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Multipartite concurrence for identical-fermion systems
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We study the problem of detecting multipartite entanglement among indistinguishable fermionic particles. A
multipartite concurrence for pure states of N identical fermions, each one having a d-dimensional single-particle
Hilbert space, is introduced. Such an entanglement measure, in particular, is optimized for maximally entangled
states of three identical fermions that play a role analogous to the usual (qubit) Greenberger-Horne-Zeilinger
state. In addition, it is shown that the fermionic multipartite concurrence can be expressed as the mean value of
an observable, provided two copies of the composite state are available.
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I. INTRODUCTION

Entanglement is both a central key for understanding quan-
tum phenomena and a useful resource for the implementation
of quantum information tasks [1,2]. Identical particles, on the
other hand, are essential for understanding the properties of
many-particle quantum systems [3]. For systems of identical
particles, fermions or bosons, however, even the very notion of
entanglement is controversial [4]. In the fermionic case, there
exists some extended consensus that a pure fermion state is
separable if it is a single antisymmetric product state given
by a single Slater determinant [5–11]. In this paper we adopt
such a point of view and consider entanglement in systems of
identical fermions, meaning entanglement between particles
and not entanglement between modes [12].

Several efforts have been devoted to the study of the
entanglement features in systems of N identical fermions in
the last few years [13–22]. Various bipartite entanglement
measures for pure N -fermion states have been discussed,
yet these measures are, in general (for N > 2), difficult to
implement [5]. An interesting (bi)separability criterion for
systems of N identical fermions was formulated in [10].

When studying multipartite entanglement, it is convenient
to consider all possible bipartitions of the complete system.
Then, the available entanglement measures for bipartite
systems become applicable, and adequate generalizations can
account for real multipartite correlations [23,24].

In the present contribution we propose a multipartite
concurrence measure for fermionic systems in a pure state
and analyze its main properties as a suitable measure of
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multipartite entanglement. An appropriate criterion of bipartite
entanglement, valid for arbitrary bipartitions of the system, is
also obtained, as well as the fermionic analog of the standard
Greenberger-Horne-Zeilinger (GHZ) states, characterized by
possessing maximal multipartite entanglement and by the
fact that tracing over one of the subsystems destroys any
entanglement present among the constituents. Furthermore, we
explicitly show how the concurrence measure can be written in
terms of the mean value of an observable given that a twofold
copy of the state in question is available.

This work is structured as follows. Section II contains
the preliminaries for the subsequent construction of the
multipartite concurrence measure for pure states of N indistin-
guishable fermions. First, we briefly outline the main features
of the concurrence for distinguishable-party systems. Then we
introduce the definition of separability in fermionic systems
and present a concurrence measure for a pure state with
N = 2. In Sec. III we present a general separability criterion
for arbitrary bipartitions (M : N − M; 1 � M � N − 1) and
introduce suitable bipartite and multipartite concurrence mea-
sures for arbitrary N . In Sec. IV we present two observables
whose mean value (provided two copies of the fermionic
system are available) coincides with the fermionic multipartite
concurrence. Finally, some conclusions are drawn in Sec. V.

II. PRELIMINARIES

A. Concurrence in distinguishable-party systems

The concurrence was first introduced in [25] as a measure
of the entanglement between two qubits, having a one-to-
one correspondence with entanglement of formation [26].
The measure was then generalized to (dA × dB)-dimensional
bipartite pure states ψAB according to [27]

CAB = C(ψAB) =
√

2
(
1 − Trρ2

A

) =
√

2
(
1 − Trρ2

B

)
(1)
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(we wrote 〈ψ |ψ〉 = 1). Now, when considering N -partite
systems, multipartite correlations between subsystems may
appear. For an N -partite pure state ψN a suitable generalization
of Eq. (1) is the so-called multipartite concurrence [23]

CN = C(ψN ) = 21−(N/2)

√
(2N − 2) − Tr

∑
i

ρ2
i , (2)

where the index i labels all (2N − 2) subsets of the N -
particle system and ρi are the reduced density matri-
ces of all one- to (N − 1)-partite subsystems [24]. For
|ψN 〉 = |ψN−1〉 ⊗ |φ〉 the multipartite concurrence becomes
CN (ψN ) = CN−1(ψN−1); hence CN vanishes for fully sep-
arable states |ψN 〉 = ⊗N

i=1|φi〉. Moreover CN reaches its
maximum value for GHZ states |ψN 〉 =∑i |i · · · i〉/√2.

The concurrence CN can be expressed as the following
expectation value with respect to two copies of the system
[24]:

CN =
√

〈ψN | ⊗ 〈ψN |A|ψN 〉 ⊗ |ψN 〉, (3)

where

A = 4
∑

{sji
=±}+

P 1
s1i

⊗ · · · ⊗ P N
sNi

(4)

and

P i
± = 1

4

∑
αi ,α

′
i

(|αi〉|α′
i〉 ± |α′

i〉|αi〉)(〈αi |〈α′
i | ± 〈α′

i |〈αi |), (5)

with 1 � i � N . Here P i
+ and P i

− are the projectors onto
the symmetric (+) and antisymmetric (−) subspaces of the
Hilbert space Hj ⊗ Hj that describes the two copies of the j th
subsystem. The sum in Eq. (4) is restricted to the set {sji

= ±}+
composed of all possible ways of sorting the symbols + and
−, with an even number of − symbols and excluding the
completely symmetric case with no − symbols at all.

In [28] it was argued that the observable A can be replaced
by the single factorizable observable Ã given by

Ã = 4(I − P 1
+ ⊗ · · · ⊗ P N

+ ). (6)

In this way CN can be constructed in a much more efficient
way and can be experimentally determined measuring only
one single probability [28,29].

B. Definition of separability in systems of identical fermions

Let us now consider a system composed of N indistin-
guishable fermions, each one having a d-dimensional single-
particle orthonormal basis B = {|1〉, . . . ,|d〉}. We introduce
the fermionic creation operators f

†
i (1 � i � d) acting on

the fermionic vacuum |0〉 as those that produce the totally
antisymmetric combination∣∣ψsl

i

〉 = f̂
†
i1

· · · f̂ †
iN

|0〉, (7)

where |ψsl
i 〉 is a Slater determinant

∣∣ψsl
i

〉 = 1√
N !

∑
P {i}

εi1···iN |i1i2 · · · iN 〉. (8)

Here P {i} are the N ! permutations of the set {i1, . . . ,iN }, and
εi1···iN stands for the N -dimensional totally antisymmetric uni-
tary tensor. Notice that in order to construct an antisymmetric
N -fermion state we must have N � d.

Although, clearly, (8) is a nonfactorizable state, in this
paper we stick to the extended consensus that in systems of
identical fermions the minimum quantum correlations between
the particles that are required by the indistinguishability and
the antisymmetry of the fermionic state do not contribute to
the state’s entanglement [2,5–7,9,10,13–20]. Therefore in what
follows a composite system of N identical fermions is regarded
as separable (i.e., nonentangled) if and only if its density matrix
can be expanded as [6]

ρsep =
∑

k

pk

∣∣ψsl
k

〉〈
ψsl

k

∣∣, (9)

with |ψsl
k 〉 being a Slater determinant (said to have Slater rank

1) and
∑

k pk = 1. That is, a pure separable state of N identical
fermions is simply a single Slater determinant, whereas mixed
separable states are those that can be expressed as a statistical
mixture of pure states of Slater rank 1.

C. Bipartite concurrence in systems of two identical fermions

Equation (9) already indicates that quantification of en-
tanglement in identical-fermion systems exhibits some dif-
ferences from the corresponding concept as applied to sys-
tems consisting of distinguishable subsystems. The lowest-
dimensional system allowing a Slater rank larger than 1,
hence allowing entanglement, has N = 2 and d = 4, thus
resulting in a six-dimensional two-particle Hilbert space.
For this particular system, a fermionic analog of the two-
qubit concurrence exists, which measures the fermion-fermion
entanglement [5,8]. For an arbitrary pure state of the two
fermions,

|ψ〉 =
∑

i,j=1,...,4

wij f̂
†
i f̂

†
j |0〉, (10)

with wij being the elements of an antisymmetric matrix w

that fulfills the normalization condition Tr(ww†) = 1/2, the
fermionic concurrence reads

Cff (ψ) = 8|w12w34 − w13w42 + w14w23|, (11)

which in turn can be expressed as [see Eq. (1)]

Cff (ψ) =
√

2
(
1 − 2Trρ2

f

)
, (12)

where ρf is the single-fermion reduced density matrix.
Recently [30], a tripartite system was considered that

involved a pair of indistinguishable fermions and a third party
A (arbitrary except no third identical fermion is contained in
it). For a pure state |φ〉 of such a tripartite system, a measure
of entanglement defined in terms of the purity of the fermionic
reduced density matrix has been proposed to quantify the
bipartite entanglement between one of the fermions and the
rest of the system (second fermion plus A) [30]. Now, for
states of the form |φ〉 = |ψ〉ff |η〉A, clearly, the entanglement
between one fermion and the rest reduces to the entanglement
between the fermions (which are in a pure state). This means
that the aforementioned measure can be considered a suitable
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concurrence for any two-fermion pure state, that is,

Cff (ψ) =
√

2d

d − 2

(
1

2
− Trρ2

f

)
, (13)

in total analogy with the concurrence involving distinguishable
subsystems, Eq. (1). Notice that for d = 4, Eq. (13) reduces
to Eq. (12), as expected. The factor 2d/(d − 2) normalizes
the concurrence, so that Cff = 1 corresponds to a maximally
entangled state.

In the following section we will be interested in a gener-
alization of Eq. (13) to pure states of N identical fermions.
This will be of use in the generalization of the multipartite
concurrence (2) to fermionic systems.

III. MULTIPARTITE FERMION ENTANGLEMENT

A. General entanglement criterion for pure N-fermion states

A convenient bipartite entanglement criterion for pure states
of systems of N identical fermions was introduced in [10]. It
can be formulated in terms of the purity Trρ2

1 of a single-
fermion reduced density matrix and reads{

Trρ2
1 = 1

N
nonentangled,

1
d

� Trρ2
1 < 1

N
entangled.

(14)

In previous sections the reduced density matrix of a single
fermion was denoted as ρf . From now on and for clarity
purposes, we will denote with ρM the reduced density matrix of
a subsystem containing M fermions (with 1 � M � N − 1),
i.e., ρM = Tr(M+1,...,N)ρ.

A generalization of the entanglement criterion (14) that
holds for arbitrary bipartitions M : N − M of the complete
system is necessary in order to construct a multipartite
concurrence measure, analogous to Eq. (2), valid for identical
fermions. For an N -fermion pure state ρ = |ψ〉〈ψ |, such a
generalization can be formulated in terms of the purity of ρM ,
which fulfills

Trρ2
M �

(
N

M

)−1

. (15)

We provide a complete proof of inequality (15) in Appendix.
We also show that the equal sign holds if and only if |ψ〉
has Slater rank 1, so the state is separable. This allows us to
generalize (14) as follows⎧⎨

⎩Trρ2
M = (N

M

)−1
nonentangled,

1
dM

� Trρ2
M <

(
N

M

)−1
entangled,

(16)

where dM = ( d

min{M,N−M}
)
.

B. Multipartite concurrence

The entanglement criterion (16) allows us to formulate
an appropriate fermionic multipartite concurrence CNf

by
demanding that it vanishes whenever all the reduced density
matrices ρM , corresponding to all possible subsystems, are
minimally mixed.

From Eq. (15) we find that

N−1∑
M=1

(
N

M

)
Trρ2

M �
N−1∑
M=1

1 = (N − 1), (17)

where the equal sign holds only for separable states. Therefore
the quantity

CNf
(ψ) =

√√√√αN

[
(N − 1) −

N−1∑
M=1

(
N

M

)
Trρ2

M

]
, (18)

with αN � 0, can be considered a suitable multipartite con-
currence, analogous to Eq. (2), for the N -fermion system. The
factor αN is fixed depending on the maximum value allowed
for CNf

. By setting the maximal entanglement equal to unity
(CNf

� 1), we are led to

αN = 1

(N − 1) −∑N−1
M=1

(
N

M

)
1

dM

. (19)

With Eq. (18) at hand we are in a position to investigate whether
the maximum value CNf

= 1 is actually achieved for some
multifermionic states. A more detailed investigation of the
emergence of maximally multipartite-entangled pure states in
systems of N identical fermions is left for future analysis. Here
it suffices to consider three fermions with a single-particle
Hilbert space of dimension 6 in the following state:

|ψ〉f GHZ = 1√
2

(f̂ †
1 f̂

†
2 f̂

†
3 |0〉 + f̂

†
4 f̂

†
5 f̂

†
6 |0〉). (20)

Direct calculation shows that for such a state CNf
= 1. More-

over, the reduced two-fermion density matrices correspond to
separable states [of the form (9)], so that the tripartite state
is maximally entangled, whereas tracing over any one of the
subsystems destroys any entanglement present. The fact that
this last property is characteristic of the three-qubit GHZ states
explains the subindex in |ψ〉f GHZ , stressing that the latter is
the fermionic version of the usual GHZ states.

IV. CONCURRENCE AS THE MEAN VALUE OF AN
OBSERVABLE

In this section we show that the above multipartite concur-
rence (18) can be expressed as the mean value of an observable,
provided two (distinguishable) copies of the composite state
are available.

A. Observable related to the linear entropy

Let |ψ〉AB be a bipartite pure state. In this section A and B

may have an arbitrary number of subsystems (distinguishable
or not) of arbitrary dimensions. The density matrix of the
composite system is ρ = |ψ〉〈ψ |, and the reduced density
matrix of A reads

ρA = TrB |ψ〉〈ψ | =
∑

β

|φβ〉〈φβ |, (21)

where |φβ〉 = 〈β|ψ〉, with {|β〉} being an orthonormal basis of
HB . Equation (21) gives

ρ2
A =

∑
ββ ′

〈φβ |φβ ′ 〉|φβ〉〈φβ ′ |, (22)
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so

Trρ2
A =

∑
ββ ′

〈φβ |φβ ′ 〉〈φβ ′ |φβ〉

=
∑
ββ ′

〈ψ |β〉〈β ′|ψ〉〈ψ |β ′〉〈β|ψ〉

= 〈ψ |1 ⊗ 〈ψ |2

⎧⎨
⎩
∑
ββ ′

|β1〉〈β ′
1||β ′

2〉〈β2|
⎫⎬
⎭|ψ〉1 ⊗ |ψ〉2

= 〈ψ |1 ⊗ 〈ψ |2OB |ψ〉1 ⊗ |ψ〉2, (23)

where we introduced the subindices 1 and 2 to refer to the
copies of the system. Notice that the operator

OB =
∑
ββ ′

|β1〉〈β ′
1||β ′

2〉〈β2| (24)

acts on only the two copies of subsystem B.
Let us now consider the projector operators in (5)

P
(B)
± =

∑
ββ ′

1

4
(|β〉1|β ′〉2 ± |β ′〉1|β〉2)(〈β|1〈β ′|2 ± 〈β ′|1〈β|2),

(25)
which by direct calculation gives

P
(B)
± = I ± OB

2
. (26)

Substituting into Eq. (23), we get (omitting unnecessary
subindices)

Trρ2
A = 〈ψ | ⊗ 〈ψ |(±2P

(B)
± ∓ I)|ψ〉 ⊗ |ψ〉. (27)

Now, the linear entropy is S = 1 − Trρ2
A, and because of

the above results, we can conclude that any linear function of S

can be expressed as the mean value of an observable provided
two copies of the bipartite system are available. As stated
above, this holds for any pure state of arbitrary dimensions
(qubits, qudits, distinguishable, indistinguishable, fermions,
bosons, etc.). In particular, the usual concurrence (1), or the
fermionic concurrence (13), admits an expression in terms of
an observable.

In the expression for the multipartite concurrence (18) all
reduced density matrices, or, equivalently, all bipartitions M :
N − M , were considered. Therefore it is convenient to rewrite
Eq. (27) as

Trρ2
M = 〈ψ | ⊗ 〈ψ |O(N−M)|ψ〉 ⊗ |ψ〉, (28)

where the operator O(N−M) acting on the two copies of the
reduced (N − M)-particle system is

O(N−M) = ±2P
(N−M)
± ∓ I. (29)

Direct inspection of Eqs. (18) and (28) leads to

CNf
= √〈ψ | ⊗ 〈ψ |Af |ψ〉 ⊗ |ψ〉, (30)

with

Af = αN

[
(N − 1)I −

N−1∑
M=1

(
N

M

)
O(N−M)

]
. (31)

B. Observable related to the (usual) multipartite-concurrence
observable

The observable (31) is clearly one of (in principle) infinitely
many observables Af that comply with Eq. (30). A second
observable will now be derived based on the observable found
in [24] for the usual multipartite concurrence. From Eqs. (2)
and (3) we have

〈ψN | ⊗ 〈ψN |A|ψN 〉 ⊗ |ψN 〉 = 22−N

[
(2N − 2) − Tr

∑
i

ρ2
i

]
,

(32)
where, as stated in connection with Eq. (2), the index i labels
all the (2N − 2) subsets of the N -partite system. When dealing
with indistinguishable fermion systems, many terms in the
sum

∑
i ρ

2
i are identical. Specifically, there are

(
N

M

)
subsystems

characterized by the same ρM . In the fermionic case, Eq. (32)
is thus rewritten as

〈ψN | ⊗ 〈ψN |A|ψN 〉 ⊗ |ψN 〉

= 22−N (2N − 2) − 22−N

N−1∑
M=1

(
N

M

)
Trρ2

M. (33)

Comparison with Eq. (18) gives

CNf
=
√

〈ψN | ⊗ 〈ψN |A′
f |ψN 〉 ⊗ |ψN 〉, (34)

with

A′
f = αN (1 + N − 2N + 2N−2A) (35)

and A given by Eq. (4). An immediate difference between
the observable Af and A′

f is that the former involves N −
1 operators, whereas the latter involves a single factorizable
observable.

Experimentally, one usually faces a difference between
the two copies of the state whose concurrence one wants to
determine due to limited precision in the states’ preparation
procedure followed in the laboratory. In general, the two
prepared copies will not match exactly. A similar difficulty
arises, of course, when measuring the entanglement of bipartite
systems with distinguishable subsystems [31]. In order to
discuss how sensitive the estimation of the concurrence [via
equations such as (18)] is to small deviations from the
ideal preparation of identical copies, let us assume that we
are dealing with two different (normalized) states |ψN 〉 and
|ψ ′

N 〉, with |〈ψN |ψ ′
N 〉| � 1. The state |ψ ′

N 〉 can be expressed
as

|ψ ′
N 〉 =

√
1 − ε2|ψN 〉 + ε|δψN 〉, (36)

with 〈δψN |δψN 〉 = 1 and 〈ψN |δψN 〉 = 0. As discussed in
[31], the sensitivity of the measurement process to the mis-
match of both copies of the state can be estimated by comparing
Cexp = √〈ψN | ⊗ 〈ψ ′

N |A|ψN 〉 ⊗ |ψ ′
N 〉 with the mean value

Cmean = 1
2 [C(ψN ) + C(ψ ′

N )]. Inserting the expression in the
right-hand side of (36) into the expressions defining Cexp and
Cmean and expanding in powers of the small parameter ε, it
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can be readily verified that these two quantities coincide to
first order in ε. The difference between these quantities is of
order ε2. Consequently, to first order in ε the quantity that
one is actually measuring, Cexp, is a meaningful entanglement
measure: it represents the average between the concurrences
of the two copies. Second-order errors depend on the specific
forms of the states |ψN 〉 and |ψ ′

N 〉 and, consequently, on the
specific experimental process through which these states are
prepared. These errors can be analyzed only in a case-by-case
way. The effects of errors in the preparation process leading
to the production of mixed instead of pure states will also
affect the concurrence measurement. To study the impact of
this kind of error, we would need first to extend our present
results on fermionic multipartite concurrence to mixed states
of N identical fermions. We plan to address this issue in a
future work.

V. CONCLUSIONS

Summarizing, we have introduced a multipartite con-
currence for arbitrary-dimensional N -fermion pure states.
This goal has been achieved by generalizing a bipartite
separability criterion to arbitrary bipartitions M : N − M . In
addition, the generalization also provided a bipartite measure
of entanglement for fermionic pure states when any bipartition
is considered. In the case N = 3 we identified maximally
entangled fermionic states which become separable after
tracing over one of the constituent subsystems, in total analogy
with the standard GHZ state. Finally, we have shown how the
proposed concurrence can be written in terms of the mean
value of two different observables, assuming that two copies
of the fermionic state are available.
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APPENDIX: PROOF OF INEQUALITY (15)

Given a single-particle orthonormal basis {|i〉,i =
1, . . . ,d}, an arbitrary pure N fermion state can be written
as

|ψ〉 =
∑
i1···iN

ωi1···iN f
†
i1

· · · f †
iN

|0〉, (A1)

or, equivalently,

|ψ〉 = 1√
N !

∑
i1···iN

ωi1···iN
∑
P {i}

εi1···iN |i1 · · · iN 〉, (A2)

where the (in general) complex coefficients ωi1···iN are anti-
symmetric in all indices and comply with the normalization
condition ∑

i1···iN
|ωi1···iN |2 = 1

N !
. (A3)

The M-fermion reduced density matrix, ρM =
TrM+1···N |ψ〉〈ψ |, reads

ρM =
∑

jM+1···jN

〈jM+1 · · · jN |ψ〉〈ψ |jM+1 · · · jN 〉

= 1

N !

∑
jM+1···jN

∑
i1···iN

∑
l1···lN

ωi1···iN ω∗
l1···lN

∑
P {i}

∑
P {l}

εi1···iN εl1···lN 〈l1 · · · lN |jM+1 · · · jN 〉〈jM+1 · · · jN |i1 · · · iN 〉

= 1

N !

∑
i1···iN

∑
l1···lN

ωi1···iN ω∗
l1···lN

∑
P {i}

∑
P {l}

εi1···iN εl1···lN 〈lM+1 · · · lN |iM+1 · · · iN 〉|i1 · · · iM〉〈l1 · · · lM |. (A4)

Let Gk1···kM
denote the diagonal elements of ρM . Then,

Gk1···kM
= 〈k1 · · · kM |ρM |k1 · · · kM〉

= 1

N !

∑
i1···iN

∑
l1···lN

ωi1···iN ω∗
l1···lN

∑
P {i}

∑
P {l}

εi1···iN εl1···lN 〈lM+1 · · · lN |iM+1 · · · iN 〉〈k1 · · · kM |i1 · · · iM〉〈l1 · · · lM |k1 · · · lM〉. (A5)

The last line of Eq. (A5) sets l1 · · · lM = i1 · · · iM ; then P {l} contributes (N − M)! terms, and we finally obtain

Gk1···kM
= 1

N !

∑
i1···iN

|ωi1···iN |2(N − M)!N !|〈k1 · · · kM |i1 · · · iM〉|2, (A6)

Gk1···kM
=
{

(N − M)!
∑

i1···iN |ωi1···iN |2, if k1 · · · kM ∈ (i1 · · · iN ),
0, otherwise.

(A7)

Taking into account the symmetric character of Gk1···kM
under permutation of its indices, we can define

g
(i1···iN )
k1···kM

{
M!(N−M)!

N! , if k1 < · · · < kM ∈ (i1 · · · iN ),
0, otherwise,

(A8)
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so Eq. (A7) is finally rewritten as

Gk1···kM
= N !

∑
i1···iN

∣∣ωi1···iN
∣∣2g(i1···iN )

k1···kM
. (A9)

Now, in order to simplify the notation we assign

i1 · · · iN → iii, k1 · · · kM → kkk, N !|ωi1···iN |2 → diii , g
(i1···iN )
k1···kM

→ gkkkiii . (A10)

With this notation Eq. (A9) becomes

Gk1···kM
= Gkkk =

∑
iii

diiigkkkiii , (A11)

the normalization condition reads ∑
iii

diii = 1, (A12)

and gkkkiii satisfies

∑
kkk

g2
kkkiii =

(
N

M

)−1

. (A13)

Let us now consider the sum of the squares of the diagonal elements

∑
kkk

G2
kkk =

∑
kkk

(∑
iii

diiigkkkiii

)2

=
∑

kkk

{∑
iii

d2
iii g2

kkkiii + 2

(∑
iii<i ′i ′i ′

diiidi ′i ′i ′gkkkiiigkkki ′i ′i ′

)}

=
∑

kkk

⎧⎨
⎩
⎛
⎝∑

iii

diii

⎛
⎝1 −

∑
i ′i ′i ′ �=iii

di ′i ′i ′

⎞
⎠g2

kkkiii

⎞
⎠+ 2

(∑
iii<i ′i ′i ′

diiidi ′i ′i ′gkkkiiigkkki ′i ′i ′

)⎫⎬
⎭

=
∑

kkk

⎧⎨
⎩
(∑

iii

diiig
2
kkkiii

)
−
⎛
⎝∑

i ′i ′i ′ �=iii

diiidi ′i ′i ′g
2
kkkiii

⎞
⎠+ 2

(∑
iii<i ′i ′i ′

diiidi ′i ′i ′gkkkiiigkkki ′i ′i ′

)⎫⎬
⎭

=
∑

kkk

{(∑
iii

diiig
2
kkkiii

)
−
(∑

iii<i ′i ′i ′
diiidi ′i ′i ′

(
g2

kkkiii + g2
kkki ′i ′i ′ − 2gkkkiiigkkki ′i ′i ′

))}

=
∑

iii

diii

(∑
kkk

g2
kkkiii

)
−
{∑

iii<i ′i ′i ′
diiidi ′i ′i ′

∑
kkk

(gkkkiii − gkkki ′i ′i ′)
2

}
. (A14)

Using the relations (A12) and (A13), we finally get

∑
kkk

G2
kkk =

(
N

M

)−1

−
{∑

iii<i ′i ′i ′
diiidi ′i ′i ′

∑
kkk

(gkkkiii − gkkki ′i ′i ′)
2

}
�
(

N

M

)−1

. (A15)

Since we did not impose any restriction on the single-particle basis {|i〉}, Eq. (A15) holds for any basis. In particular, it holds
for the eigenbasis of ρM , in which

∑
kkk G2

kkk = Trρ2
M . We have thus established the following inequality:

Trρ2
M �

(
N

M

)−1

. (A16)

The only way for the equality sign to hold in (A16) is to have one of the diii equal to 1 and the rest equal to 0, meaning that there
is only one term in the original expansion for |�〉, Eq. (A1). This implies that |�〉 has Slater rank 1 and can thus be expressed as
one single Slater determinant.
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