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Abstract

Genetic improvement in apomictic forage species has been restricted because of the

absence of genetic variability in sexual germplasm with the same ploidy level. Follow-

ing a new breeding scheme, a sexual synthetic tetraploid population (SSTP) of Pas-

palum notatum has been generated. The objectives of this work were: (a) to evaluate

the genetic variability in SSTP by means of molecular markers, morphologic and agro-

nomic traits, and seed fertility and quality traits and (b) to assess the transference of

genetic variability from the apomictic germplasm to the sexual one. Molecular

markers revealed a twofold higher level of variability in the SSTP in comparison with

the sexual germplasm utilised for its generation, and similar levels with the apomictic

ones; moreover, markers showed that most of the variability was inherited from the

apomictic germplasm. Morphologic and agronomic traits and seed fertility and quality

traits showed high levels of variation in the three groups of genotypes indicating that

the new breeding scheme was effective in transferring variability from the apomictic

germplasm to the SSTP. This new population will be useful in breeding of P. notatum,

and the breeding scheme used for its generation may be used in other apomictic

species.
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1 | INTRODUCTION

Beef cattle production is largely dependent on native or planted for-

age species. Approximately half the cattle herds of the world is fed

with warm-season perennial grasses in tropical and sub-tropical coun-

tries, and around 60% of these grass species reproduce by apomixis

(Jank, Valle, & Resende, 2011). The majority of apomictic forage culti-

vars are direct selections resulting from exploring the species' natural

diversity (Miles, 2007; Vogel & Burson, 2004). In addition, the large

majority of cultivated area is planted with just one genotype, which

represents a threat of production losses due to abiotic stresses and

pest or disease problems (Jank et al., 2011).

Several studies concerning genetic diversity in populations of apo-

mictic species have demonstrated the existence of a high natural

diversity. This can be attributed to gene flow with sexual sympatric

populations (Daurelio, Espinoza, Quarin, & Pessino, 2004; García,

Balatti, & Arturi, 2007; Sartor, Rebozzio, Quarin, & Espinoza, 2013;

Brugnoli et al., 2013, 2014), residual sexuality (Rebozzio, Sartor,

Quarin, & Espinoza, 2011; Sartor et al., 2013) and mutations

(Hörandl & Paun, 2007). Despite that, it is generally accepted that
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apomictic populations are represented by a single or a few genotypes

(Brugnoli et al., 2013) due to apomictic reproduction that allows the

colonisation of new niches through a single individual (Hörandl, 2010).

Therefore, a higher diversity is observed between than within

populations (Brugnoli et al., 2013, 2014; Gornall, 1999; Gutierrez-

Ozuna, Eguiarte, & Molina-Freaner, 2009; Paun, Greilhuber, Temsch, &

Hörandl, 2006; Richards, 2003).

Paspalum notatum Flüggé is a warm-season perennial grass native to

Central and South America and particularly predominant on the grass-

lands of southern Brazil, Paraguay, Uruguay and northern Argentina

(Gates, Quarin, & Pedreira, 2004). It is cultivated as forage and utility turf

around the world (Blount & Acuña, 2009). The species has two cytotypes

with different modes of reproduction associated. The diploid cytotype

(2n = 2x = 20) reproduces sexually and is cross-pollinated (Burton, 1955),

whereas the tetraploid (2n = 4x = 40) reproduces by aposporous apo-

mixis (Gates et al., 2004). Indigenous diploids inhabit a small area of

northeast of Argentina, whereas the tetraploid cytotype grows all over

the natural distribution area of the species (Daurelio et al., 2004).

Genetic improvement of diploid P. notatum was carried out mainly

by means of recurrent phenotypic selection (Burton, 1982). Several cul-

tivars have been released to the market and a few have been adopted

by farmers in the southeastern United States (Blount & Acuña, 2009).

However, the majority of tetraploid cultivars are the result of ecotype

selection. After the generation of experimental sexual tetraploid geno-

types (ESTG) by chromosome doubling (Burton & Forbes, 1960; Quarin,

Espinoza, Martínez, Pessino, & Bovo, 2001; Quesenberry, Dampier,

Lee, Smith, & Acuña, 2010), numerous attempts have been made to

obtain heterotic apomictic hybrid cultivars through crossing sexual ver-

sus apomictic genotypes. However, this breeding scheme has the limi-

tation of low genetic variability of the female counterpart due to

difficulties in obtaining sexual tetraploid genotypes. In addition, a low

proportion of highly apomictic hybrids have been reported for sexual ×

apomictic crosses (Acuña, Blount, Quesenberry, Kenworth, & Hanna,

2009; Zilli et al., 2015). Until the present, the only tetraploid hybrid cul-

tivar of P. notatum released to the market is Boyero-UNNE (Reg.

No. CV-5, PI 676021) (Urbani et al., 2017). An interesting attempt to

increase the available sexual tetraploid germplasm has been made by

Quesenberry et al. (2010). These authors created a large number of

induced sexual genotypes using different chromosome duplication

treatments and tissue culture of the diploid cytotype.

With the hypothesis that the natural diversity can be transferred

from the apomictic germplasm of P. notatum to a synthetic sexual

population, the following three-step procedure was used: (a) crosses

were made between three ESTG and 10 natural apomictic tetraploid

genotypes (NATG; Zilli et al., 2015); (b) sexual hybrids were identified

by molecular markers linked to apospory and (c) a sexual synthetic

population was created by intercrossing 29 sexual F1 hybrids (Zilli

et al., 2018). This population could be of great utility for breeding the

species; however, there is insufficient knowledge about the level of

genetic variability in comparison with the apomictic wild and sexual

experimental germplasms.

The knowledge of genetic variability is the key for planning and

implementing breeding programmes (Poehlman, 1995). Many studies

have been performed in P. notatum assessing genetic variability by

means of molecular markers, such as random amplified polymorphic

DNA (RAPD; Daurelio et al., 2004), amplified fragment length poly-

morphism (AFLP; Espinoza, Daurelio, Pessino, Valle, & Quarin, 2006),

intersimple sequence repeat (ISSR; Cidade et al., 2009; Reyno et al.,

2012) and simple sequence repeat (SSR; Cidade et al., 2010), and/or

through morphologic markers (Barreto, 1974; Canto-Dorow, 1996;

Cidade et al., 2013; Fachinetto, Dall'Agnol, Lopes de Souza, Weiler, &

Simioni, 2017; De Moraes Fernandes et al., 1973; Reyno et al., 2012).

In all evaluated cases, a high genetic variability was found and mor-

phologic markers allowed the differentiation of botanical groups.

However, minimal or no correlation was found between molecular

and morphologic variability (Cidade et al., 2013; Reyno et al., 2012).

Seed production and quality are fundamental traits for both the

seed industry and farmers (Rios et al., 2015), and lack of either or both

can thwart the adoption of new cultivars by farmers (Jank et al.,

2011). P. notatum is not the exception because low seed germination

levels, due to seed dormancy, have been reported as an important lim-

itation for its adoption as a forage species (West & Marousky, 1989).

However, a high variability for seed set and germination have been

observed in P. notatum, especially for sexually reproducing genotypes

(Acuña, Blount, Quesenberry, Hanna, & Kenworthy, 2007; Acuña

et al., 2009), which would be very useful for breeding programmes,

especially taking into account the high heritability reported for seed

set and seed emergence in the species (Rios et al., 2017).

Fast germination and rapid growth are key factors for successful

seedling establishment in order to reach an appropriate stand in the pas-

ture, allowing optimal use of resources (Moser, 2000). Giordano, Berone,

and Tomás (2013) succeeded in improving seedling vigour by indirect

selection increasing seed weight. However, the authors did not find a

relationship between seed weight and germination rate. Moreover,

Tomás, Berone, Pisani, Ribotta, and Biderbost (2007) reported a high cor-

relation between seed weight and germination percentage in Panicum

coloratum when seed weight was under 1.34 mg per seed; after that

point, an increase in seed weight did not change seed germination. In

addition, Kneebone and Cremer (1955) grouped seeds of Panicum

virgatum in classes according to their weight and found that heavier

seeds achieved greater seed germination, seedling emergence and

vigour.

The objectives of this research were: (a) to analyse the genetic

variability of a sexual synthetic tetraploid population (SSTP), three

ESTG and a geographically diverse group of NATG by means of

molecular markers, morphologic and agronomic traits, and seed fertil-

ity and quality traits and (b) to assess the transference of genetic vari-

ability from the NATG to the SSTP.

2 | MATERIALS AND METHODS

2.1 | Plant material

Three groups of genotypes were used for this research. A group was

composed of three ESTG which was not considered a population but

rather as a control of known low heterozygosity content. This group
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included a plant generated by chromosome doubling from a diploid

plant (C4-4x) (Quarin et al., 2001), a highly sexual white stigma

bahiagrass (SWSB, also named Q3664), selected from an advanced

hybrid progeny originally obtained by crossing a sexual colchicine-

induced tetraploid plant with a natural apomictic tetraploid bahiagrass

bearing white stigmata (Burton & Forbes, 1960), and a sexual plant

Q4205 obtained by self-pollination from SWSB (Quarin et al., 2003).

The second group was formed by 10 NATG collected along the natu-

ral distribution range of the species (Figure 1). Finally, the third group

consisted of 306 genotypes belonging to a SSTP (Zilli et al., 2018).

This population was created by intercrossing 29 sexual F1 hybrids,

which were generated by crossing the sexual germplasm named ESTG

with the apomictic ecotypes identified as NATG.

2.2 | Molecular analysis

The molecular analysis was performed on 3 ESTG, 10 NATG and

306 individuals from the SSTP.

Genomic DNA extraction was performed using 150 mg of apical

meristem of each plant and following the protocol described by

Brugnoli et al. (2014). DNA integrity and quantity were estimated

using known concentration DNA patterns. Electrophoresis was per-

formed in 1% wt/vol agarose gel containing ×1 Tris-acetate-EDTA

buffer (40 mM Tris-HCl, 5 mM sodium acetate and 0.77 mM

ethylenediaminetetraacetic acid, pH 8.0) at 40 V for 60 min. DNA was

stained with ethidium bromide (1 μg/mL) for 30 min, visualised with

ultraviolet light, and photographed using a GelDoc-it Imaging System

(UVP, LLC). DNA samples were diluted to a concentration of 10 ng/μL

for their use in polymerase chain reaction amplification.

Eleven SSR primers of P. notatum developed by Cidade et al.

(2009) were screened for DNA amplification in a preliminary analysis.

Finally, seven primers were employed with all genotypes based on the

number and intensity of amplified markers, and the percentage of

polymorphism observed. DNA amplifications were performed follow-

ing the protocol described by Cidade et al. (2009) with minor modifi-

cations. Polymerase chain reactions were performed in a final volume

of 25 μL containing 20 ng of genomic DNA, ×1 Taq polymerase reac-

tion buffer, 0.15 mM 20deoxinucleósido 50-trifosfato (dNTPs), 0.8 μM

of each primer, and 1 U of Taq DNA polymerase (Promega). Amplifica-

tions were carried out using a thermal cycler Bio-Rad (My Cycler).

Cycles began within 5 min at 94�C followed by 5 cycles of 1 min at

94�C, 1 min at 65�C (decreasing 1�C per cycle) and 1 min at 72�C,

followed by 25 cycles of 1 min at 94�C, 1 min at 60�C and 1 min at

72�C, and a final extension of 5 min at 72�C. Amplicons were sepa-

rated in 6% wt/vol denaturing polyacrylamide gels, electrophoresed at

300 W for 3 hr, stained using ×1 SYBR Gold nucleic acid gel stain

(Invitrogen), and visualised by blue light using an UltraBright LED

transilluminator LB-16 (MAESTROGEN). Band patterns were photo-

graphed for analysis using a Coolpix L120 (Nikon) camera. The allele

scoring was done using the 100 bp DNA Ladder (Promega) as size

standards. Fragments with the same molecular size were considered

as analogous markers representing the same locus. Due to the fact

that the germplasm evaluated was autotetraploid, markers were

scored as dominant in a binary matrix with 1 meaning presence and

0 for absence. The molecular analysis was performed using the soft-

ware Info-Gen developed by the Faculty of Agricultural Science.

National University of Cordoba. Argentina. (Balzarini & Di Rienzo,

2013) and GenAlEx 6.5 developed by the Australian National Univer-

sity (Peakall & Smouse, 2012).

2.3 | Analysis of morphologic and agronomic traits

Plant material for this analysis was a random sample of 140 genotypes

from SSTP, together with 3 ESTG and 10 NATG. On September

7, 2015, plants were replicated by rooting tillers in 150-mL seedlings

flats and planted into the field 1 month later in 1-m centres. Treat-

ments were arranged in a completely randomised block design with

three replications. A border row of P. notatum plants was planted

around the plot. The experiment was located near to the city of Cor-

rientes, Argentina (27�280S, 58�470W); the soil type was classified as

alfic Udipsamment. On November 10, 2015, the plot was fertilised

with N–P–K (15–15–15) at a rate of 150 kg/ha.

Growth habit was estimated by measuring plant height (PH, cm)

and plant diameter (PD, cm). PH was measured from the soil level to

the top of the canopy, while PD was determined by an average

between the largest and the shortest diameter of a given plant.

Leaf blade length (LBL, cm) was measured on the first fully

expanded leaf in three different tillers per plant. Leaf blade width

(LBW, mm) was also determined by measure at the widest point of

the same leaves used for the blade length.

Flowering stem height (FSH, cm) was determined by an average

measure of three stems per plant, measuring from the soil level to the

axis of the first raceme of the inflorescence. In the same
F IGURE 1 Collection sites of the 10 natural apomictic tetraploid
genotypes of Paspalum notatum
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inflorescences, raceme length (RL, cm) was also determined. All the

variables mentioned above were measured on May 1, 2016.

Biomass production per plant (BP, g) was determined on May

25, 2016 by cutting plants at 8-cm stubble height. The fresh weight of

harvested material was recorded and a subsample per family of half-

sibs was collected and dried at 60�C for 72 hr. After weighing, BP was

calculated.

Frost tolerance (FT) was estimated on July 10, 2016, 2 days after

the first frost event of the season, when temperatures reached −2�C

at soil level, using a 1-to-5 scale, where 1 represents the least frost

tolerant and 5 represents the most tolerant plant.

Winter regrowth (WR) was determined on September 23, 2016

using a 1-to-5 scale, where 1 represents plants with the least above-

ground growth and 5 represents plants with the greatest amount of

biomass.

2.4 | Seed set and quality analysis

Seed set and quality were estimated on the ESTG, NATG and a ran-

dom sample of 30 individuals of the SSTP during the year 2017. The

evaluated plants were the same cultivated in the plot described

above.

Seed set was determined under two different pollination methods,

using three replications per plant, during January 2017. Self-pollination

seed set was measured by enclosing three to four inflorescences per

plant in glassine bags a day prior to the anthesis of spikelets. Open-

pollination seed set was estimated using three or four inflorescences

per plant, enclosing them after anthesis in order to avoid seed loses.

Inflorescences were harvested 30 days after anthesis, dried at 37�C for

48 hr and manually threshed. A seed blower was used to separate the

spikelets with seed (caryopsis) from the empty ones. Each replica was

processed separately, and the weight of 1,000 seeds was calculated for

each. Germination of seeds was evaluated by sowing three replicas of

50 seeds each on October 19, 2017 under greenhouse conditions.

Seeds had a storage period of around 7 months at room temperature.

Germination was recorded daily until 21 days after sowing. The speed

of germination was calculated based on the following equation: germi-

nation at 8 days × germination at 21 days/100.

2.5 | Statistical analysis

Because plant material used in this study was tetraploid, markers were

scored and analysed as dominants. DNA amplification profiles

obtained for each plant were introduced into a binary-data matrix.

The presence of a marker was scored as 1 and absence as 0. The

resulting binary-data matrix was analysed using a statistical software

package, Info-Gen (Balzarini & Di Rienzo, 2013). Genetic distances

among individuals were measured by the Jaccard's dissimilarity coeffi-

cient (1-S). Correlation among genetic and geographic distance was

estimated in the NATG using Pearson's correlation coefficient.

Morphologic and agronomic traits, and seed set were analysed

using Info-Gen software (Balzarini & Di Rienzo, 2013) as a completely

randomised block design with three replications (vegetative clones),

whereas seed quality traits were analysed as a completely randomised

design with three replicates. Data were analysed using analysis of var-

iance (ANOVA). Fisher's least significant difference (LSD) test was

used for comparing pairs of means, using a significance at p < .05. Nar-

row sense heritability (h2) was calculated by estimation of variance com-

ponents using the statistical software R 3.4.2 (R Core Team, 2016) by

means of the generalised mixed linear models. Correlation among traits

was estimated using Spearman's correlation coefficient for morpho-

agronomic traits and Pearson's correlation coefficient for seed fertility

and quality traits. Principal component analysis (PCA) was also performed

to estimate distribution of genotypes and group of genotypes.

3 | RESULTS

3.1 | Molecular characterisation

A total of 124 markers were amplified in the SSTP, the NATG and the

GTSE using seven SSR primers, with a range from 11 to 35 markers

per primer (average of 18). SSRs primers showed a high polymorphism

with only two monomorphic markers (average of 98% of polymor-

phism) (Table 1). Because markers were scored as dominant, it was

not possible to determine allelic frequency. Polymorphic information

content (PIC) was calculated to estimate the level of information pro-

vided by each primer. The PIC varied from 0.23 to 0.36, and consider-

ing that PIC varied from 0 to 0.5 for dominant markers, these primers

can be considered as moderately to highly informative (Table 1).

The SSTP amplified 124 loci, a similar amount was observed in

NATG (122), whereas ESTG showed only 68 (Table 2). The higher per-

centage of polymorphic loci (PLP) was observed in the SSTP (98),

followed by NATG (91) and finally by ESTG (39) (Table 2). The

expected heterozygosis was similar between SSTP and NATG (0.31

and 0.29, respectively), and lower in the ESTG (0.15) (Table 2).

The genetic distance measured by Jaccard's dissimilarity coeffi-

cient varied from 0.45 to 0.59 in the ESTG, with the lesser distances

belonging to genotypes Q4205 and SWSB, whereas NATG showed

TABLE 1 Molecular analysis performed with SSR markers in the
sexual synthetic tetraploid population, the natural apomictic tetraploid
genotypes and the experimental sexual tetraploid genotypes of
Paspalum notatum

Primer PM MM TM PPL PIC

PN03-A6 16 0 16 100 0.27

PN02-G10 12 1 13 92 0.28

PN03-A5 11 0 11 100 0.27

PN02-H7 16 1 17 94 0.24

PN03-G8 12 0 12 100 0.23

PN03-H10 20 0 20 100 0.36

PN03-F6A 35 0 35 100 0.34

Total 122 2 124 98 0.28

Abbreviations: MM, monomorphic markers; PIC, polymorphic information

content; PM, polymorphic markers; PPL, percentage of polymorphic loci;

TM, total markers.
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range from 0.36 to 0.67 (data not shown). Distances between geno-

types of the SSTP varied from 0.02 to 0.82 (data not shown). There

was no correlation between molecular and geographic distances for

the NATG (p = .56).

In an analysis of private markers, it was observed that the three

groups of genotypes shared 56 markers, while 68 markers were ampli-

fied differentially for each of them. The SSTP amplified 66 markers

present in the NATG which were absent in the ESTG, therefore, these

were transferred from the apomictic germplasm. On the other hand,

only two markers were shared between the SSTP and ESTG which

were absent in the NATG, therefore, these were inherited from the

experimental sexual germplasm.

3.2 | Morphologic and agronomic characterisation

A series of six morphologic and three agronomic traits were evaluated

in the ESTG, NATG, and a sample of 140 genotypes representative of

the phenotypic variation from the SSTP.

The SSTP showed a taller PH than the NATG, whereas ESTG did

not show significant differences with the other groups. The NATG

exhibited greater PD than the remaining groups of genotypes. Finally,

the SSTP showed greater long blade length than the other two

groups. No significant differences were found for the remaining mor-

phologic traits (p > .05).

The biomass production of the ESTG averaged 153 g per plant

(Table 3), with a range from 10.4 g (genotype C4-4x) to 328 g (geno-

type SWSB). The NATG had an average production of 165 g per plant

(Table 3), with genotype TB86 being the least productive (50.4 g) and

Q3776 the most productive (266 g). The SSTP showed an average dry

matter production of 196 g per plant (Table 3), with a range from 0 g

(genotype J10#9 had a height of less than 8 cm) to 490 g (genotype

H12#1). No significant differences were found among the three

groups of genotypes. Similarly, no significant differences were found

among the three groups for FT and WR (p > .05).

The ANOVA revealed that the LBL and LBW traits were signifi-

cantly affected by “Genotype” only, suggesting a certain degree of

independence for environmental conditions. The remainder evaluated

traits showed a significant effect for both “Genotype” and “Block”

sources of variation, but the interaction “Genotype × Block” was not

significant for any variable (p > .05).

Coefficients of variation (CV) were used to estimate variability in

the three groups of genotypes. Agronomic traits showed greater CVs

in comparison with the morphologic ones. BP, FT, and WR showed

values of 69.0, 43.5 and 37.6, respectively. Meanwhile, the morpho-

logic traits showed values of 31.0, 25.5, 23.5, 19.7, 16.9 and 14.4 for

PD, PH, LBL, FSH, RL and LBW, respectively (Table 3).

TABLE 2 Estimators of genetic variability based on seven simple
sequence repeat (SSR) primers for the sexual synthetic tetraploid
population (SSTP), the natural apomictic tetraploid genotypes (NATG)
and the experimental sexual tetraploid genotypes (ESTG) of Paspalum
notatum

Group of
genotypes

Total no.
of loci

Percentage of
polymorphic loci

Expected
heterozygosis

SSTP 124 98 0.31

NATG 122 91 0.29

ESTG 68 39 0.15

TABLE 3 Mean, standard error (SE), coefficients of variation (CV) and narrow sense heritability (h2) for nine morpho-agronomic traits

evaluated in the natural apomictic tetraploid genotypes (NATG), experimental sexual tetraploid genotypes (ESTG) and sexual synthetic tetraploid
population (SSTP)

PH (cm) PD (cm) LBL (cm) LBW (cm) FSH (cm) RL (cm) BP (g) FTa WRa

NATG

Mean 33.4 33.5 27.4 8.57 58.4 12.8 165 2.5 2.6

SE 1.95 1.08 1.15 0.23 1.77 0.51 23.4 0.13 0.18

CV 31.9 17.6 23 15 16.6 21.7 77.7 29.2 37.2

ESTG

Mean 39.1 25.3 27.2 7.5 51.9 12.6 153 1.89 2.56

SE 6.42 2.74 2.79 0.39 5.73 0.77 50.8 0.26 0.34

CV 49.3 32.5 30.7 15.6 33.1 18.2 99.7 41.4 39.7

SSTP

Mean 44.8 22.6 32.4 8.53 59.8 12.8 197 2.66 2.82

SE 0.52 0.33 0.37 0.06 0.61 0.11 6.55 0.06 0.05

CV 23.6 29.8 23 14.2 19.6 16.4 67.9 44.1 37.6

h2 0.43 0.4 0.32 0.48 0.57 0.58 0.38 0.31 0.43

Abbreviations: BP, biomass production; FSH, flowering stem height; FT, frost tolerance; LBL, leaf blade length; LBW, leaf blade width; PD, plant diameter;

PH, plant height; RL, raceme length; WR, winter regrowth.
aVisually estimated using a 1-to-5 scale.
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The comparison between the CV of the different group of geno-

types was variable depending on the trait considered. For instance, a

higher CV was observed for ESTG for BP, WR, PH and PD, LBL and

LBW and FSH. The NATG had a greater CV for RL, whereas the SSTP

showed a greater CV for FT (Table 3).

Narrow sense heritability (h2) varied between 0.31 and 0.58. The

higher h2 values were found in the traits FSH and RL (0.57 and 0.58,

respectively), whereas the lowest values were observed in the traits

FT and LBL (0.31 and 0.32, respectively).

Principal component analyses grouped seven NATG in the positive

sector of Principal Component 2 (PC2), characterised mainly by greater

PD. The ESTG were distributed without following a defined pattern, for

instance, genotype C4-4x was located at the negative sector of PC1,

characterised by low vigour, whereas SWSB was at the positive sector

exhibiting greater plant vigour. The 140 genotypes from the SSTP

showed a wide distribution; even out of the distribution area of the

NATG and ESTG throughout the PC1, which represented 53.5% of the

variation. Considering the area of PCA covered by each group of geno-

types, it was possible to observe that SSTP covered a much wider area

than the other groups suggesting a greater variation for the evaluated

traits (Figure 2).

The analysis of Spearman's correlation did not show a negative

correlation among traits. All agronomic traits were highly correlated

(r > .64; p < .001). On the other hand, morphologic traits were less

correlated among themselves. PH was correlated with LBL (r = .61;

p < .001) and FSH (r = .59; p < .001), whereas FSH was correlated

with RL (r = .56; p < .001). A correlation between agronomic and mor-

phologic traits was found for BP with FSH (r = .51; p < .001) and PH

(r = .61; p < .001), and between PH and WR (r = .56; p < .001).

3.3 | Seed set and quality

Seed set, the weight of 1,000 seeds (W1000), germination percentage

at 21 days after sowing (Germ.) and speed of germination (S.G.) were

estimated in the three groups of genotypes.

There was no interaction between genotype and pollination

method for any of the four evaluated variables.

Significant differences were found for seed set among the three

groups of genotypes for both pollination methods. Seed set in self-

pollinated plants was greater in NATG (18.1%) than in the ESTG and

SSTP (7.4 and 10.3%, respectively). Similarly, seed set under open-

pollination was greater in NATG (32.1%), followed by SSTP (23.4%),

and finally by ESTG (10.9%) (Table 4). Moreover, seed set in NATG

and SSTP was greater under open-pollination than self-pollination,

whereas non-significant differences were found for ESTG between

both pollination methods (p > .05).

The W1000 showed a mean of 3.42 and 3.44 g for self- and

open-pollination, respectively, without significant differences

between them (p = .99). The ANOVA considering both pollination

methods together showed that NATG and SSTP had greater W1000

(3.64 and 3.54 g, respectively) than ESTG (3.13 g).

No significant differences were found for germination of seeds

among the three groups of genotypes (p = .68) for either pollination

method (p = .13). The overall mean of percentages of germination

observed in this work was 29.9%.

There were no significant differences for the speed of germination

between pollination methods (p = .23). Similarly, there were no differ-

ences among groups of genotypes when the ANOVA was performed

including both pollination methods (p = .15). The overall mean for the

speed of germination was 7.24% (Table 4).

The CVs for self-pollination were greater in ESTG for most of the

seed quality traits, with the only exception of S.G. where the SSTP was

greatest. When the comparison was performed for variables under open-

pollination, the ESTG showed the greatest CV for percentage of seed set

(S.s.) and W1000, followed by NATG in S.s. and by SSTP in W1000. The

NATG showed the greatest value for Germ. Finally, just like under self-

pollination, the SSTP showed the greatest CV for S.G. (Table 4).

Narrow sense heritability showed the greatest values for Germ.

and W1000 in both pollination methods (Table 4). The lowest h2

values were found for S.G. (0.25) and S.s. (0.36) under open- and self-

pollination, respectively. The h2 values for seed set were almost the

same under both pollination methods (Table 4).

Using PCA, based on open-pollinated data, it was possible to

observe that the ESTG grouped at the negative sector of PC2

characterised mainly by low seed set (Figure 3). In addition, just like in

the morpho-agronomic evaluation, genotypes C4-4x and SWSB

showed a clear contrast of performance. While C4-4x exhibited very

low performance for all evaluated seed set and quality traits, SWSB

showed superior performance (with exception of seed set). The NATG

did not form a well-defined group, but almost all of them were located

in the positive sector of PC2, characterised by greater seed set. The

ESTG and NATG showed a wide distribution across PC1, however,

the majority of them are located in the negative sector, characterised

by low W1000, Germ. and S.G. (Figure 3). Finally, the individuals of

the SSTP showed a wide distribution across the four quadrants of the

PCA indicating a broad variation for all the evaluated seed quality

traits (Figure 3). However, the majority of them are located at the neg-

ative sector of PC2 (Figure 3).

F IGURE 2 Principal component analysis based on nine
morphological and agronomic traits. Plant diameter (PD), plant height
(PH), leaf blade length (LBL), leaf blade width (LBW), flowering stem
height (FSH), raceme length (RL), biomass production (BP), frost
tolerance (FT) and winter regrowth (WR)
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An analysis of Pearson's correlation was performed for all evalu-

ated genotypes under open-pollination. A high correlation was found

for germination and speed of germination (r = .84; p < .001). A signifi-

cant correlation was also found between germination and the W1000

(r = .44; p < .001), and between the speed of germination and the

W1000 (r = .3; p < .001).

4 | DISCUSSION

Genetic variability is the key for planning and implementing breeding

programmes, allowing a better utilisation of resources and increasing

the improvement efficiency (Poehlman, 1995). Recently our research

group has generated a sexual synthetic population of P. notatum,

attempting to transfer the genetic variability from the apomictic to

the sexual tetraploid germplasm (Zilli et al., 2018). This population is

expected to be the base gene pool for breeding of tetraploid

P. notatum. However, the genetic variability included in this novel

germplasm is unknown. In this work, we performed a wide genetic

characterisation of the SSTP in order to know its diversity and the

efficiency of the breeding scheme used to transfer the variability from

the apomictic to the sexual germplasm.

The seven SSR primers amplified numerous markers with a high

level of polymorphism. The PIC was variable depending on the primer,

TABLE 4 Mean, standard error (SE), coefficients of variation (CV) and narrow sense heritability (h2) for seed quality traits evaluated in the
natural apomictic tetraploid genotypes (NATG), experimental sexual tetraploid genotypes (ESTG) and sexual synthetic tetraploid
population (SSTP)

Self-pollination Open-pollination

S.s. (%) W1000 (g) Germ. (%) S.G. (%) S.s. (%) W1000 (g) Germ. (%) S.G. (%)

NATG

Mean 18.1 3.57 34.9 9.54 32.1 3.5 27.1 5.62

SE 1.74 0.13 4.03 2.35 1.76 0.11 4.12 1.95

CV 51.9 20.3 62.2 137 29.0 17.2 83.3 164

ESTG

Mean 7.4 3.07 30 10.8 10.9 3.19 30.6 5.60

SE 3.48 0.25 12.41 6.55 3.93 0.27 8.29 2.52

CV 124 22.4 109 182 95.7 22.6 76.5 135

SSTP

Mean 10.3 3.63 30.1 7.00 23.4 3.64 26.6 4.85

SE 1.24 0.08 2.86 1.15 1.23 0.06 2.08 0.94

CV 102 18.8 78.4 195 46 15.8 72.3 188

h2 0.36 0.52 0.58 0.42 0.38 0.43 0.46 0.25

Abbreviations: S.s., seed set; W1000, weight of 1,000 seeds; Germ., germination percentage; S.G., speed of germination.

F IGURE 3 Principal component
analysis based on the four seed quality
traits obtained under open-pollination
conditions. Percentage of seed set (S.s.),
weight of 1,000 seeds (W1000),
germination of seeds (Germ.) and speed of
germination (S.G.)
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and, taking into account that it was used as dominant, the obtained

data can be considered moderately to highly informative. The PICs

reported in this study were lower than those reported by Cidade et al.

(2009) using the same primers. However, the ranking of primers

according to their PIC was the same. In addition, the average markers

amplified per primer in this work were twofold greater than those

reported by Cidade et al. (2009), which may be due to differences on

the stain method or quality of the DNA-Polymerase enzyme. The

genetic distances found between the 10 NATG used to generate the

SSTP were large and greater than those reported by Espinoza et al.

(2006) using AFLP markers and by Cidade, Dall'agnol, Bered, and

Souza-Chies (2008) using ISSR markers. These differences may be

due, on one hand, to the diverse geographic origin of the genotypes

used in this work and on the other hand, to the high variation of

microsatellites on the genome as a consequence of a high mutation

rate (Toutz, 1989).

The lack of correlation between molecular and geographic dis-

tances reported for the NATG shows the absence of a geographic

structure of the apomictic germplasm used in this study. This lack of

structure could be the result of colonisation of new ecologic niches

from one or a few apomictic individuals. The lack of correlation

between molecular and geographic distances has been reported previ-

ously in P. notatum by Cidade et al. (2008) and Reyno et al. (2012), in

P. simplex by Brugnoli et al. (2014), and similar results, were also

reported for other apomictic species (Paun et al., 2006). In addition,

considering that diploid cytotype is the key for the origin of the tetra-

ploid one (Ortiz et al., 2013), it is probable that the natural distribution

of the diploid cytotype was wider than that observed in the present.

The percentage of polymorphic loci found in the SSTP was slightly

greater than that observed in the NATG, and 2.5-fold greater than

that observed in the ESTG. Similarly, the expected heterozygosis of

the SSTP was comparable to the NATG and much greater than the

ESTG. The SSTP amplified 56 markers unique to NATG and only two

unique to ESTG. This result is a consequence of a greater number of

allelic variants contributed by NATG than by ESTG. The ESTG group

was composed by only three genotypes and two of them were closely

related since Q4205 was derived from SWSB by self-pollination in a

sexual reproductive event (Quarin et al., 2003). On the other hand,

the sexual plant C4-4x is a doubled diploid with an allelic set up

duplex for all loci; this means that its heterozygosity content is lower

with respect to a hybrid or open pollinated (auto)tetraploid. The SSTP

amplified the 122 markers presents in the NATG showing that the

natural variability of apomictic germplasm was effectively transferred

to the sexual synthetic tetraploid germplasm.

There were significant differences among the three groups of

genotypes for the morphological traits LBL and LBW, and PH and PD,

whereas the remaining traits did not show differences. The relation-

ship between PH and PD indicate the growth habit of plants. The

SSTP showed an average PH that was twofold greater than the diam-

eter (44.8 and 22.6 cm, respectively), which indicates an erect growth

habit. The NATG showed similar PH and PD (33.4 and 33.5 cm,

respectively) indicating a prostrate growth habit. Finally, the ESTG

showed a 1.6-fold larger PH than PD (39.1 and 25.4 cm, respectively),

which is associated with a semi-erect growth habit. Moreover, the

CVs for growth habit were similar among the three groups of geno-

types (33, 38 and 39% for NATG, ESTG and SSTP, respectively; data

not shown), indicating that natural variability for this trait present in

NATG and ESTG was transferred to the SSTP. A prostrate growth

habit in P. notatum has a relation with the persistence of the pasture

under grazing and the ability to cover the soil and compete with

weeds, whereas an erect growth habit is more related to higher BP

(Acuña, Blount, Quesenberry, Kenworthy, & Hanna, 2011; Acuña

et al., 2009; Interrante et al., 2009). Fortunately, the high CV observed

for PH and PD in the SSTP, and the high heritability and the lack of

negative correlation between both traits, show that it would be possi-

ble to select plants that combine persistence and high forage

production.

The lack of correlation between molecular versus morphologic

and agronomic variability could be due to the type of molecular

marker employed. Microsatellites are usually located on non-coding

regions of the genome; therefore, genes involved in the expression of

the evaluated traits were apparently not associated with the micro-

satellites used on this work. This lack of correlation was also observed

using ISSR markers (Cidade et al., 2013; Reyno et al., 2012).

The CVs among the three groups of genotypes varied depending

on the evaluated trait, unlike what was observed in the molecular

analysis. In general, there were similar levels of variability between

the SSTP and NATG for both the comparison of CVs and the PCA.

This finding is clear evidence that the variability of NATG was trans-

ferred to the SSTP. In addition, the high CV observed in the ESTG,

particularly for agronomic traits, is attributed to the huge differences

in vigour and agronomic performance among genotypes included in

this group. The genotype C4-4x is an autotetraploid plant generated

by chromosome duplication with colchicine from a diploid plant,

characterised by very low vigour, whereas the genotype SWSB has a

hybrid origin, and it was selected based on its high vigour and agro-

nomic performance. The relatively high homozygosity is known to be

negatively correlated with vigour in autotetraploid seed propagated

plants. The highest yield is expected when alleles correlated with vig-

our are heterozygous and in trans chromosome conditions (theory of

linkats; Demarly, 1979).

The PCA revealed a wide distribution of the 140 individuals of the

SSTP, even outside of the range covered by its ancestors, ESTG and

NATG. This result indicated that the SSTP has individuals with a new

and useful combination of traits. In Figure 2, it can be seen that

around 10% of the SSTP combined several traits of interest for

genetic improvement. The lack of negative correlation between traits,

and the fact that many of these traits (particularly, the agronomic

ones) are positively correlated, is a clear advantage for using this syn-

thetic population for breeding programmes. The intermediate levels of

narrow sense heritability reported in this work suggest that recurrent

selection based on specific or general combining ability (Comstock,

Robinson, & Harvey, 1949) would be suitable for breeding this germ-

plasm. In addition, the hybrids obtained in crosses performed with

apomictic genotypes could be evaluated as potential new cultivars,

and at the same time improving the synthetic population (Miles,
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2007). Another option might be the use of recurrent restricted pheno-

typic selection (Burton, 1982), which was successful in breeding the

diploid germplasm of the species (Blount & Acuña, 2009).

Seed set under self-pollination was greater in the NATG than that

observed in sexual tetraploid genotypes. This result is expected for

apomictic plants (Vogel & Burson, 2004) and is in agreement with pre-

vious reports for the species (Acuña et al., 2007; Burton, 1948). The

NATG showed twofold greater open- than self-fertility, similar to the

observed levels in the SSTP. Nevertheless, the NATG exhibited

greater open-fertility than the SSTP, whereas the ESTG showed the

lowest value. Marked variation was observed among genotypes on

the three evaluated groups under open-pollination, an even greater

level than under self-pollination. The higher CV observed for the

ESTG for both self- and open-fertility is due to the contrasting geno-

types included in this group, as explained above. The CV of the SSTP

under both pollination methods was greater than that observed on

the NATG, indicating a greater variability for these traits in the sexual

germplasm. In addition, the observed variation on the SSTP would be

useful for selecting highly self-sterile plants for production of hybrids,

and at the same time, highly cross-fertile plants to improve seed

production.

There were no significant differences either for seed quality traits

or for pollination methods among the three groups of genotypes. The

average seed weight reported for the three analysed groups in this

work (3.58 g) was greater than that reported by Lopes et al. (2011) for

apomictic tetraploid entries (2.27 g). In turn, the average seed weight

in the three groups of genotypes was similar to those reported by Rios

et al. (2015) for the apomictic tetraploid cultivar Argentine (≈3.6 g).

Seed weight showed the least variation among the seed quality traits

evaluated in this study. The CVs for this trait were similar between

the three groups of genotypes, supporting the hypothesis of effective

transference of variability from apomictic genotypes to the SSTP.

Seed germination in P. notatum, as in almost all warm-season

grasses, has been considered the main factor affecting success in

establishment, together with seedling vigour (West & Marousky,

1989; Williams & Webb, 1958). Low seed germination in P. notatum is

related to dormancy in viable seeds, due to the presence of coat fac-

tors (West & Marousky, 1989). Seed dormancy depends on genotypes

evaluated and environmental conditions during seed production and

seed filling (Adjei, Mislevy, & Chason, 1992; Gates & Burton, 1998).

The average seed germination observed in this study was 29% after

an aging period of approximately 7 months. High variability was

observed in the evaluated germplasm for this trait, indicating that

improvement would be possible in this plant material.

Rapid germination and emergence of seedlings are key factors for

successful establishment of the pasture (West & Marousky, 1989).

The overall rate of germination observed in this work was 6%, with no

significant differences among the three groups of genotypes or

between pollination methods. Gates and Burton (1998) reported 16.4

and 4.7% of seedling emergence 7 days after sowing for years 1995

and 1996, respectively. They observed differences between entries of

diploid P. notatum that favoured the improved germplasm, and this

was because one of the breeding targets was seedling vigour,

obtained by early germination. Giordano et al. (2013) reported an

improvement in seedling vigour and seedling emergence 7 days after

sowing, after 1 cycle of selection targeting greater seed weight in

P. coloratum var. makarikariense, but they found no differences in

seedling emergence 14 days or more after sowing. The high heritabil-

ity observed for seed weight and germination, and the correlation

observed between both traits, is a useful finding for breeding the spe-

cies. The selection over an easily measured trait, such as seed weight,

would likely also result in improved seed germination and speed of

germination. The correlations observed in this work have been

observed previously for this species by Adjei et al. (1992) and Gates

and Burton (1998).

CV for seed set and quality traits were relatively high in the ESTG

despite the low number of individuals in this group. This finding may

be related to the large differences in vigour and fertility between

genotypes C4-4x and SWSB, due to their origin, as was explained

above. Sexual germplasm of P. notatum (ESTG and SSTP) showed

greater variability for seed set than NATG. CVs were similar for seed

weight and rate of germination among the groups of genotypes for

both pollination methods, as well as for seed germination under open

pollination. This finding indicates that there was not a reduction in

variability during the generation of the SSTP. Finally, the PCA showed

a wide distribution of the individuals from the SSTP for both principal

components, which indicates the presence of a new combination of

traits in this novel sexual tetraploid germplasm. The high variability

observed in this novel population together with the moderate to high

heritability observed indicate that it would be possible to improve this

population using breeding methods developed for cross-pollinated

species such as the recurrent restricted phenotypic selection devel-

oped by Burton (1982). In these cases, it would be important to select

highly self-sterile sexual plants to avoid inbreeding. Further studies

should be performed on this germplasm in order to identify individuals

of high general and/or specific combining ability on crosses with elite

apomictic cultivars, to be included in a recurrent selection scheme

aimed at accumulating additive and non-additive effects.

In conclusion, the molecular analysis performed with microsatellite

markers indicated that the SSTP presented an average of twofold

greater variability than ESTG, and similar levels to NATG. Most poly-

morphic markers (98%) present in SSTP were transferred from NATG.

Moreover, the variability observed in SSTP for a series of morphological

and agronomic traits and seed fertility and quality traits was as high as

that present in NATG. These findings indicate that the variability inher-

ent in a group of natural apomictic genotypes, collected from diverse

origins, was effectively transferred to the novel sexual synthetic tetra-

ploid germplasm of P. notatum, providing a valuable genetic resource

for breeding programmes with this species.
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