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ABSTRACT
The purpose of this work is twofold: to present a computational strategy to simulate the dynamics of a rigid sphere during water sloshing and
to validate the model with original experimental data. The numerical solution is obtained through the coupling between a two-fluid Navier-
Stokes solver and a rigid solid dynamics solver, based on a Newton scheme. A settling sphere case reported in the literature is first analyzed
to validate the numerical strategy by ascertaining the settling velocity. In addition, an experiment is carried out based on a sphere submerged
into a communicating vessel subjected to sloshing. Experimental data are captured using image processing and statistically treated to provide
sphere dynamics quantitative information. The effects of different classical models used to describe drag coefficients, added mass, and wall
effects are considered in the study to evaluate their influence on the results. The numerical model provides results that are consistent with the
physical data, and the trajectory analysis shows good agreement between the simulations and the experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098999., s

I. INTRODUCTION

Interactions between fluids and rigid solids occur in many engi-
neering applications at different scales, such as in the processing of
mineral ores, food processing,1 ocean and naval engineering,2,3 and
renewable energy generators.4

The simulation of single or multiple bodies immersed in flu-
ids can be performed via different numerical approaches, where
a major issue is how to represent the interface between the
body and the surrounding fluid, and their interactions. Some of
the following approaches are commonly used: body-fitted and
embedded/immersed techniques. Body-fitted schemes, such as the
arbitrary Lagrangian-Eulerian techniques,5,6 involve discretizing
the fluid surrounding the object such that the contour of the
body is perfectly represented; however, these methods are not
well suited for large displacements because of grid distortion.
The embedded and immersed methods represent the contours
of objects as nonconforming geometric entities inside the fluid

discretization, i.e., the body boundaries cross the faces of the
grid.7,8 Embedded strategies can be combined with different numer-
ical methods for solving the fluid flow, e.g., lattice Boltzmann
methods9–11 and Navier-Stokes classic solvers.12–15 When a fluid-
fluid interface or a free surface appears, the flow solver has to
be extended, e.g., via a level-set method2,3 or a volume-of-fluid
approach.16

With respect to the sloshing phenomena, different approaches
have been developed to predict the interface behavior. Some
solutions derived from potential flow theory, where the fluid is
assumed to be incompressible and inviscid, have been obtained
and applied to particular tank shapes, filling levels, and excitation
directions.17–19 Other approaches are based on numerical meth-
ods for solving viscous free surface and two-fluid flow numerical
methods20,21 and have been successfully applied to sloshing simula-
tions in two- and three-dimensional problems, as supported by the
validations performed with analytical and experimental reference
values.22–25
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In the present work, a physical experiment that involves a
sphere with slightly negative buoyancy immersed in two commu-
nicating vessels submitted to sloshing is presented. Furthermore, a
numerical strategy is developed to reproduce the experiment, taking
into account the fluid flow simulation and the rigid body motion as
separate stages.

For the fluid problem, the Navier-Stokes equations for incom-
pressible and viscous fluids are solved within a level set approach
for capturing the movement of the interface between two fluids, i.e.,
water and air, via the Finite Element Method (FEM). Moreover, the
rigid solid dynamics is solved with a Newton scheme. One-way cou-
pling is applied to solve these two linked dynamics, i.e., the velocity
and pressure fields from the fluid flow are used to compute the forces
acting on the body, which are used in the rigid solid equations. The
effects of different classical models used to describe drag coefficients,
added mass, and wall effects are considered in the study to evaluate
their influence on the results.

The main aspects of this work can be summarized as follows:
the report of a new experiment with a sphere submerged inside a
sloshing system; the proposal of a strategy to systematize the experi-
mental results from image processing; the development of a numer-
ical method with the ability to reproduce the behavior of a sphere
immersed in a viscous fluid in motion; and a statistical treatment of
the numerical and experimental results.

The remainder of this work is organized as follows. In Sec. II,
the physical experiment and the description of the postprocessing of
the results are described. Section III summarizes the computational
approach for solving the fluid flow and the motion of the rigid solid.
The results are presented in Sec. IV, which includes an initial vali-
dation of the numerical model with a well-known test of a settling
sphere and a comparison between the experimental and numerical
results of the sphere under sloshing. Finally, concluding remarks are
presented.

II. EXPERIMENTAL WORK
The present experiment is designed to validate the proposed

methodology to simulate complex phenomena involving free sur-
face, and fluid and rigid body interaction problems.

A. Experimental layout
An acrylic tank, divided by a vertical middle wall into two

internal vessels, is mounted onto a shake table and subjected to
controlled oscillating motion with an amplitude of A = 10 mm
and frequency f = 1 Hz in the x-direction. The tank geome-
try is shown in Fig. 1. The internal vessels are communicating
via a lower opening of 60 mm. A hollow sphere with an exter-
nal diameter 40.5 ± 0.5 mm and wall thickness 9.5 ± 0.5 mm
is made of a polymer, commercially named polylactic acid
(PLA), with a density ρPLA ≈ 1250 kg/m3. The sphere weighs
ws = 35.93 ± 0.01 g (experimentally determined), resulting in a den-
sity ρs = 1033 ± 21 kg/m3. The sphere is submerged into distilled
water inside the tank, i.e., the sphere has nearly 1.01–1.06 relative
density (ρs/ρf ) with respect to the water promoting a slightly neg-
ative buoyancy effect. The experiments are performed for a filling
depth of 200 mm.

The experiments are recorded using a camera with a resolu-
tion of 700 × 500 px at 10 fps. The free surface evolution and sphere

FIG. 1. Geometry of the tank with dimensions in millimeters.

position are measured via postprocessing the videos. The shake table
motion and the camera are synchronized. The experimental setup is
shown in Fig. 2.

Figure 3 plots a cycle of the shake table motion, including the
instants where the frames are taken, i.e., there are 10 frames per
cycle. The position of the shake table at the instant labeled as 0 cor-
responds to the origin of the table displacement; at that moment,
the table has null displacement and maximum velocity and is mov-
ing from left to right. Instant 5 corresponds to the tank being cen-
tered and moving to the left. By symmetry, instant 5 is completely
equivalent to instant 0, with symmetry reflection about the x-axis
(x→ −x). In the following, when the statistical results are presented
for instant 0, they also include the results for instant 5 after apply-
ing the appropriate symmetry. This symmetry is kinematically valid
only for the time periodic regime. On the basis of this property, the
number of relevant frames is reduced by one-half and the data are
increased twofold. In the same way, instant 1 is equivalent to instant
6 and so on.

B. Image capturing technique
The instantaneous positions of the sphere are obtained via an

image processing technique. To this end, an in-house code was
developed in C++ using OpenCV26,27 and Armadillo28,29 as a library
for sparse matrix linear algebra.

The center of the sphere is determined by means of image pro-
cessing. The procedure is based on histogram and thresholding tech-
niques,30,31 where a region of interest (ROI) is defined, i.e., the green
rectangle centered at the spheres shown in Figs. 4 and 8. Initially, the
ROI is characterized by a histogram in HSV color space (represented
by channels: hue, saturation, value). To identify the sphere, the vari-
ation in color in the hue channel is considered because the sphere
has only one color, i.e., the saturation does not significantly change,
and the lighting is sufficient to maintain a uniform value, i.e., the
hue values remain constant under slight variation in light. Then, to
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FIG. 2. Experimental setup.

separate the sphere from the background, a binary mask is applied
to the search zone identified by the red rectangle in Figs. 4 and 8,
where the range of hue values is used as belonging criteria. Finally, to
obtain the coordinates of the center of the sphere, the Hough circle
transform function implemented in the OpenCV library is applied.
This function uses the Hough gradient method and the gradient
information of the contours from binary mask, for each frame. The
next searching zone in the following frame is defined as a square,
where the side length is equal to twice the diameter of the sphere and
center is coincident with the current coordinates of the center of the
sphere. The results are saved in a tracking table that contains all the
positions for each frame, and a history map is constructed to store
the number of times that the center of the sphere passed through a
certain pixel of the domain.

The main uncertainties in the sphere location come from the
diameter measure due to the distance to the focal plane. In order to
assess the precision of the algorithm used in this work, a simple test

FIG. 3. Classification of the frames by their position relative to the cycle.

was carried out. For this, 1000 random spheres have been generated
inside a bitmap of 100 × 100 px, where the diameter is randomly
disturbed to emulate the uncertainty to the focal plane in the exper-
iments. The diameter used in this analysis was of 67 px. Figure 4
shows some samples of the random positions and sizes of the sphere
in an unfavorable situation, where the white circle is the detected
sphere. Note that, for a fixed diameter, smaller or larger gray zones
represent a sphere behind or ahead of the focal plane, respectively.
From this analysis, the precision of the algorithm to determine the
center of a sphere is ±2 px. This error represents 1.2 mm in the
experiment.

C. Experimental methodology
The experimental data are obtained from 18 experiments

conducted during 766.26 min of the free surface time peri-
odic regime (equivalent to 459 770 frames). The data are pre-
sented in Sec. IV together with the results computed from the
simulations.

The sphere is randomly released at the bottom of a vessel. To
evaluate the results of the sphere position over time obtained from
the image capturing technique, parameters of the sphere (trajecto-
ries) are measured, and statistically reproducible quantities, such as
the location and velocity, are calculated.

A classification based on where the sphere is initially located is
used to describe trajectories. The left vessel is divided into 4 regions,
numbered clockwise from the top right. The right vessel is also
divided into 4 regions, numbered counterclockwise from the top left
(specular counterpart of the left vessel).

Regarding the spatial distribution, x- (or y-) axis is divided into
6 bins, and the number of times that the sphere is in each bin is
computed.

The mean velocity of the sphere is computed on the basis
of the difference in positions at subsequent frames and the time
steps between these frames. This velocity is taken as a reference for
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FIG. 4. Image capturing technique uncertainty assessment. Some random sphere
positions, search zones, and results obtained from the algorithm.

comparison with the numerical results in Sec. IV B, particularly with
the average velocity and a histogram.

Moreover, the free surface is tracked over time at certain con-
trol points by means of image processing, and these measurements
are considered to contrast the fluid dynamics results.

Some overall remarks can be noted from the videos. The
sphere seldom impacts the vessels walls, the sphere never emerges
from the water, and the sphere rarely crosses from one vessel to
the other through the opening. These facts are confirmed in the
simulations.

It is also remarkable that no high rotation has been observed
during the analysis of this highly transient problem. Due to this fact,
only translation motion was considered in the present study. To con-
firm this assumption, the sphere rotation has been estimated from
the images, and a value of 1.1 rad/s has been found with a low recur-
rence. This rotation was used to compute lift Magnus forces, and
they are small enough to not take rotation into account as will be
declared in Secs. III and IV B.

III. MATHEMATICAL MODEL
A. Fluid dynamics formulation and free
surface description

The two-fluid flow is described by the Navier-Stokes equations
for viscous incompressible flow,

ρ(∂v
∂t

+ v ⋅ ∇v − f) −∇ ⋅ σ = 0 in Ω,

∇ ⋅ v = 0 in Ω,
(1)

where ρ is the density, v is the fluid velocity, and f represents the
external body forces per unit mass, over the spatial domain Ω in time
t ∈ [0, T]. Furthermore, the stress tensor σ in Eq. (1) is defined as
σ = −pI + μ(∇v + ∇vT), where the first term is the isotropic part,
with pressure p and identity tensor I. The second term is the devia-
toric part, i.e., the viscous stress tensor for a Newtonian fluid, where
μ is the dynamic viscosity of the fluid. The fluid properties are dis-
tributed in the domain according to the free surface presence, as
indicated below.

The system of Eq. (1) is solved by a finite element strategy
with finite elements of equal order for velocity and pressure,32

stabilized with streamline upwind/Petrov-Galerkin (SUPG)33 and
pressure-stabilizing/Petrov-Galerkin (PSPG).34

Several works conclude that turbulent dissipation is an impor-
tant damping factor in the sloshing physics,35 as well as in other free
surface flows.36 Hence, a simple turbulence model is used to con-
sider some viscous dissipative effects such that the dynamic viscosity
is replaced by μt = min(μ + C2

s h2
s ρ
√

2𝜖 : 𝜖,μmax), where Cs is the
Smagorinsky coefficient, 𝜖 = 1

2(∇v+∇vT) is the strain rate, hs is the
characteristic length of an element, and μmax is a cutoff value. This
model has been applied before for solving more challenging sloshing
cases, as in Refs. 21 and 24.

The free surface is modeled by an interface capturing technique
that relies on a continuous and smooth level set like function ϕ. The
level set transport, represented by

∂ϕ
∂t

+ v ⋅ ∇ϕ = 0 in Ω, (2)

requires the velocity field v from Eq. (1) to advance in time. These
equations are also solved by SUPG stabilized finite elements, over
the same mesh as the fluid flow problem.37

As Eq. (2) does not preserve certain properties of the ϕ field,
such as the transition profile from one to another fluid, a numerical
procedure is applied to regularize the field, which consists of solving

ϕ (ϕ2 − ϕ2
ref) − κΔϕ + M(Ĥ(ϕ) − Ĥ(ϕ0)) = 0 in Ω, (3)

over the whole domain Ω, where ϕ0 is obtained from Eq. (2), the ref-
erence value is ϕref = 1, κ is the diffusivity, M is a penalty coefficient,
and the expression for the penalizing term is Ĥ(ϕ) = tanh(2πϕ). This
third problem is also solved with a finite element method, which is
steady in each time step38 and can be complemented with a global
explicit volume preservation stage.24

Hence, the properties of the fluids are distributed in the whole
domain according to the marker function ϕ(x, t) that is positive in
the liquid part of the domain, Ωl, negative in the gaseous phase, Ωg,
and is null specifically over the free surface ΓFS such that Ω = Ωl ∪Ωg
and Ωl ∩ Ωg = 0/. Particularly, and due to the renormalization stage
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applied, it is −1 < ϕ < 1.38 Then, the density and the viscosity are
given as functions of ϕ, with

η(ϕ) = 1
2
[(1 + H̃(ϕ))ηl + (1 − H̃(ϕ))ηg], (4)

where η(ϕ) represents either ρ(ϕ) or μ(ϕ), and subscripts l and g
indicate the liquid or the gaseous phase, respectively. In the present
work, H̃(ϕ) = tanh( πϕε̃ ) such that it is a smooth sign function,
where the parameter ε̃ calibrates the width of the transition of the
properties between the fluids.

B. Solid-rigid dynamics
The expression for the solid-rigid dynamics corresponds to the

application of Newton’s second law for displacement,

msph q̈ + Fc = Fine + Ffl, (5)

where the first term corresponds to inertial forces, msph is the mass
matrix corresponding to the body, q ∈ Rn is the displacement vec-
tor in n coordinates, and q̈ is the corresponding acceleration vec-
tor. The second term, Fc, includes the internal forces representing
the rigid contact constraints, and the right-hand side quantifies the
external forces acting on the center of the solid, considered as a par-
ticle. The external forces considered in the present work are due to
the accelerations applied to the system and the fluid forces over the
sphere.

The rigid-contact force that appears on the sphere due to the
vessel walls is modeled by a penalty method. The contact forces are

Fc = kcdn + ⟨βcq̇n⟩δ , (6)

where the first term accounts for the contact forces as a function of
the signed distance function d = d(q) between the sphere and the
vessel walls such that, when d ≥ 0, the sphere does not contact the
wall and there are no contact forces acting over the sphere. When
d < 0, there is penetration and, consequently, the contact force mag-
nitude is determined as kcd, where kc is the penalty coefficient and
n is the unit vector normal to the interface, n ≈ ∇d

∥∇d∥ . The sec-
ond term considers the approximation effect near the walls;39,40 this
force is activated at a distance equal to δ of the radius of the sphere,
expressed as a percentage of the radius of the sphere, where βc is a
constant coefficient. A more sophisticated mechanism in order to
consider the lubrication effects when the sphere is very close to the
wall could be developed. These models require a proper correlation
with Re and wall distance.41,42 Other authors quantify the wall influ-
ence as a correction on the settling velocity13,43 or wall influence at a
low Re number44,45 as examples.

The inertial forces due to nongravitational accelerations gbox
applied over the noninertial reference frame are determined as
Fine = msphgbox.

Furthermore, the fluid forces comprise the buoyancy forces
Fbuoy, the drag forces Fdrag, and the added mass forces Fadd, i.e.,
Ffl = Fbuoy + Fadd + Fdrag.

The buoyancy term is Fbuoy = −V∇p, where V is the volume of
the sphere. Note that this term considers the full lift forces due to the
pressure gradient from the fluid state. Other lift forces, such as Mag-
nus and Saffman forces, are not included in the model. The Magnus
force evolves during imposed rotation in the rigid body.46,47 Saffman

forces48,49 are developed under high velocity gradients and are com-
monly applied to small to nanoparticle analyses. In the present anal-
ysis, as will be shown in Sec. IV B, these forces are negligible in
comparison with the lift due to the pressure gradient.

The added mass force is defined as

Fadd = −madd (q̈ + gbox), (7)

with the added mass madd = kaddρV, where ρ is the fluid density. The
added mass coefficient is determined as a function of the Reynolds
number (Re = ρ|vr|Dsμ−1),50,51

kadd = {
8.591Re−0.5835 if Re ≤ 100
15Re−1.125 + 0.5 if Re > 100

. (8)

The drag forces are modeled as

Fdrag = −
1
2
CD As Re

μ
Ds

vr , (9)

where the drag coefficient CD is determined as a function of Re, the
relative velocity between the sphere and the flow is vr = q̇ − v, Ds
is the sphere diameter, and As is the reference area, in this case the
projected area of the sphere. Different expressions for the drag coef-
ficient can be found in the literature based on a sphere immersed
in flows at constant relative velocities, i.e., the sphere moves with
constant velocity with respect to the fluid. An empirical relationship
covering a wide range of Re is proposed in Ref. 52, from which the
following expression is adopted:

CD = (φ1 + φ2)1/10. (10)

This equation is valid for the Re range of the analyses presented in
this work, i.e., Re < 2 × 105, where φ1 = ( 24

Re)
10 +( 21

Re0.67 )
10 +( 4

Re0.33 )
10

+(0.4)10 and φ2 = [(0.148Re0.11)−10 + 0.5−10]−1
. A heuristic relation

is proposed in Ref. 53 based on boundary layer theory,

CD =
24

(9.06)2 [1 +
9.06√

Re
]

2

. (11)

Furthermore, the following expression used in Ref. 13 is also applied:

CD = aRe−b, (12)

where a and b are adjusted by fitting the experimental drag values
reported in literature.52,54

C. Solver coupling
The numerical strategy is proposed as a one-way coupling,

where the fluid forces over the sphere are modeled by taking as data
the fluid state, determined from Eq. (1), and the forces due to the
added mass phenomenon.

The procedure is sketched in Fig. 5. The velocity vtf and the
pressure ptf are known from the fluid state at time tf in every node
of the corresponding mesh. Then, the velocity at the center of the
sphere, and in certain cases at other points over the circumference,
is calculated via FEM interpolation, giving the mean velocity vtff for
the body. The relative velocity of the solid vtsr at the solid time step ts
is determined as

vtsr = q̇ts − v
tf
f . (13)
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FIG. 5. Data exchange between the fluid and the solid dynamics involved in the algorithm.

The relative velocity of the sphere with respect to the fluid is
employed to determine Fdrag, while the pressure gradient is consid-
ered in Fbuoy. Note that the time step of the solid is several times
smaller than the fluid time step. Then, the interpolation of the veloc-
ity and the pressure is repeated ns times for each fluid time step, with
ns = Δtf /Δts.

IV. NUMERICAL RESULTS
Two cases are studied to further validate the reliability of the

model. The first case corresponds to the settling of a single sphere,
and the other corresponds to sloshing in a communicating vessel
problem described in Sec. II.

A. Settling of a single sphere
Several authors appeal to the settling of a sphere as an

initial validation for their fluid-structure interaction numerical
schemes.9–11,13,55,56 Following the analysis presented by Ref. 11, the
settling of a spherical particle of radius 7.5 mm (rp) and density
ρs = 1250 kg/m3 is studied. Initially, both the fluid and the parti-
cle are at rest, and the particle is freely released under gravity from
an initial position of (0.0, 0.0, 127.5) mm in a rectangular container
of size [−50, 50] × [−50, 50] × [0, 160] mm3. A schematic diagram of
the settling case is depicted in Fig. 6. The motion is induced by grav-
ity and is developed due to the hydrostatic pressure gradient. Three
different cases are considered by varying the properties of the fluid,
as shown in Table I.

Table II summarizes the time step Δts for the solid stage, the
parameters βc and δ for the contact forces in Eq. (6), and the drag
law and parameters a, b used for the corresponding drag law in each
case, if needed.

Figure 7(a) shows the evolution of the vertical position of the
sphere until it reaches the bottom, and Fig. 7(b) plots the velocity of
the sphere. Three stages are observed during the settling of a sphere:
when the sphere is free falling (acceleration stage), when the sphere
reaches terminal velocity (constant velocity stage), and, finally, when
the sphere approaches the bottom (deceleration stage). The present
model agrees with the experimental data in these three stages. The
experimental absolute error reported by the reference is lower than
0.1 in the relative position h∗. The added mass effect has a greater
influence in the first stage because kadd is inversely proportional to

Re. The drag force given via Eq. (12) fits better for Re 4.1 and 11.6,
while for Re 32.2, Eq. (10) fits better. The approximation effects near
the bottom of the rectangular container are clearly appreciated in
the low Re case (Re 4.1). Parameter βc and its activating zone δ
are chosen to reproduce the deceleration stage. Particularly, both
parameters have been increased to obtain a better approximation for
the lower Re case.

FIG. 6. Single particle settling in a rectangular box. Dimensions in millimeters.

TABLE I. Fluid properties for three different Re numbers in the settling of a sphere.

Case ρf (kg m−3) μf (N s m−2) Re

1 965 212 4.1
2 962 113 11.6
3 960 58 32.2
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TABLE II. Near-wall settings and drag parameters for the settling of a sphere.
Parameters a, b are given for the drag law of Eq. (12).

Re Δts (s) βc (N s m−1) δ (%) Drag law a; b

4.1 0.01 160 45 Eq. (12) 28.01; 0.7641
11.6 0.01 250 20 Eq. (12) 27.327; 0.7641
32.2 0.005 250 20 Eq. (10) . . .

B. Modeling the experiments
This section reports the numerical results for the simulation of

the experiment described in Sec. II using the methodology reported
in Sec. III in comparison with the experimental data. The fluid field
is simulated for a certain number of cycles of the imposed shake table
motion until the periodic regime is reached. The sphere is injected at
a random position and time at instant 0 of the cycle, with the instan-
taneous fluid velocity at that point and instant. Then, the sphere is
tracked using the solid rigid dynamic equations described in Sec. III.
For a fair comparison of the results, the statistical analysis requires

FIG. 7. Comparison of the experimental data (dots) and simulation results (contin-
uous lines) in terms of (a) vertical position h∗ = z−rp

2rp
and (b) velocity for different

Reynolds numbers.

an amount of sphere position data similar to that obtained from the
experiments, i.e., a total of 200 simulations of 100 s were performed.
These data represent 43.5% of the experimentally obtained sphere
position information. The sphere density (ρs) used in the simulations
is 1014.92 kg m−3. A sensitivity analysis (not shown) of the numer-
ical results with respect to the sphere density was also conducted to
evaluate the effect of the density variation. Note that, as the relative
density of the sphere with respect to the distilled water is ≈1.02, the
sphere has a nearly unit buoyancy and the system is highly sensitive
to any slight change in such a property. From the referred analysis,
the reported density, chosen within the experimental range, pro-
vides the best adjustment between the experimental and numerical
results. The contact stiffness coefficient (kc) is 142 950 N m−1, which
was validated by a mass point contacting plane test, as reported in
Ref. 57. The effects of the vicinity to the walls are considered with
βc = 0.75 N s m−1 and δ = 20%. Different runs were analyzed to
evaluate the sensitivity of the results to the model parameters. From
such numerical tests (not shown), minimal maximum error was
found in the analysis of the results with the reported values. Focus-
ing the analysis on βc, two overall aspects could be remarked. When
a sphere approaches a wall at low velocity (i.e., low Reynolds num-
ber), not only the wall effect is observed at larger distances from
the wall but also the βc parameter has to be increased with respect
to high Reynolds numbers (see Sec. IV A). Moreover, the results of
this section present small changes for βc values varying in the range
[0, 1] N s m−1. To complete the sensitivity analysis of the param-
eters involved in the model present in Sec. III, two different drag
laws given by Eqs. (10) and (11) are used, and the models are named
set 1 and set 2, respectively. The time steps for the fluid (Δtf ) and
the solid solver (Δts) are set to 0.01 s and 0.0004 s, respectively, and
the sloshing problem was solved with 4-node finite elements for the
following three instances: fluid flow, level set advection, and renor-
malization.37 The properties of the fluids used in this case are shown
in Table III, while the parameters for the turbulence model are
Cs = 1 and μmax = 0.1 kg (ms)−1, set from previous numerical
analyses in sloshing problems.21,24

Figure 8 presents snapshots from the video and a simula-
tion at different instants of the free surface periodic regime, in
which the center of the sphere follows trajectory 3–4 in Fig. 10(a).
The snapshots from the simulations also show the velocity vectors
and the free surface position. The free surface evolution is veri-
fied first. The free surface displacement, measured as the differ-
ence hdiff between the interface measured at CP1 and CP2, is pre-
sented in Fig. 9(a), together with the box displacement xbox when
the time periodic steady stage is reached; see Fig. 9(b) for refer-
ence. The maximum free surface difference is Ahdiff ≈ 30 mm,

TABLE III. Properties of the fluids involved in the case of sloshing with a submerged
sphere.

Property Symbol Value

Water density ρf (kg m−3) 998.2
Water viscosity μf (N s m−2) 0.001
Air density ρl (kg m−3) 1.225
Air viscosity μl (N s m−2) 0.000 018
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FIG. 8. Some frames corresponding to a cycle during steady state periodic regime
at the times shown: 0, 3, 5, 7, and 9 according to Fig. 3. Experiment (left column)
and simulation (right column).

while the imposed maximum displacement is Abox = 10 mm. Good
agreement is observed between the experimental (dots) and numer-
ical results (line), in terms of both amplitude and phase. Further-
more, this agreement is verified by the Lissajous pattern in Fig. 9(b),
which compares the experimental (crosses) and numerical (line)
measurements.

Figure 10 shows different trajectories observed in the exper-
imental and numerical results. The trajectories correspond to an
elapsed time of 3 s. In each figure, the trajectories start in one of

FIG. 9. Free surface experimental and simulation results. (a) Differences in height
hdiff between control points CP1 and CP2 and box displacements xbox for the
experimental (dots) and numerical (lines) results. (b) Lissajous pattern with the
experimental (crosses) and simulation (line) results.

the four regions of the left vessel and cross from the left to the right
vessel. The continuous lines are numerical trajectories, and the dots
are the experimental trajectories. Each dot corresponds to a frame.
In each figure, the trajectories start in similar initial positions and
at equivalent instants relative to the cycle as presented in Fig. 3. As
the behavior of the sphere is chaotic and the initial positions and
velocities are not equal, the trajectories should not necessarily match;
nevertheless, the trajectories are very similar.

Figure 11(a) shows the temporal evolution of the Reynolds
number Re(t), based on the relative velocity of the sphere with
respect to the fluid. Three randomly chosen independent simula-
tions (of a total of 200) are shown, labeled as S1, S2, and S3. For
each simulation, the trajectory of the sphere is computed for 200 s,
but only the central interval from 50 to 150 s is analyzed. The aver-
age Re for each of the simulations is R̄eS1 = 3783.3, R̄eS2 = 3834.4,
R̄eS3 = 3584.1. Figure 11(b) shows the spectral analysis (discrete
Fourier transform) of Re(t). The behavior of the three evolutions
is similar. In all cases, large amplitudes are observed in the ranges
0.25 Hz–0.5 Hz and 1 Hz–1.5 Hz.

In the following, all the histograms show the probability P[%]
of the determined number of successes over the total number of
observations, e.g., in Fig. 12, the number of times that the Re, the
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FIG. 10. Four different types of trajecto-
ries of the sphere starting in i and finish-
ing in j. (a) Trajectory 3-4. (b) Trajectory
2-3. (c) Trajectory 2-1. (d) Trajectory 4-3.

CD, or the mean velocity of the sphere Vs is found in a certain
range of values over the total number of recorded observations.
Figure 12(a) shows the statistical distribution of the Re number
found in all simulations for data set 1 and set 2 correspond-
ing to the drag law described in Eqs. (10) and (11), respectively.

The histogram is built by dividing the interval between the mini-
mum and the maximum observed Reynolds into ten bins. According
to the numerical results, the Reynolds number ranges from 7.5 to
17 527, and 37% of the time, it is in the range of 1760–3512, cen-
tered at 2636. This fact modified the drag coefficient accordingly.

FIG. 11. Reynolds numbers for the 3
numerical results. Figure (a) shows the
temporal evolution, and (b) shows the
discrete Fourier analysis.
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FIG. 12. Distributions: (a) Reynolds number and (b) drag coefficient from all the simulations for set 1 and set 2, and (c) mean velocity of the sphere distribution found in the
experiment and two simulation results.

Figure 12(b) shows the statistical distribution of drag coefficient CD
using ten bins from 0.36 (minimum 0.352) to 0.441, including in the
last bin values that exceed the corresponding range, with a very low
occurrence (maximum 5.44).

Finally, Fig. 12(c) shows the experimental and numerical, statis-
tical distributions of the absolute (not relative to the fluid) velocity
of the sphere. The experimental values are computed based on the
difference of sphere positions in successive frames. The difference
between the positions of the sphere at time steps corresponding to
the experimental frames is used to obtain an equivalent value for
the numerical simulations. The numerical values are shown for both
data sets 1 and 2, corresponding to the two drag laws described in
Sec. III, Eqs. (10) and (11), respectively. The velocity statistical dis-
tributions are qualitatively similar, and the difference between the
mean velocities with respect to the experimental value is 17% for set
1 and 24% for set 2. As previously mentioned, both sets differ only
in the drag law used in the model, while the approximation effects
near the walls are treated in the same manner.

Figure 13 shows the statistical distributions in space for both
the x– and y–axes. For instance, Fig. 13(a) shows the probability that

the sphere is at a certain position x of the left vessel for time instant
0 and time instant 5, by symmetry (see Fig. 3). The x coordinate of
the left vessel has been divided into 6 bins. The probabilities for the
right vessel are not shown since they are equivalent to those of the
left vessel via appropriate reflection symmetry. The results for time
instants 3–4 are shown in Fig. 13; the total number of time instants
(nt) is 5. Similarly, the statistical distributions for a certain position
on the y-axis are shown in Fig. 13(b). In all cases, the probabili-
ties for both experimental and numerical models (see Sec. III) are
shown. To quantitatively compare the two numerical drag law mod-
els with respect to the experimental values, the average absolute devi-

ations, defined as ∥e∥= ∑t (∑i ∣P(Xi)s−P(Xi)e ∣x
Binsx

+ ∑i ∣P(Xi)s−P(Xi)e ∣y
Binsy

)/nt ,
were computed for two different drag laws, resulting in 3.4%
and 4.14% for sets 1 and 2, respectively. Although the treatment
of the fluid sphere is simplified in the present model, the aver-
age absolute deviation is below 5%, which indicates an acceptable
error.

Magnus and Saffman forces have been computed to evalu-
ate their influence in the present analysis. Regarding the highly
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FIG. 13. Comparison of the experimental and numerical results at different instants
of the analysis after symmetry reflection. Probability distributions in the x (left) and
y (right) directions for the left vessel.

transient behavior of the problem, the forces are computed using
a rotation with a low recurrence of 1.1 rad/s estimated from the
images. According to Ref. 46, the Magnus coefficient is taken as 0.04;
hence, the resulting Magnus forces are bounded to 1% relative to the
lift due to gradient pressure. Saffman forces evaluated as in Ref. 49
are negligible. These bounds justified not to include such forces in
the present model.

V. CONCLUSIONS
The present work provides a numerical formulation to couple

the fluid dynamics analysis of a sloshing problem with the rigid body
motion of an immersed sphere. In the proposed fluid solid-rigid
analyses, the fluid dynamics affect the rigid body motion; neverthe-
less, the sphere has no influence on the fluid dynamics. The numeri-
cal strategy involves the evaluation of the added mass, drag, lift, and
wall contact forces, including boundary layer effects developed by
proximity of the sphere to the wall. All these facts affect the sphere
dynamics.

The proposed numerical model is tested for the settling of a sin-
gle particle problem for low Reynolds numbers, and the computed
results are satisfactory compared to those reported in the literature.

An experiment is proposed to validate the model in a problem
with more complex dynamics. A tank, divided into two internal ves-
sels communicated at the bottom, is mounted onto a shake table and
subjected to controlled oscillating motions. The tank is filled with
water, and a sphere is released inside it. The objective is to deter-
mine the position of the sphere during sloshing. The experiments
are video recorded, and the sphere position is determined via the
motion capturing technique.

The free surface evolution computed during the time periodic
regime reproduces the experiments and provides an initial confirma-
tion that the fluid dynamic behavior is well captured. In the present
experiment, the sphere has no influence on the free surface.

The sphere dynamics are not deterministic; hence, a statistical
analysis is used to evaluate the experimental and numerical data for
the trajectories and velocities.

The trajectory of the sphere and its location at certain instants
of the analysis are well described by the model and validated via the
experiments.

The computed mean velocity of the sphere statistically
approaches the experimental values.

The statistical distribution of the sphere location in space
is slightly affected by the drag laws, i.e., the model satisfactorily
describes the motion of the sphere. The wall effect model is described
using two parameters. They could be correlated with the Reynolds
number and distance to the wall to properly fit lubrication theories.
This aspect was not explored in the present research and could be
included in future works. Finally, the remaining discrepancies may
be attributable to other facts not studied in the present analysis, e.g.,
strong coupling using body fitted techniques or other procedures
that are out of the scope of the present analysis.

This methodology allows us to estimate the behavior of par-
ticles immersed in a viscous fluid with large displacements and is
able to detect solid boundaries, in such a way that long term analy-
ses are performed in a less costly way in comparison with immersed
or embedded methods. The strategy is able to reproduce the sphere
dynamics with and without fluid interfaces.
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39J. Strnadel, M. Simon, and I. Machač, “Wall effects on terminal falling velocity
of spherical particles moving in a Carreau model fluid,” Chem. Pap. 65, 177–184
(2011).

Phys. Fluids 31, 087106 (2019); doi: 10.1063/1.5098999 31, 087106-12

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/j.jfoodeng.2018.05.019
https://doi.org/10.1016/j.jcp.2009.05.047
https://doi.org/10.1016/j.jcp.2014.08.010
https://doi.org/10.1080/00221686.2017.1289257
https://doi.org/10.1006/jcph.2000.6592
https://doi.org/10.1002/fld.2669
https://doi.org/10.1002/fld.2669
https://doi.org/10.1002/nme.2312
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1146/annurev.fluid.37.061903.175743
https://doi.org/10.1016/j.powtec.2017.03.039
https://doi.org/10.1016/j.compfluid.2015.10.003
https://doi.org/10.1063/1.1512918
https://doi.org/10.1016/s0021-9991(03)00349-8
https://doi.org/10.1016/j.cma.2008.01.014
https://doi.org/10.1016/j.cma.2008.01.014
https://doi.org/10.1063/1.4863450
https://doi.org/10.1016/j.cma.2015.11.001
https://doi.org/10.1016/j.jcp.2016.01.025
https://doi.org/10.1063/1.2160522
https://doi.org/10.1016/j.jcp.2003.10.031
https://doi.org/10.1063/1.3562310
https://doi.org/10.1007/s11831-015-9143-2
https://doi.org/10.1007/s11831-015-9143-2
https://doi.org/10.1007/s11831-014-9138-4
https://doi.org/10.1007/s11831-014-9138-4
https://doi.org/10.1007/s00466-013-0877-0
https://doi.org/10.1016/j.oceaneng.2017.04.021
https://doi.org/10.1016/j.apm.2018.01.033
https://doi.org/10.1016/j.apm.2018.01.033
https://doi.org/10.1063/1.5043366
https://doi.org/10.21105/joss.00026
https://doi.org/10.1016/s0262-8856(01)00052-x
http://www.cimec.org.ar/petscfem
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1016/j.compfluid.2005.02.011
https://doi.org/10.1016/j.apor.2016.07.012
https://doi.org/10.1108/hff-10-2014-0308
https://doi.org/10.1080/10618562.2010.495695
https://doi.org/10.1002/nme.2925
https://doi.org/10.1002/nme.2925
https://doi.org/10.2478/s11696-011-0005-6


Physics of Fluids ARTICLE scitation.org/journal/phf

40H. Schlichting and K. Gersten, Boundary-Layer Theory (Springer, 2016).
41H. Brenner, “The slow motion of a sphere through a viscous fluid towards a
plane surface,” Chem. Eng. Sci. 16, 242–251 (1961).
42S.-Y. Lin and J.-F. Lin, “Numerical investigation of lubrication force on a spher-
ical particle moving to a plane wall at finite Reynolds numbers,” Int. J. Multiphase
Flow 53, 40–53 (2013).
43C. H. Ataíde, F. A. R. Pereira, and M. A. S. Barrozo, “Wall effects on the terminal
velocity of spherical particles in Newtonian and non-Newtonian fluids,” Braz. J.
Chem. Eng. 16, 387–394 (1999).
44A. Goldman, R. Cox, and H. Brenner, “Slow viscous motion of a sphere parallel
to a plane wall—II Couette flow,” Chem. Eng. Sci. 22, 653–660 (1967).
45M. E. O’Neill, “A sphere in contact with a plane wall in a slow linear shear flow,”
Chem. Eng. Sci. 23, 1293–1298 (1968).
46N. Lukerchenko, Y. Kvurt, I. Keita, Z. Chara, and P. Vlasak, “Drag force, drag
torque, and Magnus force coefficients of rotating spherical particle moving in
fluid,” Part. Sci. Technol. 30, 55–67 (2012).
47T. Kray, J. Franke, and W. Frank, “Magnus effect on a rotating sphere at high
Reynolds numbers,” J. Wind Eng. Ind. Aerodyn. 110, 1–9 (2012).
48R. Mei and J. Klausner, “Shear lift force on spherical bubbles,” Int. J. Heat Fluid
Flow 15, 62–65 (1994).

49A. R. Harris and C. I. Davidson, “Particle resuspension in turbulent flow:
A stochastic model for individual soil grains,” Aerosol Sci. Technol. 42, 613–628
(2008).
50D. Neill, D. Livelybrooks, and R. J. Donnelly, “A pendulum experiment on
added mass and the principle of equivalence,” Am. J. Phys. 75, 226–229 (2007).
51A. A. Kendoush, A. H. Sulaymon, and S. A. Mohammed, “Experimental evalu-
ation of the virtual mass of two solid spheres accelerating in fluids,” Exp. Therm.
Fluid Sci. 31, 813–823 (2007).
52J. Almedeij, “Drag coefficient of flow around a sphere: Matching asymptotically
the wide trend,” Powder Technol. 186, 218–223 (2008).
53F. F. Abraham, “Functional dependence of drag coefficient of a sphere on
Reynolds number,” Phys. Fluids 13, 2194–2195 (1970).
54F. M. White, Viscous Fluid Flow (McGraw-Hill, 1991).
55Y. Kim and C. S. Peskin, “A penalty immersed boundary method for a rigid
body in fluid,” Phys. Fluids 28, 033603 (2016).
56M. Rahmani and A. Wachs, “Free falling and rising of spherical and angular
particles,” Phys. Fluids 26, 083301 (2014).
57R. Ortega, J. C. García Orden, M. Cruchaga, and C. García, “Energy-consistent
simulation of frictional contact in rigid multibody systems using implicit surfaces
and penalty method,” Multibody Syst. Dyn. 41, 275–295 (2017).

Phys. Fluids 31, 087106 (2019); doi: 10.1063/1.5098999 31, 087106-13

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1016/0009-2509(61)80035-3
https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.006
https://doi.org/10.1016/j.ijmultiphaseflow.2013.01.006
https://doi.org/10.1590/s0104-66321999000400007
https://doi.org/10.1590/s0104-66321999000400007
https://doi.org/10.1016/0009-2509(67)80048-4
https://doi.org/10.1016/0009-2509(68)89039-6
https://doi.org/10.1080/02726351.2010.544377
https://doi.org/10.1016/j.jweia.2012.07.005
https://doi.org/10.1016/0142-727x(94)90031-0
https://doi.org/10.1016/0142-727x(94)90031-0
https://doi.org/10.1080/02786820802227337
https://doi.org/10.1119/1.2360993
https://doi.org/10.1016/j.expthermflusci.2006.08.007
https://doi.org/10.1016/j.expthermflusci.2006.08.007
https://doi.org/10.1016/j.powtec.2007.12.006
https://doi.org/10.1063/1.1693218
https://doi.org/10.1063/1.4944565
https://doi.org/10.1063/1.4892840
https://doi.org/10.1007/s11044-017-9565-8

