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ABSTRACT

The complete mitochondrial genome of the banded cusk-eel, Raneya brasilensis (Kaup, 1856), was
obtained using next-generation sequencing approaches. The genome sequence was 16,881 bp and
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exhibited a novel gene order for a vertebrate. Specifically, the WANCY and the nd6 - D-loop regions

were re-ordered, supporting the hypothesis that these two regions are hotspots for gene rearrange-
ments in Actinopterygii. Phylogenetic reconstructions confirmed that R. brasiliensis is nested within
Ophidiiformes. Mitochondrial genomes are required from additional ophidiins to determine whether
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the gene rearrangements that we observed are specific to the genus Raneya or to the subfam-

ily Ophidiinae.

Mitochondrial (mt) gene orders are extremely conserved in
vertebrates. In fish (Actinopterygii), only 35 departures from
the canonical mt gene order have been described, whereas
over 2000 species have been sequenced (Satoh et al. 2016).
In contrast, the vertebrate sister clade - the tunicates -
demonstrates extreme gene order variability, in which each
of the sequenced genera presents a different gene order
(Gissi et al. 2010; Rubinstein et al. 2013). Consequently, find-
ing a new gene order in Actinopterygii is a rare event. The
banded cusk-eel (Raneya brasiliensis [Kaup, 1856]) is a demer-
sal fish present along the eastern coast of South America,
from southern Brazil to northern Argentina. We report here a
new mt gene order for this species.

The R. brasiliensis specimen we studied was collected in
Argentina (43.374000S 64.901944 W), as bycatch from a
shrimp beam trawler. The sample has been deposited in the
Invertebrate collection of Museo de La Plata, FCNyM-UNLP,
Argentina, Acc. Number MLP-CRG 420. Our original aim was
to characterize a myxozoan parasite of this species. DNA was
extracted from myxozoan-infected tissue using a DNeasy
Blood & Tissue Kit (Qiagen, Germantown, MD). A dual-
indexed lllumina library was created using a Wafergen
Biosystems Apollo 324 NGS Library Prep System (TakaraBio,
Mountain View, CA), then paired-ended sequencing (150 bp),
was performed on an Illumina HiSeq 3000 (lllumina, San
Diego, CA) by the Center for Genome Research and
Biocomputing of Oregon State University (USA). DNA reads

were assembled using IDBA-UD as implemented in IDBA-1.1.1
(Peng et al. 2010) and the fish mt sequence was identified
using BLAST searches. Reads were mapped with Geneious
Pro version 9.0.5 using ‘High Sensitivity’ and mapping only
paired reads which ‘map nearby’. Among the ~189,000,000
reads obtained, the mean coverage of the fish mitogenome
was computed with Geneious Pro and estimated to be
~40,000 (SD ~ 6000; Min =22,740; Max = 60,423). Annotation
was performed with MitoAnnotator (http://mitofish.aori.u-
tokyo.ac.jp/annotation/input.html, last accessed 2017 Nov)
(Iwasaki et al. 2013). The complete mt sequence of R. brasi-
liensis was submitted to the DNA databank of Japan (acces-
sion number LC341245).

The fish identification to species level was confirmed by
constructing a phylogenetic tree based on cox1 sequences,
as recommended by Botero-Castro et al. (2016). All cox1
sequences of Ophidiinae available on 7 December 2017 were
downloaded from The National Center for Biotechnology
Information (NCBI). Other Ophidiiforms with complete mt
sequences were used as outgroups. Cox! sequences were
aligned with MAFFT 7.308 (Katoh and Standley 2013) under
the L-ins-i algorithm. A phylogenetic tree was reconstructed
with RaxML 7.4.2 (Stamatakis 2006) using codon partitions
under the GTRGAMMA model. Bootstrap percentages (BP)
were computed using the rapid bootstrap option.

The phylogenetic position of R. brasiliensis among
Ophidiiformes was investigated using all mt protein-coding
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Figure 1. Linearized representation of Raneya brasiliensis mt gene order (A) compared with the typical Actinopterygii mt gene order (B) and with Carapus bermu-
densis mt gene order (C). tRNA genes are designated by single-letter amino acid codes. Genes that have undergone rearrangement in R. brasiliensis (A) and C. ber-
mudensis (C) are connected with lines to their corresponding location in the typical Actinopterygii gene order (B). Genes encoded on the L-strand are underlined.
The phylogenetic position of R. brasiliensis and C. bermudensis among Ophidiiformes was reconstructed based on mt protein-coding genes (D). All species possess
the typical Actinopterygii mt gene order except R. brasiliensis and C. bermudensis, which are indicated in bold. Bootstrap supports above 50% and Bayesian posterior
probabilities are indicated near the corresponding nodes, separated with a slash. The mt sequence of the specimen obtained in this work is indicated in bold and

with an asterisk.

genes encoded on the H-strand. The nd6 gene and overlap-
ping gene regions were discarded. Each protein-coding gene
was aligned separately with MAFFT, as described above. A
maximum likelihood (ML) tree was reconstructed with RaxML
7.4.2 as described above, with different model parameters for
each codon partition of each protein-coding gene. In add-
ition, a Bayesian reconstruction was performed using
MrBayes 3.2.2 (Ronquist et al. 2012) for 12,500,000 genera-
tions under default memc settings. The partitions and substi-
tution models were the same as those for the ML analysis.
The R. brasiliensis mt genome was 16,881 bp, slightly lon-
ger than other Ophidiiformes (16,090-16,564 bp). Surprisingly,
we identified that the mt gene order was rearranged com-
pared with the standard Actinopterygii gene order (Figure 1).
Specifically, we observed different orders in two regions: the

WANCY tRNA gene cluster and the nd6 — D-loop region. All
rearranged genes had retained their original strand direction,
as observed in other Ophidiiformes. In R. brasiliensis, the trnN
was transposed to the end of the ‘WANCY’ region, presenting
a gene order of WACYN (Figure 1(A)). The exact position of
the origin of light-strand replication (O,), which is usually
located between trnN and trnC in Actinopterygii, could not
be determined. Concerning rearrangement of the nd6 -
D-loop region, in the standard mitochondrial gene order the
cytb gene is usually flanked by the trnE and trnT on its 5'-
and 3’-ends, respectively (Figure 1(B)). In R. brasiliensis,
the cytb gene was flanked by non-coding regions and the
nd6 + trnE gene region was transposed downstream of the
cytb gene. The trnE is now flanked by the trnP at its 3’-end.
This indicated that both nd6+ trnE and trnT gene regions
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Figure 2. Maximum likelihood tree of Ophidiinae cox7 sequences. The cox7 sequence of the specimen obtained in this work is indicated in bold and with an aster-

isk. Bootstrap supports above 50% are indicated near the corresponding node.

have been transposed. The trnT is now found downstream to
the D-loop (or control region), and is flanked at its 3’-end by
a pseudo-trnP, which suggests that the transposition of the
trnT involved the duplication of the trnT+trnP region
(Figure 1(A)).

Our phylogenetic reconstruction based on cox7 sequences
(Figure 2) confirmed that the obtained sequence clusters

with other R. brasiliensis (EU074577 and EUQ074578
(Mabragana et al. 2011)) with maximal support value
(BP=100). The 652bp cox1 sequences of the three
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specimens differed by 1-2 nucleotides only, supporting the
correct identification of our sample. We then investigated the
position of R. brasiliensis within the Ophidiiformes using mt
protein coding sequences (Figure 1(D)). We found that
Raneya (Ophidiinae) was a sister clade of the Neobythitinae
Bassozetus zenkevitchi and Lamprogrammus niger with high
support (BP=73; posterior probability PP=0.98). In agree-
ment with Miya et al. (2003), our analyses did not recover
the monophyly of Ophidiidae, as Carapus bermudensis
(Carapidae, Carapinae) is the sister clade of Sirembo imberbis
(Neobythitinae) (Figure 1(D)).

Mitochondrial gene order is highly conserved among ver-
tebrates, thus finding a novel rearrangement is a rare event.
In this study, we identified multiple unique rearrangements
in R. brasiliensis, a representative of the Ophidiiformes.
Interestingly mt rearrangements have been described in
another member of the Ophidiiformes — C. bermudensis (Miya
et al. 2003; Satoh et al. 2016). However, the rearrangements
in Carapus and Raneya differ. In Carapus, they involve the
trnP and trnM, which are located downstream of the D-loop
(Figure 1(C)). Our phylogenetic analyses (Figure 1(D)) showed
that Carapus and Raneya are not closely related, and are
both more closely related to species that have a standard
Actinopterygii gene order. These findings support the
hypotheses that mt rearrangements occurred independently
in Carapus and Raneya, and that the Ophidiiformes constitute
a hotspot for gene rearrangement.

Gene rearrangements in Actinopterygii occur more fre-
quently in the WANCY and the region from the nd5 to the D-
loop (Satoh et al. 2016). Our results support this view as the
R. brasiliensis rearrangements occurred in these specific
regions. Tandem duplications followed by random loss is the
favoured model to explain mt rearrangements in vertebrates
(Satoh et al. 2016). Our finding of a duplicated pseudo-trnP
gene in R. brasiliensis supports this view. However, the tan-
dem duplication-random loss model would require at least
three separate events of duplication with multiple gene
losses, in the lineage leading to Raneya. Additional sequenc-
ing of members of the Ophidiinae should shed light on the
origins of the novel Raneya gene order. Additional data
should also reveal whether the gene order we observed in
Raneya is shared by other members of the Ophidinae or
whether it is specific to Raneya.
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