X]

of non-scalar size L. Then the evaluation of the sign condition query for

F0, . . . , Fs requires Ω(L+ n log(s)) arithmetic operations and comparisons.
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Proof. We observe that F0 is an irreducible polynomial of R[X] that defines

a hypersurface of Rn. Let Γ be an algebraic computation tree that realizes

the evaluation of the sign condition query for F0, . . . , Fs. From Lemma 2.5

(ii) we deduce that Γ contains a branching node which tests the sign of a

polynomial G ∈ R[X] which is a multiple of F0. Therefore the degree of G

is at least 2L and hence the evaluation of G requires at least L arithmetic

operations (see [6], Section 8.1).

On the other hand, the choice of F1, . . . , Fs implies by Example 1 that the

branching complexity of Γ is at least n log3(s)
2

. Thus Γ contains a computation

path of length not less than max{L, n log3(s)
2
} = Ω(L+ n log(s)). ut

We observe that Theorem 2.1 implies for Example 2 the upper complexity

bound of O((L + n)5 log(s)) = O((L + n log(s))6). This upper bound is

therefore polynomial in the lower bound Ω(L+ n log(s)).

The results of this paper and their full proofs are contained in the PhD

thesis of the first author [9].
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