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A possible framework to characterize nervous system dynamics and its organization in

conscious and unconscious states is introduced, derived from a high level perspective on

the coordinated activity of brain cell ensembles. Some questions are best addressable

in a global framework and here we build on past observations about the structure

of configurations of brain networks in conscious and unconscious states and about

neurophysiological results. Aiming to bind some results together into some sort of

coherence with a central theme, the scenario that emerges underscores the crucial

importance of the creation and dissipation of energy gradients in brain cellular

ensembles resulting in maximization of the configurations in the functional connectivity

among those networks that favor conscious awareness and healthy conditions. These

considerations are then applied to indicate approaches that can be used to improve

neuropathological syndromes.
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1. INTRODUCTION. A POSSIBLE FRAMEWORK TO
CHARACTERIZE NERVOUS SYSTEM DYNAMICS AND ITS
ORGANIZATION

The emergence of consciousness and self-awareness from nervous system tissue—connected in
turn to other organs and immersed in an environment—is a topic of considerable interest for
which no clear answer has been found. Consciousness as an emergent property of the brain is
a notion that many scholars support. However, this does not provide much information as it
does not shed light into mechanisms through which conscious awareness proceeds. Considering
consciousness as the psychological state of conscious awareness, there are aspects of consciousness
which can be investigated in depth—like memory formation, volition, self-awareness etc.—and
can provide insight into the search for a general principle of nervous system organization and its
associated dynamics that results in conscious awareness and in unconscious states, both normal
and pathological. Following J.Williard Gibbs advice that “One of the principal objects of theoretical
research in any department of knowledge is to find the point of view fromwhich the subject appears
in its greatest simplicity” (J. W. Gibbs in a letter to the American Academy of Arts and Sciences,
1881), we turn to one aspect that we, and many other investigators, posit is fundamental for the
development of conscious awareness: the transient establishment of connections among brain cell
networks—which we will assume are neuronal networks even though the activity of glial cells
have also important consequences for the contacts among neurons. Focusing on the distributed
interactions that underlie the system’s collective behavior could be a useful start in the search for
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simplification. This aspect will be investigated from a high
level perspective, being the main purpose the attempt to find
a principle of brain organization and associated dynamics that
encapsulates the emergence of conscious awareness and the
deviant progression to neuropathological states.

In the search for a simple unified conceptual framework to
describe the organization of brain dynamics we aim to bind
some results together into some sort of coherence with a central
theme. We follow the thermodynamic approach: search for a
state functional that reflects the nature of the states attained by
the system and that is influenced by certain observables. Two
main considerations are worth discussing in order to determine
what constitutes the states of the brain, what observables can be
measured and what level of description is the most relevant for
the purposes of characterizing brain and behavior.

First consideration, brain activity is normally described from
EEG, MEG or functional neuroimaging as a superposition of
dynamics at different time scales; considering what is known
about how the nervous system operates during cognitive states,
it is conceivable to infer that the “nature of states” consists of
patterns of neuronal coordinated activity—that is, correlations of
activity. Hence, coherence or synchrony could be a fundamental
observable. It is already accepted that the evaluation of neural
synchrony constitutes an appropriate metric to characterize
nervous system dynamics; as stated by Mora and Bialek (2011)
“correlations strongly determine the global state.” Furthermore,
temporal coordination of neuronal activity is essential for
cognition in general (Varela et al., 2001). There are scores of
studies suggesting the fundamental importance of correlated
activity among neurons for sensorimotor integration and in
general to process information; just two examples: in moths the
pattern of neural ensemble synchrony is best correlated with
behavior (Riffell et al., 2009), and odor representation in zebrafish
is mediated by the coordinated responses in neural ensembles
rather than by other measures like absolute neuronal activity
(Niessing and Friedrich, 2010). On the whole it can be asserted
that the foundation of neural information processing lies in
the interaction between cells, each cell’s activity is meaningful
only with respect to other cell’s actions. Thus, synchrony (or
correlations) of cellular activity can be the observable that
influences the patterns of organized activity that constitute the
brain states. Hence, it is conceivable to propose that, to follow
the abovementioned thermodynamic approach of finding a state
functional that is influenced by observables and that reflects
the nature of the states attained by the system, the nature of
states are patterns of coordinated activity that can be observed
as correlations/synchronization of activity in cell ensembles.
Measures of synchrony, then, become our relevant observable.

A second consideration refers to equilibrium, as it is known
that life phenomena are far from equilibrium. Because there are
advantages in the analysis of complex systems when notions
related to equilibrium are used, the question becomes whether
these concepts can be applied to the nervous system. Equilibrium
holds when the macroscopic parameters of a system are
approximately constant, and because “the concept of equilibrium
state is intimately connected with that of observation time”

(Callender, 2001), then—just like the Markov process concept—
there is a time scale (and a localized region) at which a system
can be found very close to equilibrium, and in fact there
exists the concept of local equilibrium (Prigogine, 1978). The
question of steady states being at equilibrium or not may be
a matter of scale of observation. It is thus of interest that
when a system is observed at coarse-grained scales—which
is a very relevant scale for neuroscience to understand the
relation between brain and behavior, that is, the mesoscopic
level (Fukushima et al., 2015) which throughout the following
text will be taken as the synchronization among cellular
networks—far from equilibrium systems recover thermodynamic
equilibrium properties at these coarse-grained scales (Egolf,
2000). In addition, it has been argued that the EEG exhibits
near equilibrium dynamics at macroscopic scales, despite the
non-linearities at the microscopic level (Wright and Liley,
1996). Hence, it is conceivable to apply some equilibrium
thermodynamic notions at the macro/mesoscale level of brain
activity. In fact, the field of cognitive thermodynamics may
have already been created (Yufik, 2013), and attempts to
characterize cognition from a thermodynamic perspective have
been advanced (Collell and Fauquet, 2015) with some early
pioneering studies already proposing thermodynamical models
of brain activity that, perhaps due to the lack of precise data of
nervous system’s observables in those early times, were somewhat
vague but illuminating (Kirkaldy, 1965). Let us digress briefly
to note that we use the term “network” quite often in our
narrative, and it is not easy to precisely define what constitutes
a brain cell network in a manner that satisfies everybody. In
reality networks are sort of abstractions, just like “brain state,” but
useful for neuroscientists to communicate. From our perspective
we will consider networks the transient functional groupings of
active cells, using (Sadaghiani et al., 2010) definition: “gradual
clustering according to similar activity profile.”

To sum up, it can be conceived that for our purposes of
finding general principles of brain organization the adequate
level of description is associated with the mesoscopic correlations
of activity—e.g., coherence or synchrony between brain cell
networks—which will allow for a careful application of
thermodynamic concepts. Furthermore, it has to be considered
that cell networks coordinating their activity act as dissipative
structures (just like any other biological phenomenon), giving
rise to energy gradients such that “mental things happen.” A
primordial consequence of the neuronal energy moving down
gradients is the fluctuations in the correlated actions of cell
networks, or in other words the instability—or metastability
(Fingelkurts and Fingelkurts, 2004)—of brain states: very stable
states are normally pathological, like status epilepticus or
coma. In general, energy moving down gradients constitutes a
process involving determinism (cooperation/competition) and
stochasticity, which results in pattern formation in natural
phenomena (Perez Velazquez, 2009); this interrelationship
between determinism and stochasticity in pattern formation can
be clearly experienced in the case of dynamic random fractals
(Encarnação et al., 2012). This indicates that a probabilistic
framework interpretation of brain activity may be very useful.
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FIGURE 1 | General scheme toward a possible framework to characterize

brain dynamics in the search for a basic general principle of brain and

behavior. See text for details.

Putting together all these reflections, the following scheme
(Figure 1) for the search of a general principle of brain
function emerges.

The text is organized according to the following logic.
Based on previous experimental observations on the entropy
associated with the number of configurations of connected
brain networks, some considerations on the free energy
available in conscious and unconscious states are described.
Then energy dissipation will be considered, as the lower free
energy in conscious states may indicate higher dissipation,
and we will see that the neurophysiological tendency toward
greater dissipation in healthy and conscious states emerges.
The neurophysiological importance of dissipation will be
considered next, and in section 5 some approaches that
can be used to improve neuropathological syndromes are
described, based on the previous sections on the basic
thermodynamics of cognition. Section 6 describes a probabilistic
characterization of brain dynamics after the observation that
the dissipation of energy gradients is associated with large
number of configurations of neural synchrony patterns, in an
attempt to find clues about the dynamical evolution of brain
microstates that compose the macrostates with different number
of connections. Finally, section 7 presents some thoughts
about the emergence of cognition derived from the notions of
dissipation and compartmentalization.

2. THERMODYNAMIC CONSIDERATIONS
REGARDING BRAIN DYNAMICS IN
CONSCIOUS AND UNCONSCIOUS STATES

The aforementioned comments on the applicability of
equilibrium concepts to the mesoscale level allow for the
use of notions like free energy, using the standard Gibbs free
energy equation G = E − TS with E the internal energy, T
the temperature and S the entropy (there is also the analogous
Helmholtz equation F = U − TS, but in what follows the
standard Gibbs expression will be used). In general, for non-
equilibrium systems, the terms in this formula are not the
exact terms used in classical thermodynamics of equilibrium

systems. For non-equilibrium one has to consider functionals of
a similar form associated with a certain probability distribution
P, G[P] = E[P] − TS[P] where E is some kind of internal
energy, T is a noise term representing fluctuations, and S is an
information measure like Shannon entropy, which is formally
equivalent to the Gibbs entropy (Frank, 2005).

There has been a recent interest in the relevance of a free
energy perspective on cognition (Friston, 2010). It is known that
nature follows the path toward a decrease in free energy, the
dissolution of energy gradients. It is crucial to note too that it is
not absolute energy (as energy is hard to define) but the differences
in energy that have physical meaning (Le Bellac et al., 2004). At or
near equilibrium the distribution of stationary states corresponds
to those that minimize G. Along these lines, regarding the
nervous system, it has been said that “consciousness integrates
sensory and other inputs [. . . ] to consume energy gradients more
effectively than by unconscious deeds” (Annila, 2016). Hence,
is conscious awareness associated with lower free energy in
the brain?

A tendency in the evolution of brain free energy (G) is
all that can be uncovered since a precise estimation of G is
very difficult because the terms cannot be accurately estimated,
unlike in chemical reactions. The term T can be considered
noise, E the brain internal energy and S the entropy associated
with the number of configurations of connections among
neuronal networks. Other entropies associated with other brain
phenomena can possibly be chosen, and the choice of the
observable to compute entropy may of course change some
results, a similar situation as occurs with the application of
several complexity measures to neurophysiological data that
give different results depending on what the complexity is
measuring (Burns and Rajan, 2015). Since we are considering
the mesoscale level of cellular collective activity, the entropy
associated with connectivity patterns is the one considered here.
While this entropy can be accurately calculated (see below), it is
unfeasible to precisely compute the noise term, T, even though
considering it as fluctuations it could be in principle possible to
calculate fluctuations in specific observables. Since S will be, in
what follows, the entropy associated with connectivity patterns
derived from neural synchronization analysis, then it is logical to
conceptualize here the noise term as fluctuations in synchrony;
in previous work, synchronization among brain signals has been
used and the fluctuations in synchrony evaluated (Nenadovic
et al., 2008; Perez Velazquez et al., 2011). Consequently, T can
be considered fluctuations in the functional connections among
cell networks. The rationale for this particular notion of brain
noise is that cellular correlated activity, as previously remarked,
is fundamental for appropriate nervous system function. There
are other observables from which noise can be estimated but to
be consistent with past studies that will be used in what follows,
where the entropy was quantified from synchrony patterns,
it makes sense to describe the noise term as fluctuations in
synchronization. As well, the internal brain energy E is equally
impossible to estimate. What is known is that brain energy—
normally assessed taking as proxy cerebral blood flow, oxygen
consumption or glucose uptake—is basically constant regardless
of mental effort or state. It tends to diminish in pathological
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conditions like vegetative and minimally conscious states or
coma (Ashcraft and Frankenfield, 2013) and it tends to increase in
epileptiform activity although this activation is restricted to brain
areas involved in the seizures (Siegel, 1999); during sleep the
global change in brain energy is unclear because there are various
brain regions that are metabolically more active and others less
active (Maquet, 2000), and even a surge in ATP levels in the initial
hours of sleep has been reported (Dworak et al., 2010), all of this
making it difficult to ascertain whether there is a net change in
brain energy during sleep even though it is agreed that there is a
tendency toward lower metabolism (DiNuzzo and Nedergaard,
2017). These comments reflect the difficulty in assessing brain
energy, and again only tendencies are found, namely, that there
is hypometabolism in coma and sleep, and hypermetabolism
in seizures.

On the other hand, it has been proposed that energy for
brain macrostates could be derived from a measured probability
distribution function (pdf), in that an energy attribute can be
assigned to every state of the system from the pdf of microstates
(Tkacik et al., 2014). This comes from the celebrated Boltzmann
expression P = e(−E/kT), so a brain macrostate energy is E =

−T
∑

m ln(pm) assuming that k = 1 and the summation is
over all m microstates (with probabilities pm) making up the
macrostate. Can this trick be used here?

In previous studies we obtained the pdf of connected signals
in different conscious states, the microstates that were used
to calculate the entropy of the configurations of connections
(Guevara et al., 2016), thus in principle those pdf could be used
to estimate each pm and assign an energy to the corresponding
macrostate, resulting in an expression for the free energy of
each cognitive/brain macrostate G = −T[

∑

m ln(pm) + S]
where all terms could be quantified including the noise as the
aforementioned quantification of the fluctuations in synchrony.
Energy in probabilistic terms with possible applications to
neuroscience has been advanced as well by others (Annila, 2016).
But there are two inconveniences with this approach. The first
is that to compute the entropy S it was assumed equiprobability
of the microstates making up a macrostate (details in Guevara
et al., 2016), therefore it would be erroneous to mix in the same
expression the notions of equiprobability of microstates and that
of the probability depending on the energy of each microstate.
A second problem derives from the interpretation of this sort of
abstract energy; if we were allowed to estimate the brain energy as
aforesaid, the energy for the highly connected states like seizures
or coma would be high because the probability of the macrostate
seizure or coma is low, but as described above there is a tendency
toward hypometabolism in coma, hence a contradiction appears.
The state of lowest energy would be the fully awake state as it is
the more probable, but again an inconsistency occurs because, as
aforementioned, there is a tendency to more metabolism during
awake states than during sleep. Therefore, the neurophysiological
interpretation of this abstract energy derived from the pdf is
not trivial. Nevertheless, and to close this digression on brain
energy, from a thermodynamic perspective we can talk about
metabolic or any other type of energy, and work with it, as
already anticipated by pioneering studies: “Although the inflow
of free energy to the brain may appear as electromagnetic signals

or as chemical free energy, the thermodynamic model need
not, in view of their physical equivalence, distinguish between
them” (Kirkaldy, 1965).

Still, after considering all these limitations in the application
of the expression for free energy to the brain in different
states, some tendencies in brain free energy G can be
inspected. In previous work we used invasive and non-invasive
electrophysiological brain recordings in different states of
consciousness to determine the entropy S associated with the
number of possible configurations of pairwise connections; that
is, the phase synchrony between pairs of brain signals was
evaluated as regularly done using the analytic signal concept
and a threshold value of the synchronization index was used to
determine when two signals were “connected” (details in Guevara
et al., 2016; Mateos et al., 2017). The signals are assumed to
correspond to the activity of a network of cells located in the
neighborhood of each electrode/sensor, hence in what follows we
shall use the term cell network as synonymous of signals. Each
state of consciousness studied (wakefulness, sleep, coma, and
seizures) was considered a macrostate of brain synchronization,
composed of a number of microstates which are the several
possible configurations of the connected signals. For the current
purposes of applying these considerations to inspect the trends
in the evolution of free energy G, in the expression G = E − TS
for each macrostate, S will be the abovementioned entropy, T
we shall assume that is analogous to noise or fluctuations in
synchronization that can be evaluated as dNi/dt with Ni being
the pairwise connected networks, that is, T is the variation in
time of the pairwise connected brain networks; and E will be
qualitatively taken as the trends in brain energy associated with
different cognitive states mentioned three paragraphs above.

The results obtained in the aforementioned studies showed
that the entropy associated with conscious awareness was higher
than that of unconscious states (Figure 2 summarizes the main
findings that will be used in the following arguments). It
is fair to mention that since the S calculated was based on
a measure of phase synchrony, it varied depending on the
frequency used to evaluate the synchronization between the
signals. Low frequencies (<10 Hz) differentiated best conscious
vs. unconscious states; the explanation for this observation was
presented in Mateos et al. (2017); here, suffice to say that
there is evidence supporting the fundamental importance of the
slow brain rhythms for brain information processing and how
higher frequencies “ride on” the slow waves. The communication
among neurons via nested rhythms is a known phenomenon
(Bonnefond et al., 2017) and low frequencies serve as temporal
reference for information transfer at other, higher frequencies.
As well, entropy applied to another feature of the brain signals
(spectral entropy) was found lower in unconscious states (acute
and chronic disorders of consciousness) as compared to healthy
individuals (Gosseries et al., 2011).

Hence, due to the higher value of entropy in alert conditions,
for constant E and T the free energy G should thus be lower in
conscious states, which would indicate that the energy gradients
are better consumed (that is, dissipated) during conscious
awareness, as proposed by Annila (2016). Now, neither E nor
T remain constant for different states of consciousness, as
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FIGURE 2 | Simple schematic depicting the main results reported in Guevara

et al. (2016) that are used in the text (please see technical details in the original

publication). Normal alertness resides at the top of the curve representing the

entropy (S) associated with the number of configurations of connected brain

cell networks. The top of the curve with high S represents large number of

configurations (microstates) of network connections which provides the

variability in brain activity needed for normal cognition. Pathological or

unconscious states like slow wave sleep (SWS) are located away from the top,

thus characterized by either large or small number of “connected” networks

therefore exhibiting lower number of microstates, hence lower entropy. As

detailed in the text, for constant noise (T ) and energy (E), G will be then lower

near the top of the curve because of the high values of S.

previously mentioned. In conscious awareness characteristic of
wakefulness where the internal energy and the noise (fluctuations
in synchrony) are higher than in unconscious states (Nenadovic
et al., 2008; Perez Velazquez et al., 2011), the entropy should
increase in order to follow the natural tendency to decrease G,
which is what was found in our studies as mentioned above: high
S values in alert states (Figure 2). On the other hand, during
unconscious physiological—that is, normal—states (sleep) with
lower noise, entropy does not need to be prevalent and also
considering that there is hypometabolism during sleep, then S
can be lower than during wakefulness to still have a diminished
free energy; and indeed lower S associated with slow wave sleep
(SWS) was found (Figure 2 in Guevara et al., 2016, schematized in
the current Figure 2). In unconscious pathological states (coma,
seizures), where lower entropy was found as well, the evolution
of G will depend on the energy and the noise. In coma both
brain energy and noise—again, noise as fluctuations in neural
synchrony (Nenadovic et al., 2008)—are low, therefore G will be
basically equal to the internal brain energy which may be low due
to the pathological hypometabolic state; whereas during seizures
the energy increases while the noise decreases (Perez Velazquez
et al., 2011), thus G will tend to be larger in the pathological
state of epileptic seizures. In general, waking conscious states
minimize G better than unconscious states.

To maintain healthy brain states then is not about the
total amount of energy in the brain, as there seems to be
no clear relation between the energy used and the degree of
conscious awareness (e.g., large energy in seizures with loss
of consciousness), but rather in how the energy is organized,
namely, how the brain cell networks coordinate their activity and

distribute the energy to process sensorimotor information. Same
can be said about cellular activity, which of course runs in parallel
to energy consumption: “High brain activity is not consciousness;
rather, it is a property that provides necessary but not sufficient
support of the conscious state” (Shulman et al., 2009). The
functional importance of the organization of energetic processing
in the brain has been proposed by some authors (Pepperell,
2018), which is line with older proposals that postulated that
the flow of energy through a system acts to organize the system
(Morowitz, 1968) and that biological information is, in the final
analysis, the energy flow (Smith, 2008) as metabolic pathways
offer channels for energy to flow and cellular communication
provides further conduits for that flow. Not only in the biological
world but also in the inorganic, channels exist so that energy flows
and creates patterns (Perez Velazquez, 2009). Therefore, putting
together these considerations about brain energy and neuronal
activity seems to lead to the notion that the crucial aspect
for proper conscious awareness is that brain cellular functional
connectivity and activity has to be variable enough—provided
by the creation and dissipation of energy gradients—and well-
organized so that the integration and segregation of information,
two fundamental aspects for proper sensorimotor processing, can
occur. The view that consciousness relies on large–scale neuronal
communication is a common point of several cognitive theories
(Tagliazucchi, 2017).

3. THE NEUROPHYSIOLOGY OF
DISSIPATION

The question of how brain free energy changes with healthy
or pathological brain states can be inspected from another
perspective. It has been proposed that brain dissipates energy
in order to process information (Street, 2016; Pepperell, 2018).
As a dissipative structure, the nervous system should then
dissipate energy efficiently to function properly, and the question
becomes whether there is a relation of dissipation with healthy
and pathological conditions. Building on the studies of Bak
et al. (1988) on the energy dissipated during avalanches,
some considerations can be obtained about brain dynamics
especially reflecting on energy dissipated in the process of
synchronization of brain cell networks and how it changes
with neuropathology. The authors propose that the size of an
avalanche is proportional to the instantaneous energy dissipation
rate. In neuroscience, neural avalanches have been considered in
the literature, normally as bursts of activity in neuronal networks
(Beggs and Plenz, 2004). Those bursts of activity occur due
to neurons receiving synchronous inputs from other connected
cells, thus, in the final analysis the bursts represent manifestations
of synchronization of cellular activity, which naturally correlate
with the amplitude of the extracellular field potentials: large
amplitudes represent more synchronous cellular activity; hence,
synchrony and magnitude of local field potentials are very
much related.

Neural synchrony in neuroscience is evaluated using certain
indices. Let us use one originally described by Mormann et al.
(2000), a mean phase coherence statistic which is a measure
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FIGURE 3 | Time evolution of the synchrony index R between two magnetoencephalographic (MEG) signals taken in two epileptic patients during seizures. The

patients were two of those described in Garcia Dominguez et al. (2005), having two different epilepsies. The left hand side corresponds to an absence seizure (one

MEG channel shown above, the ictus occurs during the high amplitude signal) and the other to a tonic seizure. During the seizures the synchronization index is high

and shows less variability, losing the characteristic “spiking” as in moments without the ictus.

of phase locking and defined as R =
∣

∣

〈

ei1φ
〉∣

∣ where 1φ is
the phase difference between two signals. The magnitude of R
—normally evaluated within a certain time window of a few
milliseconds to 1 s—describes how synchronous two signals are,
signals which fromnow onwill be referred to as networks because
the signals represent activity of many neurons located nearby the
recording sensor/electrode. The larger the magnitude of R the
more synchronous two networks are, which indicates that more
neurons are becoming entrained in both networks (recall we are
talking about signals representing collective activity and not two
individual neurons connected, because in the latter case there
could be changes in R without changing neuronal firing activity);
here we assume, for the sake of simplicity, that the cell networks
are directly connected —there could be enhanced synchrony as
well if both brain regions are receiving common input from a
third one, but in the end the reasoning, while more elaborated,
results in similar final arguments. Therefore, it is conceivable that
the magnitude of R represents the size of the neural avalanche.
Following Bak et al. (1988) considerations, we have Sz ∼

∫

F(t)dt
where Sz is the size of the avalanche and F(t) the energy
dissipation rate. If we then assume that Sz —in this case the
clusters of connected cells— is equivalent to the synchronization
index R, it leads to the following relation F ∼ dR/dt.

From this simple relation between the dissipation rate (F) and
the time evolution of synchrony (R) some indications emerge
about the dissipation of energy in brain activity. Energy is
dissipated as more neurons become “connected,” thus when
dR/dt > 0, and if the connections remain constant then F = 0,
no dissipation occurs. Obviously, this reasoning is only applicable
to the meso or macroscale, but not to two individual neurons
becoming more or less synchronous, as there is no cluster in
the case of two coupled neurons. From the above expression,
it is then conceivable that the more abrupt the changes in R,
the larger the dissipation; a sign of the tendency to dissipate
energy can thus be seen by inspection of the evolution of the
phase synchrony index R: the usual time series of R displays a
jagged, spiky evolution (Figure 3). It reflects the tendency of cell

networks to synchronize and desynchronize under the influence
of perturbations, either external or from internal stochastic
fluctuations that desynchronize cell ensembles. In pathological
states like seizures there is an almost constant high value ofRwith
lower fluctuations in synchrony (Perez Velazquez et al., 2011)—
as depicted in Figure 3—and in coma after traumatic brain injury
a similar less variability in R was found (Nenadovic et al., 2008),
hence in these conditions less dissipation is expected according
to the present argument. Therefore, similar conclusions as
those presented in the previous section about brain free energy
are reached after these considerations. To say that when the
changes in synchrony between neural networks are rapid the
larger the dissipation becomes is another way to emphasize the
importance of the variability in synchrony patterns, which is
already becoming a common conclusion throughout this text.

Another indication of dissipation can be obtained from the
basic formula of macroscopic thermodynamics of irreversible
process (Prigogine, 1978) dS/dt = 6JiXi where J are the
rates of the processes involved and X the generalized forces.
This expression—in chemistry where it is commonly applied—
also appears under this fashion (basically using the chain rule)
dS/dt =

∑

i(dS/dNi)(dNi/dt) where Ni are molecules involved
in the chemical reaction. The extension of this expression from
chemistry to neuroscience can be envisaged if we consider
not molecules but neuronal networks, specifically pairwise
connections of networks, such that Ni are pairwise connected
nets. Therefore, the term dNi/dt represents fluctuations in
synchronization as discussed in the previous section, that
is, the variation of the pairwise “connected” brain networks.
This interpretation is along the line of dissipation viewed
in terms of the emergence and vanishing of the coherence
(connections) between cells (Torday and Miller, 2016). More
fluctuations—larger number of configurations and variability of
connected networks—were found during conscious awareness
as opposed to unconscious states (Guevara et al., 2016; Mateos
et al., 2017), therefore suggesting that dS/dt is larger during
wakefulness (as was concluded in the previous analysis): the
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FIGURE 4 | Intracerebral recordings of 1 sec duration in a rat that had

spontaneous absence seizures. The first recording was taken during normal

exploratory behavior of the rat, while the second corresponds to an absence

seizure. The animal model and the intracerebral recordings of this type of

absence seizures have been reported in numerous publications (e.g.,

Velazquez et al., 2007).

more fluctuations the larger the dissipation. In situations when
fluctuations in synchrony are very low, like during seizures or
coma, dS/dt should diminish. Once again the neurophysiological
tendency toward greater dissipation in healthy and conscious
states emerges.

4. NEUROPHYSIOLOGICAL IMPORTANCE
OF DISSIPATION

Why could dissipation be important for consciousness and
healthy brains? In general, dissipation of energy is at the
basis of pattern formation (Prigogine, 1978), and in the case
of brains the patterns of organized cellular activity is what
determines behavior. Differences in energy—that is, gradients—
is what makes things happen. In the case of nervous systems,
those gradients are associated with communication among
cell ensembles that carry out the fundamental aspects of
sensorimotor processing, executing adaptive behaviors. Thus, at
one level of description the coordinated cellular activity can be
studied using the typical methods of coherence, phase synchrony,
mutual information and the like, and at another level these
collective patterns of activity can be viewed from a more abstract
perspective employing the thermodynamical concepts of energy
dissipation and entropy production.

It is gradients of energy that are in fact recorded in any
typical neurophysiological signal, as shown in the two examples
in Figure 4. These are bipolar voltage time series of about 1 s
duration recorded from the interior of the brain of a rat, and the
signal waveforms are due to differences in voltage; without these
gradients, only flat lines would be recorded. In one recording
a large amplitude rhythmic waveform is shown, and at this
moment the rat was suffering an epileptic seizure; the other
signal was taken at a time when he was not seizing. Notice
the difference in the amplitude, the large amplitude during the
seizure is due to many neurons firing in synchrony, whereas the
healthy signal depicts the typical low amplitude high frequencies

(gamma range) associated with wakefulness. For the sake of
simplicity, let us imagine that the bipolar recordings represent the
differences in voltage between two neural networks. The many
tiny spikes that are seen in the low amplitude trace during normal
behavior suggest that there are several subnetworks within the
two networks that are exchanging information, many gradients of
energy (potential differences) allow many neurons to participate
in several connection patterns, and the amplitude is small because
there are few cells in each subnetwork; but the main point is that
there are many subnetworks that communicate with one another
thus each of the small spikes can be thought of as being created
by the communication between two small cell populations, and
because there are many small peaks this suggests there is great
variability in the configurations of the connections among the
neurons in both networks. The net result is the emergence
of gamma frequencies, so much talked about with regards
to cognition. Gamma frequencies reflect the emergence and
dissolution of communication among small neuronal ensembles,
fluctuations which provide variability needed in brain dynamics
to properly process information leading to adaptive behavior. On
the other hand, the large amplitude signal during the seizure with
less high frequencies indicates that many or perhaps almost all
neurons in the two networks are involved in the communication,
and therefore there is not much flexibility in terms of the
possible configuration patterns that can be created: the potential
differences are large because so many cells are synchronously
active but there are very few gradients as compared with the
previous condition, in fact, there could be only one gradient
if just one perfect sinusoidal-like waveform were recorded (but
this never happens in real life, only in computer simulations). In
this manner, the origin and function of the gamma rhythms lose
part of the mystery: the prevalence of gamma frequencies during
wakefulness is just a matter of probabilities, it is probable that
the great variability in the firing patterns and configurations of
neuronal connections during cognition generates many voltage
gradients. There have been proposals relating gamma frequencies
to the infrastructure of the brain neuronal operations that balance
excitation with inhibition when the brain is engaged functionally
with the environment (Merker, 2016).

From an evolutionary point of view, Bruner et al. (2014)
described that the phylogenetic evolution of the human genus
was associated with the increase of the functional and structural
brain complexity. This is due to the necessity to handle the
information (internal and external) in the most efficient way.
As we discussed before, the brain processing of information has
associated energy dissipation. Therefore, we could conclude that
as the brain evolved over time the energy dissipation increased.

In conclusion, the creation and dissipation of energy gradients
is associated with brain conscious awareness and healthy
conditions, which may indicate approaches that can be used to
improve neuropathological syndromes.

5. IMPROVING HEALTHY BRAIN
DYNAMICS

Based on the observations that conscious awareness and healthy
brain states are characterized by higher entropy, decreased free
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energy and increased dissipation, one adventurous speculation
is offered as to how to improve the health of the brain in
pathological states, especially of low entropy. Based on the
previous results, increases in the dissipation—that is, reductions
of free energy—may provide useful to correct some pathological
states. The basic aforementioned formula G = E − TS provides
some hints. Considering that the brain internal energy is high
and almost constant during healthy states, then perhaps it
should not be lowered, and in any event it is very difficult
to manipulate brain’s energy. The safest method to decrease
the free energy would thus be to increase the noise T. This
can be done using neurostimulation; for instance, deep brain
stimulation (DBS). It is thus of interest that DBS has been used
in a patient in minimally conscious state who was partially
recovered by stimulation of the intralaminar thalamic nuclei
(Schiff et al., 2007). The neurophysiological basis of the effect
of this stimulation can be understood by considering the net
effect of increasing excitability in the thalamus: because the
intralaminar nuclei project to almost all brain cortical areas,
the stimulation causes an overall increase in cortical excitability,
that is, enhances internal “brain noise.” In another pathology,
epilepsy, “noisy” or asynchronous stimuli has been reported
to stop epileptic seizures (Cymerblit-Sabba et al., 2013). The
neurophysiological reason for the antiepileptic activity of random
stimulation could be that the perturbation desynchronizes the
cell networks that are progressively synchronizing during seizure
development. Another common neurostimulation used to reduce
seizures, vagal nerve stimulation (VNS), can cause a global
change in excitability in several brain regions due to the
vagus nerve’s anatomical connections, and the net effect is a
decrease in neural synchronization that has been reported in
patients that have shown reduced seizure frequency with VNS
(Bartolomei et al., 2016).

Furthermore, it is also of interest that neurostimulation
methods that are non-specific like electroconvulsive therapy
(ECT), transcranial magnetic stimulation (TMS), and
transcranial direct current stimulation (tDCS) are efficacious in
the treatment of neuropsychiatric syndromes, perhaps due to
the global non-specific enhancement of brain excitability—the
intensification of neural noise—achieved by these stimulation
procedures. The specific cellular mechanisms by which the
enhancement of variability in neural excitability is achieved
varies depending on the method, but from a higher level
perspective this phenomenon finds explanation in that an
increase in the fluctuations in neuronal connections—or
equivalently increasing the term T, “brain noise,” in the above
formula—enhances the entropic term and helps reduce the free
energy. It is thus tempting to speculate that a noisy brain—in
terms of fluctuations in connections among brain regions—is
a healthy brain, as has been asserted by some (McIntosh et al.,
2010; Protzner et al., 2010).Whereas it is true that in some cases
neurostimulation may promote inhibitory activity, sometimes
this leads to excitation in other connected brain regions. Perhaps
more accurate would be to say that neurostimulation alters
the patterns of synchronous activity (Latchoumane et al.,
2018; Hu et al., 2019). Illustrations of the favorable effects
on neuropathologies of non-specific neurostimulation are

numerous; to wit, there is evidence that DBS promotes memory
(Ezzyat et al., 2017) and non-invasive neurostimulation (rTMS
and tDCS) enhances performances on several cognitive functions
impaired in Alzheimer disease while some promising results
with invasive DBS have also been observed (Nardone et al.,
2015). In addition, non-invasive brain stimulation improves
post-stroke recovery (Kubis, 2016) and rehabilitation in general
(Rossi and Rossini, 2004).

Why are these neurostimulation techniques able to improve
brain healthy features? The reason, at a high level of description,
may be the aforementioned tendency to increase dissipation, to
promote the emergence and subsequent dissipation of energy
gradients that increase the probability for neural connections to
become active and engaged with the environment in efficient
sensorimotor processing. These neural circuits may have already
been molded in the brain. The possibility of pre-configured
neuronal functional connectivity motifs has been advanced by
several scholars (Tsien, 2015; Reimann et al., 2017), and the fact
that there could be predefined dynamic patterns of neural activity
and that external inputs re-activate what are already functional
brain circuitries finds support in the abundant evidence obtained
from invasive and non-invasive brain recordings indicating that
there exist a common collection of network states (Kramer et al.,
2011; Betzel et al., 2012). Even under anesthesia correlations
in brain activity have been found which are postulated to be
not a reflection of sensorimotor processing—as there is very
little under anesthesia—but rather an intrinsic property of
brain organization, perhaps helping to maintain or reinforce
the already set connectivity patterns (Vincent et al., 2007).
Repetitions of spontaneous patterns of neuronal activity, known
as synfire chains, have even been found in vitro (Ikegaya et al.,
2004). The spontaneous activity reverberating among these cell
networks underlies the observations that the fluctuations of
ongoing neuronal activity shape the stimulus-evoked responses
(Arieli et al., 1996).

Therefore, considering all these studies and the clinical
data, the scenario that emerges is that of numerous possible
functional connections among many neural networks with some
of these remaining nearly continuously active. It almost looks
as though in neuropathological states like coma, minimally
conscious state or vegetative state some neuronal connections
are not active but ready to become active, thus turning into
the so-called functional connectivity which is based on their
anatomical connectivity. Hence, neurostimulation procedures
can make possible energy gradients that will make the connected
cell ensembles functional again. But the crucial point for
proper brain information processing, for conscious awareness
to emerge, is that of fluctuating activity among many possible
configurations of neural networks. Rather than stable states,
brains need metastability for a correct function (Fingelkurts and
Fingelkurts, 2004), whereas strong stability of brain states are
normally associated with disease—e.g., status epilepticus, coma—
or unconsciousness—slow wave sleep. In this regard, it has
been shown that diverse patterns of correlated activity emerge
from features that maximize variations in synchronization
(Vuksanović and Hövel, 2015). In the end, the notions of
metastable brain states, variability in neural activity, long-range
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correlated activity and the need for widespread distribution of
information for consciousness to arise, seem to have a common
underlying theme: maximize the number of configurations of
connections among neural networks, which from a high level
description means the creation of energy gradients through
efficient dissipation. Indeed, that fluctuations in functional
connections among anatomically interconnected brain cell
networks is a key to conscious awareness and healthy brain
dynamics can be promoted to be a fundamental principle of brain
function and organization. Therefore, and following the scheme
presented in the first section, now the possibility of a probabilistic
characterization of brain dynamics will be considered.

6. PROBABILISTIC DESCRIPTION OF
BRAIN DYNAMICS

We have seen how the entropy of the number of configurations
of connected brain cell networks associated with conscious
awareness is higher than that during unconscious states and
that the tendency of brain free energy is to decrease in the
normal, wakeful states as opposed to pathological unconscious
conditions. In other words, brain macrostates associated with
conscious awareness possess more microstates (configurations
of connections) whose emergence and dissolution determines
cognitive states. The question now is whether the dynamical
evolution of those microstates and the corresponding
macrostates can be studied using an evolution equation.
The usual procedure starts with a Langevin type of equation
that encapsulates the deterministic and stochastic aspects. Here
the proposal is to study the dynamics of the evolution of the
brain coordination dynamics (synchrony patterns) starting
from Shannon’s entropy, following the advice that “viewed in
a dynamical perspective, generalized entropy-like quantities as
used in information theory can provide useful characterizations
of self-organizing systems” (Nicolis and Nicolis, 2016). In
particular, it will introduce the perspective of the probabilities
of interactions among neuronal networks as the basis to start
developing an evolution equation.

The rationale for this probabilistic approach is founded in
the collected works of several scholars. It has been said that “If
we are to understand biology we need a statistical mechanics of
genes” (Goldenfeld and Woese, 2011), which can be paraphrased
as “If we are to understand the nervous system we need a
statistical mechanics of nerve cell networks.” There have been
efforts to characterize neurodynamics in terms of probabilistic
notions, e.g., the early statistical neurodynamics (Amari et al.,
1977), or the probabilistic descriptions frameworks of Friston
(2010), or Buice and Cowan (2009) on the statistical mechanics
of neocortex characterizing connections in terms of probabilities;
all these ideas are reasonable because it is the global pattern of
the many connections that is important and not the individual
cell-cell connectivity. A host of computational models have been
based on the probability of connections between units and
have studied how these connections give rise to self-organized
oscillations (e.g., Lewis and Rinzel, 2000). It wasmentioned in the
introduction that correlations of activity (coherence, synchrony)

can be considered a fundamental observable to describe brain
states, therefore it is conceivable to use probabilities of functional
connections—which will determine the correlated activity—
among cell networks as a fundamental, elementary variable to
study nervous system dynamics.

The starting point for a probabilistic perspective could
plausibly be Shannon’s famous formula S = −

∑

i pi ln(pi). One
reason to choose this formalism is that it has been proposed that
in the case of non-equilibrium systems, entropy (or information)
in the Shannon sense is more adequate than classical entropy
(Haken, 2006). It is also true that whereas universal entropy
principles have been discussed in several works (Martyushev and
Seleznev, 2006) there is debate as to whether these principles
can be formulated for non-equilibrium processes. Nonetheless,
as aforementioned, the application of notions of equilibrium
thermodynamics at the mesoscale level is feasible (Egolf, 2000)
and the careful interpretation of results may provide additional
insights into the organization of the operations of the nervous
system. We note as well that the Gibbs and the Shannon
entropies, and indeed the thermodynamical entropy, are to a
large extent equivalent (Le Bellac et al., 2004; Sethna, 2006).

Hence, without further ado we start then with Shannon’s
expression S = −

∑

i pi ln(pi). To start addressing the dynamics
one can differentiate the formula with respect to time

dS

dt
= −

∑

i

[

ln(pi)
dpi

dt
+ pi

d(ln(pi))

dt

]

= −
∑

i

[

ln(pi)
dpi

dt
+ p

1

pi

dpi

dt

]

to obtain in the end

dS

dt
= −

∑

i

(

dpi

dt

)

(1+ ln(pi)) (1)

From the aforementioned rationale, p is the probability of
functional interaction (or connection) between cell nets. The
standard p in Shannon’s formalism refers to the probability of
an event; in this case, the events are interactions between two
cell ensembles. It could also be, as an alternative option, the
probability of microstates–microstates in this case defined as
aforesaid, combinations of pairwise connected networks—which,
in the end, conceptually is the same as the previous notion:
a probability of connection because microstates arise from
connections. It is of interest that, recently, the thermodynamic
entropy of a network (here networks defined as in graph theory)
has been described using the Shannon formula dependent on the
probabilities of the microstates (Ye et al., 2018).

From the above expression 1, one can immediately see that
if p does not change (say, there is only one microstate, one
configuration of pairwise connections that exists all the time),
then there is no dissipation, dS/dt = 0, that is, the equilibrium
state has been reached. In this case of dp/dt = 0 the steady
state can be conceived as a “pathological equilibrium,” because
fluctuations in connectivity patterns are crucial for proper brain
information processing (sorry for belaboring the point!). It was
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FIGURE 5 | Dependence of dS/dt with the probability of connections p

among cell networks, from Equation (1) (assuming dp/dt = 1, if it has another

constant value the graph is lifted following the y axis). The dotted curve is

created using log2, and the black curve the natural logarithm. The straight

dotted line denotes the equilibrium points at which dS/dt is 0. As commented

in the text, there are “healthy” equilibrium points for middle ranges of p,

depending on the base of the logarithm.

noted above that dissipation increases with the magnitude of the
fluctuations in connections, hence we arrive at the same result,
but starting from another perspective, the Shannon formalism.

Assume now that dp/dt 6= 0, then depending on the base
of the logarithm there will be another steady state at which
dS/dt is 0 when 1 + ln(p) = 0; the graph of dS/dt vs. p is
shown in Figure 5. Normally the logarithm is taken as the natural
logarithm or at base 2, which suggests that the equilibrium
dS/dt = 0 occurs around middle values of p, 0.36 in case of the
natural logarithm or 0.5 if base 2 is chosen. Because, conceptually,
the probability of connection is a function of the synchronization:
p = f (R) (R, as described above, is the phase synchrony index,
the higher it is, the more probable the “connection” and in fact
R varies from 0 to 1 like the probability, so there could be a
linear relationship between p and R), this qualitative account
indicates that in normal brain function—this time the “healthy
equilibrium”—the values of the synchronization to maintain a
near equilibrium brain state should be in middle ranges, neither
too low nor too high, which is what is normally found as
opposed to high maintained values during coma or seizures
(e.g., Figure 3). Other studies have presented evidence as well
that consciousness requires medium values of certain features of
neural assemblies (Tononi, 2004; Fingelkurts et al., 2014; Tkacik
et al., 2014).

It has been emphasized that it is the instability, or
metastability, of brain states that have adaptive values for the
organism. Now we see that during normal cognition the state
is near equilibrium, as it was seen as well in the graphs of the
entropy of the macrostates (e.g., Figures 1, 2 in Guevara et al.,
2016, current Figure 2), those during wakefulness being near
the top of the Gaussian where equilibrium resides. This may
be counterintuitive but the apparent paradox is resolved if one

considers the global and local perspectives: the microstates (local
view) need to fluctuate hence be unstable/metastable, whereas
the global macrostate remains stable. This scenario of local
instability and global stability is suggested by the inspection of the
microscopic nature of the configurations of connections using a
complexity measure derived from the Lempel-Ziv complexity—
the normalized joint Lempel-Ziv complexity—applied to the
connectivity among brain signals to evaluate the fluctuations
in the connectivity pattern of the combination of networks in
short time windows, which resulted in large values (that is,
large variability) in wakefulness (Mateos et al., 2017). Thus, in
those studies entropy and complexity measures were set in the
context of connections among brain networks to evaluate the
variability and the global information content of the system. In
classical thermodynamics applied to chemistry the approach to
equilibrium consists in a rearrangement of the mass distribution
in a certain volume, but in the case of brains it is the arrangement
of the distribution of connected neural networks.

These conclusions of brain dynamics in conscious awareness
being close to equilibrium are not inconsistent with the
comments above about the higher dissipation during conscious
alertness as opposed to unconscious states, because, as it has been
many times mentioned, it is unfeasible to exactly quantify terms
like dS/dt, and only qualitative tendencies can be discerned.
In the brain macrostate associated with normal cognition near
equilibrium there may be little dissipation—low value of dS/dt—
yet more than during pathological states where due to the low
fluctuations in synchrony the dissipation may be close to null.
This is in fact seen in Figure 6. In order to inspect the changes in
dS/dt in more detail, a simulation of Equation (1) was performed
using brain recordings from subjects previously analyzed in
Mateos et al. (2017). Figure 6 depicts the time evolution of the
dissipation in the transition from normal activity to an epileptic
seizure. Note that there is an almost perfect flat line centered at 0
during the ictal events. To inspect the trends in dS/dt in another
pathological condition, we computed the average values during
states of coma as compared with the values in a healthy group,
being 0.167 ± 0.04 (arbitrary units) for the former group and
0.196 ± 0.02 in the latter, hence again less dissipation is evident
during this pathological unconscious state of coma. On the other
hand, in a physiological (healthy) unconscious state, namely slow
wave and REM sleep, there was no difference in the dissipation as
compared to the awake conditions in the same individuals.

Taken together, these observations suggest that conscious
awareness—that is, brain interacting with the environment—
brings brain dynamics close to a “healthy” equilibrium
with some, albeit small, dissipation needed to establish
communication channels between cell networks. This situation in
brain dynamics being close to equilibrium and of low dissipation
may find its parallel in the case of biochemical oscillations;
for instance, glycolytic oscillations in cells have been shown to
be in near-equilibrium conditions with low dissipation so that
small energy inputs can sustain the oscillatory, metabolic regimes
(Thoke et al., 2018). These observations challenge the common
view of metabolism being highly dissipative, and possibly this
notion can be generalized to other biological processes operating
in near-equilibrium regimes, like cognition.
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FIGURE 6 | Time evolution of dS/dt, according to Equation (1), in the transition from interictal to ictal events in two epileptic patients. (A) Upper panel shows a

magnetoencephalographic (MEG) signal including an absence seizure (Sz) of about 10 sec duration, and the lower panel de evolution of dS/dt (arbitrary units). To

compute this using Equation (1), the time evolution of the phase synchrony index R between two MEG signals (one shown above) was used, and the assumption was

that p = R; then the R time series was divided into bins of certain duration from where the < R > was obtained for each bin and dR/dt evaluated as the slope from

the first R value to the last value in each bin. This creates a dS/dt time series, which is plotted in the lower panels in A and B. (B) Another MEG signal, containing two

seizures (Sz1 and Sz2), taken in a patient with frontal lobe epilepsy, demonstrating again the decreased dissipation (dS/dt close to 0) during and around the ictal events.

The regions of positive and negative dS/dt, as seen in Figure 5,
occur because of the simplifying assumption that dp/dt is
constant. While positive and negative entropy production has
been described in thermodynamic settings (Belandria, 2008),
here it is the Shannon formalism that is being applied and in
this case the entropy is equivalent to the information content
(Rieke et al., 1997; Stone, 2015). Previous studies showed that
the information content is larger in the network associated
to conscious states (Guevara et al., 2016)—perhaps indicating
that consciousness could be the result of an optimization of
information processing—and dS/dt would now be the variation
of the information content. The region of positive variation
of information with time suggests creation of information,
occurring for low to moderate values of the probability of
connections, whereas when the probability is higher, say in states
like seizures, deep sleep or coma, there is decreased production
of information. If generation of information can be attributed
to healthy brain dynamics, the tendency thus is to have not too
high synchronization (equivalent to high p); in other words, we
find again the notion of variability in functional connectivity

associated with healthy conscious awareness. We see that from
different perspectives the same conclusion is reached.

But dp/dt may not be constant, in which case the graph of
Figure 5 would change. In some works it has been taken as
an operator representing probabilities to reach one state from
another (Nicolis and Nicolis, 2016). Another option would be to
use a Fokker-Planck equation (FPE): dp/dt = −d[D1(x) p]/dx+
d2[D2(X) p]/dx2 with D1(x) and D2(x) the typical drift and
diffusion coefficients associated with the FPE. Hence

dS

dt
= −

(

−
d[D1(x) p]

dx
+

d2[D2(x) p]

dx2

)

(1+ ln(p)) (2)

How to obtain the derivatives of p with the variable x ? What

could be that variable? For example, x could be the phase
synchrony index R, as it was abovementioned that p = F(R). It

was as well noted that the synchrony index varies from 0 to 1 like

the probability, so there could be a linear relationship between p
and R: a maximum R (R = 1) indicates maximum probability

of interaction (p = 1), and R = 0 indicates null functional
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connectivity, considerations that are more or less reasonable.
For the sake for simplicity, assume a straight linear relationship.
Therefore, dp/dR = K (constant) and the second derivative is 0,
so assuming D1 = 1 results in

dS

dt
= −

(

−
dp

dR

)

(1+ ln(p)) = K (1+ ln(p)) (3)

So with those assumptions the equation reduces to the previous
1 (with dp/dt = constant), hence same tendencies as described
above will emerge from this FPE perspective (under the
simplifying assumptions chosen here). These reflections, let us
emphasize again, are not meant to quantify precisely these
expressions but rather to inspect qualitative tendencies.

7. THE EMERGENCE OF COGNITION
FROM THE PREVIOUS ELABORATED
PERSPECTIVE:
COMPARTMENTALIZATION PLUS
DISSIPATION

The main purpose, as mentioned at the beginning, is the search
for a simple unified conceptual framework to describe the
organization of brain dynamics. Can these results obtained here
be bound together into some relatively simple coherence with
a central theme? The main findings all revolve around the
notion that the brain macrostates comprised of neural networks
connections associated with conscious awareness and health had
more configurations—more microstates—thus conferring brain
areas more variability to establish different connectivity patterns
for proper sensorimotor transformations, reminiscent of old
proposals like Flohr’s rate of dissolution of neural assembles
determining degrees of consciousness (Flohr, 1991). It may be
worth now to take a look at what biology teaches us, for after all
cognition is an aspect of it.

Compartmentalization is considered the first step in biological
organization (Tanford, 1978), that joined with dissipation gives
rise to self-organization, the formation of complex structures:
“Self-assembly and a process of dissipative structure formation
are complementary principles of self-organization” (Amemiya
et al., 2017). Can therefore compartmentalization plus dissipation
provide the basis for conscious awareness?

In biological systems compartmentalization is normally
achieved by aggregation of lipids, forming micelles. At higher
levels, modules of connected cells appear. The emergence of
modularity has been studied for long time and is considered to
represent an advantageous organization for organisms (Lorenz
et al., 2011). In the brain a compartment can be thought
of as a number of cell networks that are synchronous, or
functionally connected. Indeed, the modular (in anatomical
sense) construction of invertebrate and vertebrate nervous
systems has been known for long (Leise, 1990). Anatomical and
neurophysiological studies have taught us that nervous systems
are organized in a modular fashion, e.g., neuronal tract tracing
unveiled modular organization consisting of connections linking
regularly spaced cell clusters (Galuske et al., 2000; Perin et al.,

2013). The modular organization in brains may underlie the
commonmotifs observed in EEG and other brain recordings that
were mentioned above in the section on improving healthy brain
dynamics (Kramer et al., 2011; Betzel et al., 2012).

It is worth noting some similarities in the formation of
brain cell functional clusters with the formation of micelles.
This is a highly cooperative process that depends on the lipid
(monomer) concentration. In the case of nervous systems, the
synchronization between two networks is also cooperative and
depends on howmany cells are active, the more neurons firing in
synchrony the more probable the connected networks will start
becoming active and the stronger the electric field will be around
the neurons that, in turn, will enhance activity—the so-called
ephaptic coupling (Anastassiou et al., 2011); this phenomenon
is related to the enslaving principle of synergetics, where the
field enslaves the units. The size of micelles is determined
by geometric and thermodynamics factors, and in the case of
neuronal functional connections these are determined as well
by the geometry of the anatomical connectivity, whereas the
thermodynamic factors favoring synchronization can be those
expounded in previous sections: the increase in dissipation and
reduction of energy gradients and free energy. The advantage
for those investigating membrane formation by lipids is that
the thermodynamic drive can be quantified by means of a very
useful notion, the chemical potential: the organized structures are
formed by the molecules searching for their lowest potential. But
there is no equivalent to a chemical potential for the collective
activity of brain cell ensembles. Could there be an analogous
notion that applies to brain function and cognition? A subsection
below addresses this topic.

A main difference between the biological compartments and
those “compartments” in the brain formed by the neuronal
functional connections is that the former tend to be stable while
the latter are transient (except in pathological and unconscious
states). While this partition into cell clusters proposed here is
considered at the neurophysiological level, other more abstract
partitions, such as in mental state space have been advanced
with the proposal that stable partitions of microstates give rise to
cognitive macrostates that depend on context and environment
(Atmanspacher, 2015).

Perhaps then, compartmentalization, the transient formation
of neuronal connections, may be one fundamental aspect that is
entwined with the other aspect, energy dissipation that creates
and destroys the functional cell assemblies. In attempts to
explain the emergence of complexity, it has been advanced that
the mechanisms of systems moving down energy gradients is
what leads to complexity (Schneider and Sagan, 2005), this
being related to Prigogine’s proposal that dissipation of energy
creates organization. Conceivably, the emergence of complex
structures requires many interacting units exchanging energy,
and this could be the mechanism how energy moving down
gradients creates complexity, by maximizing the number of
interactions among units that exchange that energy. According
to the aforementioned results, in brain cell circuitries the
energy gradients that establish functional cell connections
maximize the configurations of connections during conscious
awareness, maximization of units (cells) exchanging energy—or
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information, if you will. It is tempting to conjecture that because
brains function mainly to maintain a model of the environment,
then perchance the brain’s global dynamical structure has to
copy what is out there, the dynamical structure of the world
which consists in energy being dissipated and distributing
in all possible microstates, according to the second principle
of thermodynamics.

In closing, it is of interest that already in the early 1900s A.
J. Lotka proposed that “natural selection [and evolution] tends
to make the energy flux through the system a maximum, so far
as compatible with the constraints. . . ” (Lotka, 1922). It can be
thus envisaged that biological (consciousness) evolution occurs
as to make the energy flux through the system maximum among
all constituents (brain cells) compatible with constraints from
the environment. The expression of this feature in the function
of the nervous system and especially the brain could be the
main factor accountable for the emergence of conscious awareness.
This maximization of energy spread may account for the many
times proposed maximization of entropy or information. But
some scholars are reluctant to consider these maximization
principles as cause of processes driving living systems (Haken,
2006). It may be so, because concepts like information or
entropy are, after all, our creations that were developed to
characterize certain phenomena. It is worth noting that Haken’s
perspective emphasizes tendencies in natural phenomena—
specifically about the emergence of macroscopic order—rather
than precise quantifications. This focusing on the search for
tendencies is a view that, as many times abovementioned, has
been taken through this text, and it is perhaps the tendency
toward minimization of free energy favoring the spread of
energy—that becomes manifest through interaction among the
system’s constituents exchanging energy—which underlies the
said principles about entropy and information. This notion
makes the energy perspective a most fundamental aspect to
understand not only cognition but the organization of natural
phenomena in general (Perez Velazquez, 2009).

7.1. A Brief Digression on Possible
Foundations for a Conceivable Nervous
System Potential
It was mentioned above the usefulness of having a chemical
potential to characterize the evolution of chemical reactions.
J.W. Gibbs definition of chemical potential in 1875 allowed for
the precise characterization of aspects like equilibrium and the
investigation of the dynamics of chemical reactions. It could be
of interest if some equivalent to the chemical potential could be
described about the processes of the nervous system—especially
in its collective cellular activity at the meso/macroscale level—a
concept that could help understand the evolution of brain activity
and its relation to behavioral dispositions. It was described above
that in the expression for the entropy production dS/dt the
term Ni could be taken as pairwise connected brain networks
instead of molecules. Hence, the basic intuition behind the
idea to develop an analog to chemical potential for the brain
is that connected cell ensembles are analogous to molecular
concentrations in chemistry.

The chemical potential µ of a component in a solution can
be thought of in several ways, as a measure of the “escaping
tendency” for a component in a solution and as a measure of
the reactivity of a component. By analogy, the “nervous system
potential” (let’s call it µNS) can be thought of as a measure of the
formation and dissolution (escape) of functional cell assemblies
and as a measure of the connectivity tendencies, the “reactivity”
of cells establishing connections. The chemical potential refers
to “components” in a (solid, liquid or gaseous) “solution,” the
µNS refers to “cell assemblies” in the nervous system “tissue.”
In this manner, the main building blocks of brain activity at
mesoscale levels are cell assemblies functionally connected, which
is a current concept in neuroscience and was described in the
introductory paragraphs. The dynamic evolution of chemical
systems is well-established: molecules “search” for their lowest µ,
and in equilibrium there is no further change in the number of
molecules, just fluctuations around the equilibrium state. In our
studies we have observed that the entropy associated with states
of conscious awareness are near the equilibrium; this indicates
that the number of connected cell networks remain stable but
there are fluctuations, and it is the fluctuations in connectivity
that, as already emphasized above, is a crucial factor for proper
brain information processing.

Nevertheless the parallel between µ and µNS has difficulties
when it comes to measuring “concentrations” of cell assemblies,
and as a result the standard derivation of the expression for
µ in a chemical reaction system cannot be achieved for µNS

because it starts from the Gibbs free energy formula whose
terms have clear meaning when applied to chemistry. For each
molecular component i, the chemical potential is defined as
µi = µ0

i + R T ln(Xi) where Xi is the molar fraction, which
may not have and easy parallel in the case of the brain cell
networks. Neither µ0

i has easy interpretation in case of brain
neuronal networks. The energy (enthalpy) term does not appear

FIGURE 7 | Diagram depicting the scenario toward the transition from normal

to abnormal brain activity. It is based on two main features: hyperexcitability

and higher-than-normal synchrony. Where in the brain these two events occur

will determine the pathology (e.g., in Parkinson’s there is increased excitability

and synchrony in basal ganglia-thalamocortical networks). It is well-known that

enhanced cell firing leads to pronounced synchrony which, if it is too stable,

results in low fluctuations in activity leading to fewer combinations of functional

connectivity (lower complexity, departure from criticality) and thus the brain has

difficulty processing sensorimotor transformations in a fast and variable

manner to guide normal, adaptive behavior.
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in the formula due to considerations of mixing several molecular
entities, considerations which would not apply to brains.

Now, one option that may have promise would be to define
µNS for each macrostate, a macrostate being the number of
configurations of connected cell networks as was done in our
estimation of entropies. In this case while the entropy and the
fluctuations in connections can be quantified for eachmacrostate,
the problem of assigning an energy still remains, as commented
above. Nonetheless, the expression would be then for brain
macrostate i, µi = Ei − (dNi/dt) Si where Si is the entropy
of the macrostate and dNi/dt represents the “temperature,” or
fluctuations in the connections of the network components of
that macrostate that can be evaluated over a certain time interval.

8. CONCLUSIONS

As a manner of closing these arguments that try to shed light into
brain organization in cognition, and to make them applicable
to the understanding of some neuropathological syndromes, the
following scheme (Figure 7) depicting the scenario toward the
transition to brain pathological activity can be envisaged (Perez
Velazquez and Frantseva, 2011). We also briefly note that the
maximization of configurations of synchrony and the associated
dissipation of gradients concurrent with energy fluxes that help
organize the system providing largest number ofmetastable states
is very related to the notion of criticality in nervous system
dynamics (Chialvo, 2010), because near equilibrium where there
is large number of configurations of cell network connections
allowing to handle proper information processing in the brain,
the system is highly susceptible to inputs and therefore fosters
adaptability of the organism. The key then is not to reach
the maximum number of units interacting (which would be
all-to-all connections and thus only one possible microstate),
but rather the largest possible number of configurations
allowed by the constraints, in other words, a critical state.
Departure from criticality has been noted in unconscious states
(Tagliazucchi et al., 2016).

A direct test for the framework proposed in this text
would be the demonstration that optimality of sensorimotor
processing is associated with near maximal number of possible

configurations of brain networks—higher entropy of the
neuronal connectivity—and with enhanced short-time scale
fluctuations in the connectivity among those networks. While
it was previously observed that lower entropy was found when
visual input was diminished—subjects with eyes closed (Guevara
et al., 2016) and as well similar results of more regular,
less complex, network structure as compared with eyes open
condition reported in Horstmann et al. (2010)—and that lower
fluctuations (given by a complexity measure) of connectivity
was associated with epilepsy and coma, there are many other
situations and pathological conditions where this assessment
could be performed, like vegetative orminimally conscious states.
But still remains to find an adequate evolution equation for the
general principle proposed here, from which specific outcomes
may be put to the test. The present work has been an attempt to
start considering this from a high-level perspective that, we posit,
may yield a comprehension of the brain∼behavior relation.
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