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In this work, a Monte Carlo method for the simulation of the early 
stages of CoNi electrodeposition is presented. The model was 
constructed based on previous experimental parameters obtained with 
Co, Ni and CoNi electrodeposition onto a glassy carbon electrode. The 
core of the proposed simulation model consists of two Monte Carlo 
modules. The first one is a lattice grand-canonical Monte Carlo 
module which intends to calculate the energies of all possible events 
associated with metal deposition, namely adsorption, desorption and 
surface diffusion. The second one is a Kinetic Monte Carlo module 
which associates the previously calculated energies with reaction rates 
and probabilities of occurrence of the events, being analogous to the 
temporal evolution of the metallic electrodeposition. 

 
Introduction 

 
It is known that the physical properties and morphology of an electrodeposit strongly 

depend on several parameters of the electrodeposition process, such as solution composition, 
pH, temperature, potential and current density (1). Therefore, electrodeposition requires an 
adequate control of the electrochemical phase formation process and a deep understanding of 
the reaction mechanism to produce an electrodeposit with desired properties. Particularly, the 
first stages of the electrodeposition play a very important role on the subsequent formation of 
the bulk metallic phase. So, it is very important for one to have an adequate control and 
knowledge of the first stages of electrodeposition to obtain a deposit with the desired 
physical and structural properties.  

At the moment, theoretical and experimental electrochemists are working hand-in-
hand towards a deeper understanding of the early stages of the electrodeposition process. 
With regard the experimental approach, over the past decades, improvements in in situ 
nanoscopy techniques have made it possible to observe the temporal evolution of the surface 
morphology in electrodeposition experiments. This progress in experimental techniques has 
spurred theoretical investigations into the properties of nanostructures. From a theoretical 
approach, a large variety of models are generally used to describe nucleation and crystal 
growth. However, many of the related problems, particularly those concerning the growth or 
decay of structures, are difficult to treat by proper theory. Therefore, they have become the 
domain of computer simulations. But it was only in the last few years, due to the recent and 
fast advance of computational technology, that simulations of these processes gained more 
attention and helped scientists to understand more profoundly the metallic nucleation and 
growth phenomena and avoid trial and error experimentation. 

Up to now many different approaches are taken depending on the problem at hand. In 
general, the methods can be divided in three groups: deterministic, quasi-deterministic and 
stochastic. The first one refers to the classical mechanics method called Molecular 
Dynamics; the second one refers to a variety of methods as Brownian dynamics and 
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Langevin dynamics and the later, a purely stochastic method that enters in the classification 
of Monte Carlo techniques. There are a lot of Molecular Dynamics simulations performed 
for crystal growth such as vapor deposition, growth from melts and growth from 
supersaturated solutions, but the conventional Molecular Dynamics method cannot be used 
for the reactions of electrodeposition due to the large timescale of these processes compared 
to the small timescale that a Molecular Dynamics method can simulate. For that reason and 
due to the stochastic nature of the electrodeposition process, the Monte Carlo method has 
become a useful tool to study crystal growth.  

There are various works in the development of Monte Carlo models, or hybrid 
models based in part in Monte Carlo models, to simulate the electrodeposition of a variety of 
systems. The majority of the works concerns copper electrodeposition, due to the 
applications of copper in the microelectronics industry as the material of choice for on-chip 
interconnects (2-5). Beside Cu, other systems have been studied, like the electrodeposition of 
silver, gold or platinum (6-8). There are many others different systems have been modeled, 
implicating in many different Monte Carlo models constructed for each specific situation. 
However, the Co and its alloys have not received much attention up to now. Specifically, 
although the focus of many experimental studies, due to their good magnetic and mechanical 
properties (9), the electrodeposition of CoNi alloy has not yet been studied by computer 
simulations. 

In this context, the present work tries to contribute to the comprehension of some 
essential characteristics of the CoNi deposition by means of a very simple model. In this 
paper the description of the model is reported. The results will be published in a forthcoming 
paper. The model was constructed based in part on previous experimental data obtained with 
Co, Ni and CoNi electrodeposition onto a glassy carbon electrode. The core of the proposed 
simulation model consists of two Monte Carlo modules. The first one is a lattice-gas grand-
canonical Monte Carlo module and intends to calculate the energies of all possible events 
associated with metal deposition, namely adsorption, desorption and surface diffusion. The 
second one is a Kinetic Monte Carlo module, which associates the previously calculated 
energies with reaction rates that are proportional to the probabilities of occurrence of the 
events. This module aims to simulate the temporal evolution of the metallic 
electrodeposition. 

 
The Model 

 
General considerations 
 
 The Monte Carlo (MC) method is based on the assumption that all mathematical 
problems can be tackled by a probabilistic analogous that can be solved by stochastic 
sampling experiments. All possible system configurations are sampled according to a 
previously defined probability density function. From the states generated in a random walk 
through the configurations, one can calculate the average of the different properties that 
characterize the system. The probability of occurrence of one configuration pi can be given, 
for example, by: 
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                                   [1] 

where ri refers to the spatial coordinates of the ith atom, kb is the Boltzmann constant, T is 
the temperature and U(ri) is the potential energy associated with the ri configuration. The 
integral in this equation runs over all the configurations of the system and constitutes the 
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spatial term of the partition function. By this method, the average value of a property of the 
system can be calculated by taking an average of its value over the generated configurations. 

However, to determine the probability of a given configuration, it would be necessary 
to know the odds of occurrence of all configurations, which is not always feasible. In the 
case of continuous variables, an integration of probability density over the entire space of 
configurations would be necessary. To tackle these often computationally prohibitive 
difficulties of the MC method, we applied the Metropolis algorithm (10). This is one of the 
most popular and efficient important sampling methods to perform an MC simulation, since 
it is based on computing the ratio of the probabilities of two consecutive configurations, 
making it unnecessary to determine the probability of the other configurations in all 
iterations. 

Furthermore, to reduce the computational cost of MC simulations using the 
Metropolis algorithm, a lattice model was chosen rather than a continuous model (off lattice 
model) (11). Lattice models for computer simulations are of widespread use in studies of 
adsorption on surfaces because they allow dealing with a large number of particles at a lower 
computational cost when compared to continuous models. To use this kind of approximation, 
it is important to verify if there is a crystallographic misfit present in the studied system. If 
the crystallographic misfit between the involved atoms is negligible, it is a good 
approximation to assume that the adatoms adsorb on defined discrete sites on the surface, 
given by the positions of the substrate atoms. In order words, it is important to see if the 
lattice spacings for the substrate and for the deposited metal are significantly different. Here 
we have adopted the values of 2.4624 Å for the carbon lattice spacing (12), 2.2590 Å for Co 
and 2.3766 Å for Ni (13). The resulting crystallographic misfits are 8.26 for Co and 3.48 for 
Ni. Following the criteria proposed by Rojas (14) that a lattice model can be used if the 
crystallographic misfit is lower than 8.3, we can adopt a lattice model in this study. 

Square lattices with periodical boundary conditions are used in the present work to 
represent the surface of the electrode. Each lattice point represents an adsorption site for an 
adsorbate or a substrate atom. The former may adsorb or desorb on each randomly selected 
site, while the latter are frozen. An occupation number is defined (that is, 0 for an 
unoccupied site, 1 for a site occupied by an substrate type atom, 2 or 3 for a site occupied by 
a adsorbate type atom, depending if it is Co or Ni). 

Finally, another consideration that deserves mention concerns the kind of ensembles 
used. In the grand-canonical ensemble, used in this study, besides the volume V and 
temperature T, the chemical potential µ is fixed, but the number of particles N may vary. 
This ensemble is particularly useful in Electrochemistry in many cases, such as 
chronoamperometry and cyclic voltammetry, since the control of electric potential difference 
involves the control of µ of some species in the electrochemical interface. The value of the 
electrical potential of the working electrode is related to µ by: 

� � ��� � ����                                              [2] 
where Ec is the cohesion energy of the species present at the electrochemical interface and z 
is its charge. 

In this point, some important questions arise in the construction of the model. The 
first deals with the modeling of the surface of glassy carbon used in the lattice models, 
simulating the working electrode. The second concerns the probability density function in a 
system containing Co, Ni or both, and a glassy carbon substrate. To achieve this, it is 
essential the previous determination of the metal-metal and metal-substrate interatomic 
potentials in the form of analytic functions. This leads to the third point: once the potential 
functions are found, the energies of all possible configurations should be stored in an energy 
table in order to use appropriately the advantages of choosing a lattice model. 
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Glassy carbon surface 
 

Nowadays, the structure of the glassy carbon is widely discussed in the literature, but 
there is no consensus yet due to the complexity of the spatial arrangement of the carbon 
atoms. However, as is inevitable in a computational modeling program, some 
approximations must be made. In this work, the surface of glassy carbon was considered as a 
hexagon arrangement of carbon atoms, like the graphite surface. This is a valid approach, 
because in both the hybridization of carbon atoms is sp2 and there are studies in the literature 
(15) that relate the structure of glassy carbon with graphite or fullerene, with the spatial 
arrangement of carbon atoms in the form of hexagons.  

Therefore, the glassy carbon electrode surface was approximated as a hexagonal 
close-packed (hcp) surface. All the calculations were done for the hcp (111) lattice, although 
on real glassy carbon surfaces both fcc and hcp domains are present due to the surface 
reconstruction. Four available adsorption sites for metal adsorption were scrutinized and 
symbolized with the color Xs in the Figure 1, depending on how many carbon atoms are 
bonding the adsorbate atom. Each configuration has a different energy and should be 
computed through an analytical function in order to be incorporated into the MC program to 
simulate the metal deposition on glassy carbon. 

 

 
 
Figure 1. Representation of the four possible configurations of the adsorption sites on the hcp 
surface of glassy carbon. The upper X represents an adsorption site directly above a carbon 
atom, with only one carbon-metal bond. The X on the far right represents a adsorption site 
located between 2 carbon atoms. The left X in the bottom line symbolizes the active site in 
which the adsorbate interacts with 3 carbon atoms. The right X in the bottom line stands for 
an active site with 4 binding carbon atoms, one of them located at the second monolayer of 
the substrate. 
 

However, in a real system there are not only perfect flat monolayers of substrate, but 
actually an imperfect surface, with kinks and steps. Thus, the surface energy of the active 
sites may be different from one another, as it occurs in a real electrode due to its roughness. 
A metal atom of adsorbate can therefore adsorb preferentially at one site over another. To 
incorporate this variable in the program, we have simulated some surface defects most 
commonly observed in experiments, as is shown in Figure 2. The 0D clusters correspond to 
the adsorption of isolated metal atoms, the adsorption on kink sites or on vacancies of the 
first lattice plane of the substrate. The 1D phases are related to the adsorption at the border of 
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steps or monoatomic terraces and the 2D phases are related to the formation of monolayers. 
The 2D phases are the flat terraces. The different types of surface defects were created using 
the simulated annealing technique (16).  

 

 
 
Figure 2. (a) The three types of active sites on the simulated surface of glassy carbon: (1) flat 
terraces, (2) steps and (3) kinks. b) First stage of metal deposition, on the kinks. c) Second 
stage, on the steps. d) Third stage, on the terraces. Extracted from (16). 
 
Metal-metal and metal-substrate interatomic potentials 
 

The next step is to define the interaction between the atoms and the surface. A very 
important factor that should be taken into account in order to do proper modeling of a system 
is the quality of the interatomic potential used. The study of a system that includes a large 
number of atoms requires a model that is at the same time accurate and computationally 
simple. Here, we use classical many-body potential functions between carbon atoms and Co 
or Ni atoms, as well as among the transition metal atoms. This function is constructed by 
fitting binding energies from the Density Functional Theory (DFT) calculations made by 
Shibuta and Maruyama (13). A classic many-body potential was developed in the form of an 
analytical function of potential energy that depends on the number of metal-metal or metal-
carbon atoms bonded. In DFT calculations, the binding energy is derived from the difference 
between the energies of the clusters MCn and Mn (M = Co or Ni, n = 1-4) and the energies of 
the individual atoms. The binding energy from DFT calculations are fitted to the following 
functions: 

� � ��� ���                                                     [3] 
�� � � !"#	$ %&'(�)*+,�- ��.��/                            [4] 

� � �01 !"##	$ %&' ��)2+ ,3 �- ��.���                     [5] 
01 � � 45 6 7�89 � �5�:;                                       [6] 
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In these functions, VR and VA are Morse type repulsive and attractive terms, 
respectively, whereas De and Re are the binding energy and equilibrium bond length, 
respectively. Potential parameters S, β, b and δ determine the shape of the potential 
functions. For metal-carbon many-body potential functions, the many body effect is 
expressed as a function of carbon coordination number of a metal atom NC. For metal-metal 
interactions, the De and Re are expressed as direct functions of the metal coordination number 
NM instead of using the additional term B*. It is noteworthy that NC and NM vary depending 
on the number of atoms bonded in the MCn and Mn clusters and on the bond distances. More 
details can be found here (13). The final values of the parameters obtained by fitting are 
summarized in Table 1.  
 
TABLE I. Potential parameters for metal-carbon and metal-metal interactions, obtained by fitting the many-body potential 
functions to the binding energies from the DFT calculations (13). 

 S ββββ (1 / Å) De (eV) Re (Å) b δδδδ 
Ni-C 1.3 1.8706 2.4673  1.7628 0.0688 -0.6256 
Co-C 1.3 1.3513 3.7507 1.6978 0.0889 -0.5351 
Ni-Ni 1.3 1.5700 1.4361  2.3766 - - 
Co-Co 1.3 1.5552 1.5704 2.2590 - - 
Co-Ni 1.3 1.5626 1.5032 2.3178 - - 

 
As can be inferred from the larger De value provided in Table 1, the bonding between 

Co and C is stronger than between Ni and C. As a consequence, the equilibrium bond length 
of Co-C is lower than the Ni-C one. There is not much difference in the values of the metal-
metal parameters when changing from Co to Ni. The many-body interactions were taken into 
account for the MCn and Mn clusters (M = Co or Ni and n = 1-4), in the configurations 
showed in the Figure 1. On calculating the energies of the deposition process using the fitted 
functions, it was verified that the minimum energy was obtained when a metal atom adsorbs 
onto a green active site depicted in Figure 1, which is the only that allows the adsorbate to be 
bonded with four carbons. Therefore, the lattice grand-canonical Monte Carlo assumes in the 
calculations that these are the only sites where deposition can take place. 

 
Energy Tables 

 
One of the main advantages of the lattice model is its simplicity, since it fixes the 

distances between the adsorption nodes, thus reducing the energy values of the system to a 
discrete set. Moreover, the potentials used are short ranged, a simplifying assumption to 
obtain the energy differences. The point is to consider the adsorption (or desorption) of a 
particle at a node immersed in a certain environment surrounding it. If pairwise additive 
interaction between nearest neighbors is assumed and interactions between more distant 
atoms are neglected, the thermodynamic properties of the system can be obtained from the 
thermodynamics of the Ising model for the lattice gas. Lattice gas models allow dealing with 
a relatively large number of particles at a relatively low computational cost. 

Figure 3 shows the nearest neighbors active sites considered for the calculations of 
the adsorption energies of the metal atoms on the glassy carbon surface. There are the first 
neighbors (dark squares), the second neighbors (medium dark squares) and the third 
neighbors (light squares). Those adsorption sites located out of the cutoff radii of active site 
13 are not considered to influence the energy of the process. Therefore, there are many 
possibilities of configurations, depending on what is the neighborhood of the active site 
considered. Each configuration has a specific energy associated with it, and all these energies 
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are stored in an energy table, that will be used by the Monte Carlo method to calculate the 
probabilities of the possible moves the system may perform. 

 

 
 
Figure 3. Nearest neighbors active sites considered for the calculations of the adsorption 
energies of the metal atoms on the glassy carbon surface. 
 
Grand-canonical Monte Carlo module 
 

The main objective of this module is, based on the energy tables of the system, to 
simulate the final configurations of the metal monolayer electrodeposited onto a defective 
glassy carbon surface after the application of various overpotentials. This is a way to know 
the final appearance of metal film formed, the degree of coverage of the surface and the 
preferred active sites for deposition. 

From experimental data, it was verified that CoNi electrodeposition onto glassy 
carbon is an overpotential deposition (opd) process, which implies that the adsorption of the 
adsorbate on the foreign substrate is less favorable than that predicted by the Nernst 
equation. That was taken into account in our model, as the applied overpotential was an 
important variable of the computational program. 

The grand-canonical MC module consists of three possible processes after the 
random choice of an adsorption site: 

a) If the site is empty (occupation 0), the creation of an adsorbate atom is attempted 
(yielding occupation 2 or 3 depending if it is Co or Ni): ∆N = +1 

(b) If the site is occupied by an adsorbate atom (occupation 2 or 3 depending if it is Co or 
Ni), its desorption is attempted (occupation 0): ∆N = -1 

(c) If the site is occupied by a substrate atom (occupation 1) a surface diffusion process 
is tried: ∆N = 0. 
 
Items (a) and (b) can understood as a kind of MC event that try to change the 

occupation number of a randomly selected active site. The glassy carbon surface contains a 
total of M active sites and one of them is selected with probability 1/M. Since each 
adsorption site can have a total of 4 different occupations (empty - 0, with C atom - 1, Co 
atom - 2 and Ni atom - 3), this kind of MC step tries to change the occupation number of that 
site as follows: 

<=>-?@�?A B� � �+��C-�D� �<=>-?@�?A B�                                      [7] 
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where matrix(i,j) contains the occupation number of the site (i,j). Thus, if the original 
occupation was 0, it means that the site was empty and there is an attempt to put a particle of 
adsorbate there (occupation 2 or 3). The number of particles in the system will change by ∆N 
= +1 and the energy change of the system will be ∆E = Eads (where Eads is the energy of a 
particle entering the site (i,j), depending on the neighborhood of the active site). If the 
occupation number of the selected site is 2 or 3, meaning that there is a particle of adsorbate 
there, there is a try to remove it (yielding an occupation 0). In this case, the number of 
particles of the system will change by ∆N = -1 and the energy change of the system will be 
∆E = -Eads. In all cases, the proposed events will be either accepted or rejected according to a 
probability that depends on the energy change and on the applied overpotential: 

� � EFG �5A H@� I� JK	�LJM
���

N�                                   [8] 
A diffusion event of type (c) can only occurs if the occupation number of the active 

site selected is 1. To simulate the diffusion of metal particles on the surface, they are 
numbered from 1 to N, regardless of where they are located. One adsorbate particle is 
random selected and the program tries to move it to a nearby site, with probability 1/12 each 
according to Figure 4. If the final site is occupied, the metal particle stays where it was. If the 
site is free, a move to this location is tried, according to a probability: 

� � EFG �5A H@� I� JK
���
N�                                         [9] 

where J� � �O�PQ�ROS ���O�P�R�T�OS, the difference between the energy of the final and the initial 
configuration of the system.  

The total energy of the system at each MC step was calculated in advance and stored 
in the energy table, which is accessed by the grand-canonical MC module to calculate the 
probabilities given in the equations [8] and [9]. During this stage of the grand-canonical MC 
simulation, the final (equilibrium) configuration of the system can be compared by varying 
the applied overpotential, the initial surface and the presence of defects, for example. These 
equilibrium configurations of the deposited film can be also compared with experimental 
data obtained by means of various microscopy experiments. 
 
Kinetic Monte Carlo module 
 

The second MC module constructed in this work is the Kinetic Monte Carlo module 
(KMC), which is described in this section. The grand-canonical MC method proposed is very 
useful to calculate the equilibrium properties of the system, but does not deliver any 
information about the kinetics of the nucleation and growth processes. The KMC module is 
used to fill that gap. When the dynamics of the physical system can be described as a 
thermally activated process, such as adsorption, desorption and diffusion, it is possible to 
construct a KMC algorithm that allows the simulated system to evolve according to the 
physical system. Furthermore, the theoretical basis for the KMC method is defined in terms 
of Poisson processes, which are stochastic processes in which events occur continuously and 
independently of one another. Those criteria are all met here in this work, so a KMC method 
is suitable for study the present problem. 

Unlike the grand-canonical MC module, in the KMC the Metropolis algorithm cannot 
be used because it does not met the kinetic criteria in the sense that a lower energy final state 
is not always favorable in detriment to a higher energy initial state, because there is an 
activation barrier that the system need to surpass in order to reach the final state. So, the 
transition state theory is used as an algorithm to select the acceptance criteria for each 
transition. The key point of the KMC method is that the rate of each process that may occur 
on the surface can be described by an Arrhenius type equation: 
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where k is the experimental rate constant for the reaction, A is the pre-exponential factor (or 
frequency factor) and Ea is the Arrhenius activation energy. It is a common approximation to 
think of each of the processes considered in terms of a system oscillating around a minimum 
in the potential energy surface and making A attempts to overcome the energy barrier per 
unit time. The probability of success depends on T and the height of energy barrier, which is 
considered the activation energy of the process and is calculated from the binding energy De 
of the DFT data. 

Once all the processes that can occur in a certain step of the simulation are identified, 
each one will be assigned with a reaction rate vi inversely proportional to its activation 
energy (data obtained from the table of energies previously determined by the grand-
canonical MC and calculated from the difference between the energies of the two processes). 
The probability of the process to occur can be represented in a straight line by a segment 
proportional to vi, as is outlined in Figure 4 for a system in which only three processes can 
occur at a time t. 
 

 
 
Figure 4. Illustration of the selection of a process in a Kinetic Monte Carlo simulation in 
which 3 processes may occur. The probability of occurrence of each process is symbolized 
by a segment of a straight line proportional to its rate vi. The sum of all segments is 
normalized to a unitary vector. A process is selected by generating a random number η 
between 0 and 1, and then the process corresponding to the segment on which the random 
number is found to fall is selected. Here η falls in the segment corresponding to the process 
with rate v3. 
 
  If the sum of all segments is normalized to unit length, the occurrence of a process 
can be selected from the generation of a random number uniformly distributed in the range 0 
to 1. As shown in Figure 4, the process selected is that corresponding to the segment in 
which the random number fell. Since the probability of changing the current state of the 
system has a constant rate, the elapsed time ∆t until the change is accepted has an 
exponential distribution. Thus, ∆t is calculated as 

J> � �� XY�Z�
[ \��

                                 [11] 
where η is a random number uniformly distributed on (0,1) and the sum index runs over all 
possible processes at a given time step. After letting the time advance by a random amount 
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∆t (which is completely independent of what was the random selected process), the 
configuration of the system is updated, a new set of rates {vi} is calculated, a new process is 
randomly chosen again and so on. 

The algorithm for implementation of the KMC method used in this work can be layed 
out as follows, where t indicates the time elapsed since the beginning of the simulation, µ 
indicates the random event to occur, p(µ) is its probability, τ is the time that has elapsed 
between one event and another, and P(τ, µ) is the joint probability that the next event that 
occurs is associated with the index µ and the time elapsed between the last event and the next 
is τ: 
 
TABLE II. Steps of the Kinetic Monte Carlo algorithm proposed. 

 
 

Step 0 

* t = 0 
* Define the initial state of the system 
* Calculate the rates associated to each one of the possible processes, based 
on the energy tables previously calculated.  
 * Define the sample times: t

1
 < t

2
 t

1
 < t

2
 < ... < t

stop
  

 
Step 1 

* Generate a pair of random numbers (τ,µ), accordingly to the probability 
density function P(τ,µ)� 

 
 

Step 2 

* Update the time: t = t + τ  
* Make the changes associated with the µ  event 
* Recalculate the rates associated with each event, taking into account the 
new state of the system  

 
Step 3 

* If t is greater than the sample time t
i
, show the present state of the system  

* If t > t
stop

, or if p(µ) = 0 for every µ, the simulation ends. Otherwise, back to 
step 1 

 
Conclusions 

 
 In this paper it was described the construction of a simulation model of the CoNi 
electrodeposition onto a glassy carbon electrode. It was divided into two modules using the 
MC method, each with its specifications and goals. The results of the simulations using this 
model will be published in a forthcoming paper. 

Initially, the correct modeling of the glassy carbon surface and the determination of 
the metal-metal and metal-carbon interaction potential have been met. With these data, the 
first modules of the MC, the grand-canonical MC, was outlined to calculate the energy tables 
of all possible movements involved in electrodeposition of those metals on glassy carbon. It 
was considered the influence of the first, second and third neighbors in the adsorption energy 
of an atom in an environment containing different types of substrate defects. Having the 
energy tables, the probabilities of occurrence of deposition (adsorption), dissolution 
(desorption) and diffusion have been defined.  

The other MC module used in this work was the KMC one. This model associates the 
activation energy of each possible movement in the system with an inversely proportional 
reaction rate constant. Each event then has a probability of occurrence and the system will be 
updated as new settings are being obtained. Using the KMC method, it can be obtained an 
analogous to the time evolution of the electrode surface during the CoNi electrodeposition 
process, from which can be theoretically determined the kinetic parameters and the 
nucleation and growth mechanisms. 
 

ECS Transactions, 25 (34) 53-63 (2010)

62
Downloaded 09 Mar 2010 to 143.107.54.18. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp



 

Acknowledgments 
 
Financial support in the form of a research grant from FAPESP (Fundação de Amparo à 
Pesquisa do Estado de São Paulo) and a fellowship from CNPq (Conselho Nacional de 
Desenvolvimento Científico e Tecnológico) are gratefully acknowledged. 
 

References 
 

1. W. Schwarzacher and D. S. Lashmore, Trans. on Magn., 32, 3133 (1996). 
2. T. O. Drews, R. D. Braatz and R. C. Alkire, J. Electrochem. Soc., 150 (11), C807 

(2003). 
3. T. O. Drews, A. Radisic, J. Erlebacher, R. D. Braatz, P. C. Searson and R. C. Alkire, 

J. Electrochem. Soc., 153 (6), C434 (2006). 
4. A. Saedi, J. Electroanal. Chem., 588, 267 (2006). 
5. L. Guo, A. Radisic and P. Searson, J. Phys. Chem. B, 109, 24008 (2005). 
6. M. M. Mariscal, E. P. M. Leiva, K. Pötting and W. Schmickler, Appl. Phys. A, 87, 

385 (2007). 
7. M. M. Mariscal, S. A. Dassie and E. P. M. Leiva, J. Chem. Phys., 123, 184505 

(2005). 
8. O. A. Oviedo, C. E. Mayer, G. Staikov, W. J. Lorenz and E. P. M. Leiva, Surface 

Science, 600, 4475 (2006). 
9. N. V. Myung, D. -Y. Park, B. -Y. Yoo and P. T. A. Sumodjo, J. Magn. Magn. Mat., 

265, 189 (2003). 
10. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. 

Chem. Phys., 21 (6), 1087 (1953). 
11. M. M. Mariscal, E. P. M. Leiva, Cap. 2: Computer Simulations of Electrochemical 

Low-dimensional Metal Phase Formation. in: Electrocrystallization in 
Nanotechnology (1ª ed.), Wiley-VCH, Weinheim (Alemanha) (2006). 

12. G. Chiarotti, Landolt-Börnstein – Group III Condensed Matter, 24c, 21 (1995). 
13. Y. Shibuta and S. Maruyama, Comp. Mat. Sci., 39, 842 (2007). 
14. M. I. Rojas, Surface Science, 569, 76 (2004). 
15. P. J. F. Harris, Philosophical Magazine, 84 (29), 3159 (2004). 
16. M. C. Giménez, M. G. Del Pópolo, E. P. M. Leiva, Electrochim. Acta, 45, 699 

(1999). 

ECS Transactions, 25 (34) 53-63 (2010)

63
Downloaded 09 Mar 2010 to 143.107.54.18. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp


