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Highlights

• Loss of complexity is associated with elevated Intracranial Pressure

• The loss of compensatory mechanism in the cerebral autorregulation
icreases the Missing Patterns in the Permutation Entropy calculation
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Sáenz Peña 352 (B1876BXD), Bernal Buenos Aires, Argentina.

Abstract

Intracranial Pressure (ICP) is one of the main neuromonitories used today
to guide the treatment of acute neurological patients in the Intensive Care
Unit (ICU).

Within this article the complexity of periods of intracranial hypertension
is evaluated and compared with periods of stable intracranial tension. Using
the multiparameter intelligent monitoring in intensive care III (MIMIC-III)
database from the Beth Israel Deaconess Medical Center the complexity of
periods of stable intracranial tension and high intracranial hypertension are
evaluated using two quantifiers: the Permutation Entropy and their respec-
tive number of missing patterns. Both indicate a loss of complexity in hy-
pertension signals. A physiological explanation of this loss of complexity is
given using a dynamical model of the Cerebral Autorregulation and Cerebral
Hemodynamics.

Keywords: Intracranial Pressure, Clinical manifestation of Complexity,
Permutation Entropy
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Introduction1

Intracranial Pressure (ICP) is one of the main neuromonitories used to-2

day to guide the treatment of acute neurological patients in the Intensive3

Care Unit (ICU) [1]. It is determined by the relation of the cranial cavity4

and its content (brain tissue, cerebrospinal fluid and blood volume) and reg-5

ulated by a complex mechanism that allows to maintain its value in different6

situations [2]. One component of this mechanism is Cerebral Autoregulation7

(CA) that enables changes in blood flow and volume in the face of changes in8

blood pressure. CA and ICP have a complex interrelation where the main-9

tenance of ICP depends on the preservation of CA and this depends in turn10

on ICP since the presence of intracranial hypertension (ICH) exhausts CA11

mechanism. Many mathematical models were proposed to understand the12

CA dynamics [3, 4, 5]. From a system’s dynamics point of view and fol-13

lowing the model proposed by Ursino et al. [5] for the interaction between14

ICP and cerebral hemodynamics (Fig. 1), there are three different negative15

feedback control loops that preserve cerebral autoregulation, and a positive16

feedback loop that causes instabilities due to active changes in the arterial-17

arteriolar blood volume. The instability in CA caused by the feedback IV18

(See Fig. 1) is the type of instability studied in this article using a com-19

plexity framework: if the patient has a modest Cerebrospinal Fluid (CSF)20

outflow resistance and an a low intracranial compliance, this triggers a cycle21

of positive feedback where, as intracranial compliance worsens, the positive22

feedback cycle becomes more influential in intracranial dynamics, moving the23

system away from optimal equilibrium, analogue to Rosner’s vasodilatadory24

cascade. When the pressure in cerebral perfusion decreases, it also generates25

a decrease in the Cerebral Blood Flow (CBF) with the consequent vasodi-26

latation effect to maintain a constant flow, leading to an increase in Cerebral27

Blood Volume (CBV), thus increasing the ICP, which causes a greater de-28

crease in Cerebral Perfusion Pressure (CPP) generating a vicious circle, i.e.29

positive feedback. The other three feedbacks are escape ways that try to30

hold the ICP in normal values.31

The study of the complexity in physiological systems begins with the work32

by Kaplan et al. [6]. In that article the difference between the complex-33

ity of the heart rate frequency between a group of young patients (21-3534

years) and adult patients (62-90 years) was quantified, finding a reduction35

in the complexity of the former with respect to the latter. The hypothe-36

sis of reduction in the complexity of physiological systems with respect to37
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age and disease was postulated by Lipzsitz and Goldenberg [7]. Since then,38

there have been many published articles supporting this hypothesis, in such39

different subjects as Epilepsy [8, 9], Congestive Heart Failure [10], Dilated40

Cardiomyopathy [11], Subarachnoind Hemorrhage [12], among others. While41

there are many working definitions about complexity [13], within this arti-42

cle we adopt a definition of structural complexity, following the taxonomy43

proposed by Tang et al. [14], using a global quantifier: the Permutation44

Entropy (PE) proposed by Bandt and Pompe in [15]. The PE is an informa-45

tional quantifier [16] that takes into account the time correlation structure of46

the signal. Its computation is fast, requires not too long time series [17], it47

is robust against noise [18] and distributional assumptions of the time series48

[19]. PE was previously used as an useful complexity tool in neuroscience in49

several papers: Epilepsy ([19, 20]), Anesthesia ([21, 22, 23, 24, 25, 26]), and50

Cognitive Neuroscience ([27, 28, 29]), however we have not found its use in51

the analysis of signals in intensive care patients.52

PE measures the degree of expectation in the correlation structure of a time53

series, so high values of PE indicate high unpredictability and therefore high54

structural-global complexity. Although in Section 1 we present a synthesis of55

the calculation of PE we refer to [8, 15, 17] for a more detailed study on this56

quantifier and its relationship with complexity. For all of this, within this57

article complexity and PE are equivalent. Due the interaction of the four58

loops in Fig. 1, the attractor of the ICP dynamics is a fixed point hence the59

direction of the change of the complexity in the presence of a pathology is60

expected to be negative, and in fact it happens.61

62

1. Materials and Methods63

This a retrospective analysis using the multiparameter intelligent moni-64

toring in intensive care III (MIMIC-III) which is a large publicly available65

database comprising de-identified health-related data associated with over66

40000 patients in critical care units at the Beth Israel Deaconess Medical67

Center (BIDMC) between 2001 and 2012 [30, 31]. The MIMIC-III Waveform68

Database Matched Subset (http://physionet.org/physiobank/ database/mimic3wdb/matched/ )69

contains all MIMIC-III waveform records that have been associated to MIMIC-70

III Clinical Database records containing 22317 waveform records and 2224771

numeric records matched with 10282 clinical data [32, 30] Despite the large72

number of patients registered at the MIMIC-III Waveform Database Matched73
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Figure 1: The interaction between Intracranial Pressure and cerebral hemodynamics.
There are three different negative feedback control loops that preserve cerebral self-
regulation; feedback I : the cerebrospinal fluid (CSF) loop, feedback II : when a diminution
of the Systemic Arterial Pressure is present, the Cerebral Perfusion Pressure (CPP) also
decreases, generating the decreases of the Cerebral Blood Volume (CBV) that induces, via
the intracranial compliance, a reduction of the intracranial pressure (ICP), and the effect
of self-regulation in Cerebral Blood Flow (CBF) (feedback III ), thus increasing the ICP,
which leads to greater decrease in CPP generating a positive feedback (feedback IV ).
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Subset, only a small fraction corresponds to patients with acute neurological74

disease (see Table I) whose records contain ICP signal measurements. They75

account for a total of 37 days of ICP signals measured at a 125 Hz sample76

rate (15 GB of signal data). Both physiological and clinical data were down-77

loaded following the recommendations in [33, 30, 32, 34, 35]. In order to have78

access to the MIMIC-III Clinical Database, the completion of a CITI Data79

or Specimens Only Research course was required as well as the creation of an80

account at PhysioNet.(https://www.citiprogram.org/verify/?k8e6410f7-6dbc-81

41d8-ae12-9b29f7b6372f-24580999 ).82

83

Each physiological signal data is composed of a list of waveform segments.84

These segments were independently processed. In order to get complete85

and free of artifact signals an imputation method was applied to estimate86

for both missing values (NA) and out of range data in each signal. The87

imputed value is the mean of the 10 nearest neighbors of the patient’s signal88

missing value. Next, in order to avoid the pulsation effect of respiration and89

heartbeat, a moving average filter was applied with a sliding window of 1090

seconds span and a maximum overlap [36]. The segments may or may not91

contain episodes of Intracranial Hypertension (ICH), defined as ICP ≥ 2092

mmHg during a period of 5 min. Following this criteria, an autonomous93

episode detector was developed to identify ICH criteria in all segments. The94

resultant episode subsets were visually examined and either confirmed or95

rejected (i.e. artifacts in recordings). Finally, each accepted episodes can96

be divided into three adjacent non-overlapping segments with the following97

characteristics: A maximum 300 s stable zone (ST), a 10 - 240 s transition98

zone (TZ), and at maximum 20 s critical zone (CR). We used three criteria99

to identify acute episodes of ICH: the difference between the minimum value100

in the critical region and the maximum value in the stable region must be at101

least 5 mmHg, the minimum value in the CR must be greater than 20 mmHg;102

and the maximum value in the ST must be less than 20 mmHg [37]. The103

original ICP signal for patient 87969 and the corresponding filtered signal104

as well as an schematic representation of both the ICH and all regions are105

showed in Fig. 2, based in [38, 39]. These criteria were applied to get two106

non-overlapped signals, i.e. the ST and CR zones, to quantify the loss of107

complexity between them.108
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Figure 2: ICP signal for the third ICH episode detected in segment 368853 corresponding
to patient 87969. The light gray is the actual 18 min long ICP signal sampled at 125 Hz,
the dark line is the 10 s moving average for the same signal.

1.1. Permutation Entropy109

One measure for complexity is named Entropy, which is defined as a110

quantifier of the uncertainty present in a system. One of the most well111

accepted formula is named Shannon Entropy since Claude Shannon [40], and112

it is defined as:113

H =

{
−

m!∑

i=1

P (πi) ln(P (πi))

}
/Smax, (1)

where P (πi) represents the probability that the system belongs the state114

πi and Smax is the Shannon Entropy for the equilibrium state. In our case the115

system under study is the cerebral autoregulation through the intracranial116

pressure signal obtained from a given patient and the P (πi) are calculated117

by the evolution of that signal embedded in a m-dimensional vector. When118

the probabilities P (πi) are calculated by the probability of occurrence of cer-119

tain patterns derived from Bandt and Pompe methodology of symbolization120

[15] it is called Permutation Entropy (PE) . One important concept derived121

from PE is the number of missing patterns (NMP) defined as the number of122
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patterns that the m-dimensional vector never arise. The reader interested in123

mathematical details will fund a brief discussion in Fig. 3, Appendix I and124

in [15, 8]125
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Figure 3: Symbols of the Bandt and Pompe symbolization for m = 3. This method-
ology simply maps each value xi in the 3-dimensional vector Xm(t) ordering its index
t ∈ {1, 2, . . . ,m} according to the increasing amplitude (rank) of each xi in Xm(t). It
can be seen that the indexes of the time axis are fixed in chronological order, and they
are mapped onto the vertical (amplitude) axis. For each pattern X3(t) = (xt, xt+1, xt+2),
the resultant symbol πi can be obtained reading the labels in the vertical axis from the
bottom to the top (in the direction of the increasing amplitude).

126

2. Results127

Twelve patients were analyzed looking for ICH and stable regions. As it128

is shown in Table 1 there were 9 females and 3 males with an age with a range129

from 32 to 82 years old and a mean of 56.9 ± 14.8 years old, the length of130

the stay in the ICU was from 9 to 82 days; six patients present subarachniod131

hemorrahge and six patient, intracranial hemorrage. Only 4 patients present132

ICH periods as defined in material and methods, three patients present only133

one ICH each one and one patient present four, leading to 7 signals of ICH,134

see Table 2.135

Permutation Entropy was estimated for all patients for their respective136

Stable and Intracranial Hypertension, segment 3629298 does not has a Stable137

region. Across all segments, Permutation Entropy is higher within the stable138

region than within ICH region and this difference is significant as Table 3139

shows no overlapping in the confidence intervals. Fig. 4 shows the histogram140

of the sampling distribution for the PE estimated over the ICH region and141
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Patient Age Gender Diagnosis Length of stay(d) Survival
42210 42 F subarachniod hemorrhage 15 (h) Y
44789 67 F subarachniod hemorrhage 24 Y
51909 47 M subarachniod hemorrhage 16 Y
53639 47 F subarachniod hemorrhage 17 Y
59991 63 M subarachniod hemorrhage 34 Y
74438 33 M intracranial hemorrhage 55 Y
79228 63 M intracranial hemorrhage 27 N
85892 57 F intracranial hemorrhage 19 Y
87913 60 F intracranial hemorrhage 22 Y
87969 78 F intracranial hemorrhage 82 Y
89002 41 F subarachniod hemorrhage 21 Y
95951 82 F intracranial hemorrhage 9 N

mean± sd 56.9± 14.8

Table 1: There were 9 females and 3 males with an age with a range from 32 to 82 years
old and a mean of 56.9 ± 14.8 years old, the length of the stay in the ICU was from 9
to 82 days; six patients suffer for subarachniod hemorrhage and six patients, intracranial
hemorrhage and there were 2 nonsurvival patients.

Segments # ICH episodes ICH summary
Mean(ICP) Std (ICP)

3365681 1 22.79 0.93
3487247 1 23.41 0.68
3629298 1 28.19 0.2615

368853 4
22.97 2.80
30.83 0.30
23.59 0.71
31.18 1.46

Table 2: Mean and standard deviation of the ICP within the patients segments for the
ICH episodes.
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stable region respectively. The sampling distribution approximation was ob-142

tained using the bootstrap proposed in [8].143

Along with PE, the Number of Missing Patterns was calculated in the same144

way. Table 4 shows the NMP calculated over the stable region and the ICH145

for each patient along with its standard deviation, for all patient the dif-146

ference is statistically significant, in Fig. 5 the histogram of the sampling147

distribution for the NMP estimated over the ICH region and stable region148

is shown. Again, the sampling distribution of the NMP was approximated149

using the bootstrap proposed in [8].150

151

Segment Stable ICH
3365681 0.1736±0.0201 0.1597±0.0021
3487247 0.2249±0.0130 0.1783±0.0042
3629298 - 0.2615±0.003

3688532

1 0.2293± 0.031 0.1743±0.0105
2 0.2144 ± 0.01001 0.1757 ± 0.0091
3 0.2106 ± 0.0210 0.2062 ± 0.0035
4 0.1957 ± 0.0205 0.1754 ± 0.0026

Table 3: Permutation Entropy of the Stable and Intracranial Hypertension (ICH) for all
patients analyzed within this paper. Patient 85892 does not has a stable region. Across all
segments, Permutation Entropy is higher within the stable region than within ICH region.
Patient 74438 has suffered 4 ICH episodes.

3. Discussion152

The concept of homeostasis in physiology implies that the system oper-153

ates in a stable state, or fixed point attractor, where the process fluctuates154

around a stable value. Then we can define a complex biological system as155

one that is very sensitive to small changes in initial conditions and reacts156

adaptively to minimal changes in its environment. Therefore, the complex-157

ity of such a system can directly correlate with its ability to react to change158

and, when this capacity is lost, we can postulate that the complexity of the159

system is also adversely affected. Therefore for these systems, it has been160

hypothesized that complexity decreases in the presence of a stressor [41].161

This is what we see in the Table 3 and in Fig. 4: periods of hypertension162

10
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Figure 4: Histogram approximating the sampling distribution of the PE for the stable
region (light gray) and the ICH region (dark gray) for the patient 87969. Note the sta-
tistically significant reduction in the PE calculated over the ICH region. The sampling
distribution of PE was draw using a bootstrap approach presented in [8].

Segment Stable ICH
3365681 582 ± 12 672 ± 20
3487247 519 ± 15 580 ± 13
3629298 - 505 ± 11

3688532

1 541 ± 14 632 ± 15
2 671 ± 11 626 ± 17
3 605 ± 14 646 ± 15
4 489 ± 13 625 ± 12

Table 4: Number of Missing Patterns (NMP) of the stable region and Intracranial hyper-
tension (ICH) for all patients analyzed within this paper. Patient 85892 does not has a
stable region. Across all patients, the NMP is lower within the stable region than within
ICH region. Patient 74438 has suffered 4 ICH episodes.
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Figure 5: Histogram approximating the sampling distribution of the NMP for the stable
region (light gray) and the ICH region (dark gray) for the patient 87969. Note the sta-
tistically significant reduction in the NMP calculated over the ICH region. The sampling
distribution of NMP was draw using a bootstrap approach presented in [8].
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have a lower entropy than the stable period for each patient. The action of163

the positive feedback (Rosners vasodilatory cascade), see Fig. 1, causes an164

instability that when the three negative loops (escapes ways) are not able to165

counteract this instability, a transition zone is presented and finally a new166

metastable equilibrium is achieved qith a lower complexity than the initial167

state.168

The state above indicates that a loss of complexity occurs within an hyper-169

tension episode and the feedback loop model may lead to an explanation of170

this loss. According to [41], the loss of complexity may reflect the loss or171

impairment of functional components of the system, in this case when the172

mechanism of cerebral auto-regulation exhausts, i.e. the negative loops, the173

complexity of the ICP decreases and this fact is interesting because com-174

plexity measured using the PE reflects a physiological fact and not just an175

epiphenomena.176

In Table 4, and in Figure 5 for patient 87969, there is an increase in the177

number of missing patterns in the periods of hypertension regarding to the178

stability stages. This seems to indicate a presence of lower degrees of freedom179

in the system of the dynamics of the ICP signal that is observed during the180

periods of ICH demonstrating a lower adaptability of the cerebrovascular sys-181

tem. That is to say, the cerebrovascular system loses the capacity to respond182

adequately due to the fact that its regulation mechanisms are diminished,183

and therefore this system loses complexity, so it has a smaller spectrum of184

possible responses and therefore less adaptability to stress. When losing the185

ability to respond, secondary lesions may occur due to lack of adaptation to186

changes in the environment such as blood pressure, temperature, etc. Our187

results are concordant with those found by Hornero et al. [42] in a population188

of pediatric patients with traumatic brain injury and, as our population are189

adult patients with strokes of different origins, this suggests that the decrease190

in the complexity of the cerebrovascular system is independent of the type of191

primary injury and age.192

From the point of view of the clinical implication, in Lu et al. [36] showed193

that the loss of the complexity of the intracranial pressure signal correlates194

with worse outcomes. So we should ask if beyond the isolated value of in-195

tracerebral pressure, we should not act on changes in the complexity of the196

signal as it provides important information about the status of cerebral au-197

toregulation and can be already determined in real time. Besides, this could198

help us to generate therapies to decrease intracranial pressure and thus pro-199

vide a greater spectrum of responses to avoid secondary damage to the lack200

13
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of regulation of the cerebrovascular system as discussed above.201

We are aware about some limitations of our study, the signals analyzed in202

this study came from 7 patient, and more patients should be sampled in203

order to empirically validate the mathematical model; we use an external204

database and we have no control about the clinical trial and the outcome205

recorded, and finally no direct or indirect measurements were performed in206

cerebral autoregulation. In summary, this article presents more evidence of207

the need of incorporating more information for the evaluation of the complete208

intracranial pressure signal than the usual waveform obtained by neuromon-209

itoring since these analysis provide us with fundamental information about210

the pathophysiological aspects of neurocritical patients and help us determine211

future interventions.212

Apendix I213

When computing the Shannon Entropy defined in Eq. 1 there are several214

ways to determine the πi states. For example, if the histogram is used, once215

n bins are set, the possible states of the system S = π1, . . . , πn are fixed and216

the times where the system is in the pith state are counted and its relative fre-217

quency (probability of appearance, i.e. P (πi)), is computed and used in Eq.218

1 to quantify the Entropy. Although this method, i.e. using the histogram219

to determine the possible states and compute their relative frequency, can220

grasp the difference in the variance, symmetry and kurtosis of the probability221

distribution function (PDF) of the πi states, it does not take account for the222

time dynamic of the system, and this fact can be an issue when a dynamical223

system, as Cerebral Autoregulation, in under study. One way to cope with224

this issue is by using the symbolization proposed by Bandt and Pompe (BP-225

symbolization) in [15] to determine the πi states and therefore compute P (πi)226

and Eq. 1. The BP-symbolization consists, from a practical point of view,227

in mapping the system evolution, given in form of time series, onto a set of228

symbols Sm. To do that, two parameter must be fixed, the symbol length229

m, which is related with the information content of each symbol belonging230

the set Sm (the higher the m value, the higher the informational content)231

and the time delay τ , related to temporal scales (within this article τ = 1 to232

avoid temporal scale difficulties). Due to computational limitations, m goes233

usually 3 ≤ m ≤ 6 and it is set as m = 6 within this article. Fig. 3 shows234

the BP-methodology to compute P (π) for m = 3. The methodology simply235

maps each value xi in the embedding vector Xm(t) = {xt, ...xt+m−1} ordering236

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

its index t ∈ {1, 2, . . . ,m} according to the increasing amplitude (rank) of237

each xi in Xm(t). It can be seen that the indexes of the time axis are fixed in238

chronological order, and they are mapped onto the vertical (amplitude) axis.239

For each pattern X3(t) = (xt, xt+1, xt+2), the resultant symbol πi ∈ S3 can be240

obtained reading the labels in the vertical axis from the bottom to the top241

(in the direction of the increasing amplitude). The higher the value of the242

Entropy computed using the BP-Methodology, the higher the uncertainty in243

the correlation structure of the time series and thus, higher the complexity.244

A related concept along with the BP-symbolization is the Number of Miss-245

ing Patterns (NMP). Once a time series is mapped onto a group Sm some246

symbols πi could have no occurrence and the corresponding P (πi) = 0. If247

the time series is large enough and the time series has a stochastic nature,248

NMP has to be 0, otherwise, if the time series were deterministic, NMP249

may be greater than zero, i.e. NMP could be interpreted as a driver to detect250

determinism in a time series, provided a large enough time span. An inter-251

esting interpretation of the NMP is that their presence could be understood252

as the degree of freedom of the system, the higher the NMP the lower degree253

of freedom of the time series; e.g. a random time series has NMP=0 and in254

contrast a chaotic time series can have NMP ≥ 0, no matter the time series255

span.256
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