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Abstract

In this paper we use uniform algebra techniques and recent results on separation prop-
erties to prove several division theorems for closed subalgebras of L∞ containing H∞.
We also study ideals having the local approximation property and we show that not
every ideal in such algebras is local.

1 Introduction

Let X be a compact Hausdorff space and let A be a uniform algebra on X, that is, a
uniformly closed subalgebra of C(X) separating the points and containing the constants. As
usual, MA denotes the maximal ideal space of A. For any closed subset E of MA, a function
f ∈ C(MA) is said to belong locally to A on E if for every x ∈ E there exists a neighborhood
U of x in E such that f |U belongs to A|U . The algebra A is said to be a local algebra on E
if every function f ∈ C(MA) belonging locally to A on E actually belongs to A. Similarly,
an ideal I ⊆ A is called local when it contains all the functions f ∈ A that belong locally to
I on MA.

Shilov [?] claimed that every function algebra is local on its maximal ideal space. Later,
an error was discovered in this proof and it became a conjecture [?] that every function
algebra was local on its maximal ideal space. In 1968, Eva Kallin [?] gave a counterexample
to that conjecture. Her counterexample also exhibited two functions f and g in A such that
f vanishes on an open subset containing the zeros of g, but f is not divisible by g in A;
in other words, f /∈ gA. Work in the area continued, with some interesting theorems and
questions presented by S. Sidney [?]. More recent work has been done by [?].

In general, one expects an algebra to be local on its maximal ideal space. It is often very
difficult to show that an algebra of functions is not a local algebra. Given the importance of
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this work to questions about division and factorization, it makes sense to look at local ideals
and, in particular, principal local ideals.

Now we look at a closely related idea. Let I ⊆ A be an ideal, and f ∈ C(MA). A function
f is said to be I-holomorphic at some point x ∈ MA if there is a neighborhood V of x such
that f can be uniformly approximated on V by functions in I. When this happens for every
x ∈ E ⊆ MA we say that f is I-holomorphic on E, or simply I-holomorphic if E = MA. In
particular, when A = I we have the notion of A- holomorphic given in [?]. An ideal I is said
to have the local approximation property with respect to C(MA) or A if every I-holomorphic
function f ∈ C(MA) (respectively, f ∈ A) is in I. Clearly, when the algebra A itself has the
local approximation property (with respect to C(MA)) then both localization notions agree
for ideals of A.

In this paper, we study local approximation properties for closed subalgebras of L∞ =
L∞(∂D), the algebra of essentially bounded Lebesgue measurable functions on the unit
circle. The most interesting subalgebras include the disk algebra and the algebra of bounded
analytic functions H∞. However, the maximal ideal spaces of both these algebras contain
the open unit disk D as a dense subset. This fact combined with the fact that the functions
involved are holomorphic means that the study of local properties of the algebra is not
particularly interesting, yet the local properties of ideals are quite interesting. This is, in
part, due to the fact that closed ideals in H∞ have not been completely described.

In order to study the closed ideals in H∞, it turns out to be helpful to study the local
properties of certain related algebras. When one studies Douglas algebras; that is, closed
subalgebras of L∞ properly containing H∞, the local nature of the algebra is no longer
clear. In this paper, we show that all closed subalgebras of L∞ containing H∞ have the
local approximation property and we show the implications of this result to division and
factorization in the algebra. Our theorems yield a unified approach to the study of division
in Douglas algebras and we are able to obtain all division theorems known thus far. For
many, we are able to obtain a stronger formulation than the original. We complete this
paper by describing a wide class of principal ideals having the local approximation property.

2 Preliminaries

In this section we include most of the preliminaries necessary to read this paper. The reader
is referred to ([?], Chapter IX) for more detailed information on this subject.

Let A be a uniform algebra and f ∈ C(MA). The Shilov boundary of A is denoted by
∂A and [A, f ] denotes the closed subalgebra of C(MA) generated by A and f . As usual, the
zero set of a function f ∈ C(MA) is denoted by Z(f) = {x ∈ MA : f(x) = 0}.

We will be most concerned with Douglas algebras. These algebras have been the subject of
much study in recent years. The most important theorem in this area is the Chang-Marshall
theorem. This theorem tells us that Douglas algebras are determined by their maximal
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ideal spaces. In addition, it is a consequence of this theorem that every closed subalgebra
containing H∞ is generated as a uniform subalgebra of L∞ by H∞ and the conjugates of
Blaschke products b such that b is in the algebra.

Let x and y denote two points in the maximal ideal space MH∞ . The pseudohyperbolic
distance between x and y is defined to be ρ(x, y) where

ρ(x, y) = sup{|f(y)| : f ∈ H∞, ||f ||∞ ≤ 1, f(x) = 0}.

The relation x ∼ y if and only if ρ(x, y) < 1 is an equivalence relation and the equivalence
class of a point x is denoted by P (x) and is called the Gleason part of x. The equivalence
class of a point in the disk is the unit disk itself. For points outside the disk such that the
Gleason part is nontrivial (consists of more than one point), there is a bijective map Lx

mapping the disk onto the Gleason part P (x) such that f ◦Lx is analytic for every f ∈ H∞

and Lx(0) = x. Since f ◦Lx is an analytic function, if f(x) = 0, we will (as usual) define the
order ord (f, x) of the zero of f at x to be the order of the analytic function f ◦ Lx at zero.
If the point x has a trivial Gleason part and f(x) = 0, then the order of the zero of f at x
is infinite. The same can be said about a function f in a Douglas algebra A when x ∈ MA.
The set of all points x in the maximal ideal space of the algebra under study such that f
has a zero of infinite order at x is denoted Z∞(f). The interior of the zero set of a function
f in an algebra A is denoted by Z(f)◦. The interior is always taken within MA.

Each point x in MH∞ outside the disk has a unique representing measure on ML∞ ; that
is, there is a unique measure µx supported on ML∞ such that f(x) =

∫
ML∞ fdµx. Since the

Shilov boundary for every Douglas algebra A is ML∞ , each point x ∈ MA also has such a
representing measure. The support sets of these measures will be denoted by supp µx.

3 Local Properties.

We begin this paper with the following result of Rickart [?] or ([?], p. 93)).

Theorem 3.1 Let A be a uniform algebra and suppose that f ∈ C(MA) is A-holomorphic
on MA \ Z(f), then

∂[A, f ] = ∂A and M[A,f ] = MA. (1)

We obtain several localization results involving Douglas algebras. Before we begin we show
that if u be an inner function and u is locally in the Douglas algebra A on the Shilov
boundary, then u ∈ A. To see this, suppose that x ∈ MA. Choose a point y ∈ suppµx.
By assumption, there is an open set U of the Shilov boundary ML∞ containing y such that
u|U = f |U for some f ∈ A. Then multiplying by u we see that 1 − uf = 0 on U . By ([?],
p. 190), this means that (1 − uf)(x) = 0. In particular then, u(x)f(x) = (uf)(x) = 1 so
u(x) 6= 0. Therefore u is invertible in A and consequently u ∈ A.
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Of course this is not true for functions in L∞ in general. For example any characteristic
function in L∞ is locally in H∞ + C on the Shilov boundary, but H∞ + C does not contain
any characteristic functions (see [?], p. 188). Nevertheless, we do have the following corollary
of Theorem ?? which shows that a Douglas algebra A is local on its maximal ideal space.

Corollary 3.2 If A is a Douglas algebra and f ∈ C(MA) is A-holomorphic on MA \ Z(f),
then f ∈ A.

Proof. Consider the subalgebra [A, f ] of C(MA). By Theorem ?? we know that M[A,f ] = MA

and ∂[A, f ] = ∂A = ML∞ . Since ML∞ is the Shilov boundary of the algebra [A, f ], we see
that [A, f ] is a closed subalgebra of L∞. Since H∞ ⊂ A, we see that [A, f ] is a Douglas
algebra. Now, M[A,f ] = MA, so the Chang-Marshall theorem tells us that [A, f ] = A. ♦

The above remarks make the next well-known theorem (see [?], p. 94) particularly significant
when A is a Douglas algebra.

Theorem 3.3 Let A be a uniform algebra, f ∈ C(MA) and gj ∈ A (0 ≤ j ≤ n − 1) such
that on MA the following equation holds:

fn + gn−1f
n−1 + · · ·+ g1f + g0 = 0. (2)

Then ∂[A, f ] = ∂A and M[A,f ] = MA.

When A is a Douglas algebra and f is a function in C(MA) satisfying (??), we use the
same argument as in Corollary ?? to conclude that f ∈ A. We isolate this result for future
reference.

Corollary 3.4 If A is a Douglas algebra and f ∈ C(MA) is such that there exist functions
gj ∈ A with

fn + gn−1f
n−1 + · · ·+ g1f + g0 = 0,

then f ∈ A.

We wish now to remove the monic hypothesis in the equation above. The proof is necessarily
somewhat different than well-known proofs (see [?]) and will require some definitions and
elementary lemmas.

Let A be a uniform algebra and E ⊆ MA be a closed set. Consider the uniform algebra
AE defined as the closure in C(E) of A|E and the uniform algebra RA(E), which is the
closure of {f |E/g|E : g ∈ A is zero free on E} in C(E). In ([?], p. 359 and p. 369-371) it is
proved that

MAE
= Ê

def
= {x ∈ MA : |f(x)| ≤ sup

E
|f | for all f ∈ A}
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and
MRA(E) = Ẽ

def
= {x ∈ MA : f(x) ∈ f(E) for all f ∈ A}.

The sets Ê and Ẽ are called the A-convex and the A-rational convex hull of E, respectively.
Consequently, E is said to be A-convex (or A-rationally convex) if E = Ê (resp. E = Ẽ).

Lemma 3.5 Let A be a uniform algebra and x ∈ MA. The set of closed A-convex neighbor-
hoods of x form a base of neighborhoods.

Proof. Let U ⊂ MA be an open neighborhood of x. Then for each y ∈ MA \ U there
exists fy ∈ A such that fy(x) = 0 and fy(y) 6= 0. By a compactness argument there exist
f1, . . . , fn ∈ A such that f1(x) = · · · = fn(x) = 0 and

inf
y∈MA\U

max{|f1(y)|, . . . , |fn(y)|} = α > 0.

Hence, the set
⋂

1≤j≤n{|fj| ≤ α/2} is a closed A-convex neighborhood of x contained in U . ♦

A uniform algebra A is called separating if Ẽ = E for every closed set E ⊂ MA. In [?] it is
proved that H∞ is a separating algebra, and therefore so is every Douglas algebra.

Lemma 3.6 Let A be a (uniform) separating algebra and E ⊆ MA be a closed set. Then
RA(E) = AE if and only if E is A- convex.

Proof. Suppose first that RA(E) = AE. Since A is separating, we see that MRA(E) = E.
Thus E is A-convex. Now suppose that E is A-convex and let a, b ∈ A with b zero free
on E. Since functions of the form a/b are dense in RA(E), it will be enough to prove that
a/b ∈ AE. Clearly, we need only to show that 1/b ∈ AE. But b ∈ AE never vanishes on
E = MAE

, so b is invertible in AE. ♦

Theorem 3.7 Let A be a Douglas algebra and f ∈ C(MA). Suppose that there are a positive
integer n and gj ∈ A, with 0 ≤ j ≤ n, such that on MA

gnf
n + · · ·+ g1f + g0 = 0. (3)

Then f ∈ A if and only if fn|Z(gn) ∈ A|Z(gn).

Proof. If f ∈ A, then we clearly have fn|Z(gn) ∈ A|Z(gn).

Suppose now that (3) holds and fn|Z(gn) ∈ A|Z(gn). Choose g ∈ A such that fn = g
on Z(gn). By (3), gnf

n + · · · + g1f + g0 = 0. Multiplying through by gn, we obtain
gn

2 fn + · · ·+ gn g1f + gn g0 = 0. Therefore we may assume that there exist functions hj ∈ A
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such that hnfn + · · · + h1f + h0 = 0 and Z(hn) ⊆ ⋂n−1
j=0 Z(hj). Now we will complete the

proof by showing recursively that f is A-holomorphic on MA \ Z(hn).

Write k1 = nhnfn−1 + · · · + h1 for the formal derivative of hnf
n + · · · + h1f + h0. If

x ∈ MA \ Z(k1), then Lemma ?? implies that there is a closed A-convex neighborhood V
of x where k1 is zero free. But Z(hn) ⊆ Z(k1), so hn is also zero free on V . Therefore, on
V = MRA(V ) we have

fn +
hn−1

hn

fn−1 + · · ·+ h0

hn

= 0

and

nfn−1 + (n− 1)
hn−1

hn

fn−2 + · · ·+ h1

hn

6= 0.

By the implicit function theorem for Banach algebras applied to RA(V ) ([?], p. 88), f ∈
RA(V ). Using the fact that V is A-convex and Lemma ??, we see that f ∈ AV . Hence f is
A-holomorphic on MA \ Z(k1), and so k1 is also. By Corollary ?? k1 ∈ A, and the equality

hnfn−1 +
(n− 1)

n
hn−1f

n−2 + · · ·+ h1 − k1

n
= 0

reduces our problem to a polynomial of degree n − 1. Repeating this process n − 2 more
times, we obtain a function kn−1 ∈ A such that

hnf +
(n− 1)!

n!
hn−1 − kn−1 = 0.

Now we may divide by hn and use the above argument to conclude that f is A-holomorphic
on MA\Z(hn). But Z(hn) = Z(gn) ⊆ Z(fn−g), so fn−g is A-holomorphic on MA\Z(gn) ⊇
MA \ Z(fn − g). By Corollary ??, fn − g ∈ A. Thus fn ∈ A and by Corollary ??, f ∈ A. ♦

4 Division in Douglas Algebras

In H∞ it is, of course, true that if we have two bounded holomorphic functions f and g and
the zeros of g in the disk are contained in the zeros of f (with appropriate multiplicity),
then f is divisible by g in H∞. Sarason and Guillory [?] first began the study of division in
H∞ + C by showing that this need not be the case if we consider zeros in MH∞+C . An easy
example (due to Davidson and Luecking, presented in the paper of Guillory and Sarason)
follows if we use a couple of well-known factorization theorems due to Axler [?] and Wolff
[?]: Let E be a nontrivial (measurable) subset of the unit circle. Consider the unimodular
L∞ function given by 2χE−1. Using Axler and Wolff’s results, there exist Blaschke products
b1 and b2 and a unimodular function u invertible in H∞ + C such that 2χE − 1 = b1b2u.
Squaring, we see that b2

2 = b1
2u2 on MH∞+C . Since u is invertible in H∞ + C, we see that

the zero sets of b1 and b2 are equal on MH∞ \D. In fact, |b1| = |b2| on MH∞+C . Nevertheless
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b1 is not divisible in H∞ + C by b2, since b1b2 = (2χE − 1)u, and the right-hand side of this
equation is not in H∞ + C, so the left-hand side can’t be either.

What Guillory and Sarason did show is that there exists an integer N with the property
that if f and u are two functions in H∞ + C and u is a unimodular function satisfying
|f | ≤ |u| on MH∞+C , then u divides fN in H∞ + C. The example presented above shows
that N cannot be taken so that N = 1 and Guillory and Sarason posed the question of what
the best constant was. This was answered, using techniques similar to those of Guillory and
Sarason, by K. Izuchi and Y. Izuchi [?]. They showed that one can take N = 2. In fact, they
showed that if A is a Douglas algebra, f ∈ A and u is an inner function satisfying |f | ≤ |u|
on MA, then for every n = 1, 2, . . ., one has fn+1un ∈ A.

Several results along these lines appeared. For example, Axler and Gorkin [?] and Guil-
lory, Izuchi, and Sarason [?] showed independently that if b is an interpolating Blaschke
product with zeros contained in the zeros of a function f ∈ H∞ + C, then f is divisible by b
in H∞ + C. Thus, in this particular case one can take N = 1. Another case was handled by
Gorkin and Mortini [?] who showed that if f vanishes on an open set containing the zeros
of g, then f is divisible by g in H∞ + C. Once again, then, this is a situation in which one
can take N = 1.

Our interest in this paper is to handle these division theorems as a consequence of
Rickart’s result (Theorem ??), the Chang-Marshall theorem and the separating property
of H∞ [?]. The case n = 1 of Theorem ?? is particularly useful for the present section. We
state it as the next corollary.

Corollary 4.1 Let A be a Douglas algebra, f ∈ C(MA) and h, g ∈ A. Suppose that h = fg.
Then f ∈ A if and only if f |Z(g) ∈ A|Z(g).

We obtain the following result which contains Izuchi and Izuchi’s result (and therefore Sara-
son and Guillory’s) discussed in the introduction to this section.

Corollary 4.2 Let A be a Douglas algebra. Let α : [0,∞)→R be a function satisfying
α(0) = 0 and α(t)/t→0 as t→0. Suppose that h, g ∈ A are such that |h| ≤ α(|g|) on MA.
Then g divides h in A.

Proof. Define f on MA as f = h/g outside Z(g) and f = 0 on Z(g). By hypothesis f is
continuous on MA and h = fg. Then apply Corollary ??. ♦

The result of Gorkin and Mortini mentioned earlier is an immediate consequence of this
corollary, as well. One also obtains the second theorem of [?], as shown below.

Corollary 4.3 Let A be a Douglas algebra properly containing H∞, I an ideal in A and
h ∈ A a function vanishing in a neighborhood of the hull of I. Then f ∈ I.
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Proof. Let h ≡ 0 on U , where U is an open set containing Z(I), the hull of the ideal. Since
A is separating [?], there exists a function g ∈ I such that g does not vanish on MA \U . By
Corollary ?? we have h ∈ gA ⊂ I. ♦

Using the main results in [?] or [?], one can easily show that the following holds.

Proposition 4.4 Let A be a Douglas algebra and let f ∈ A. If b is a finite product of
interpolating Blaschke products and Z(b) ⊂ Z∞(f), then {x ∈ MA : |b(x)| < 1} ⊆ Z∞(f).
Consequently, we also have that Z(b) ⊂ Z(f)o.

Different versions and some generalizations of this result have appeared in the literature.
Thanks to Corollary ?? we can give a very general version.

We will use Jensen’s inequality for Douglas algebras ([?], p. 33) stating that if A is a
Douglas algebra, g ∈ A and x ∈ MA then

log |g(x)| ≤
∫

ML∞
log |g| dµx. (4)

Observe that if g is invertible, the above inequality for g and g−1 forces equality in (??).

Theorem 4.5 Let A be a Douglas algebra and f, g ∈ A of norm at most 1. Suppose that
there is α : [0,∞)→[0,∞) such that α(0) = 0 and α(t)/tn→0 as t→0+ for every positive
integer n, and |f | ≤ α(|g|) on MA. Then

Z(g) ∪ {x ∈ MA : log |g(x)| <
∫

ML∞
log |g| dµx} ⊂ Z∞(f). (5)

In particular, x ∈ Z∞(f) if |g(x)| < min{|g| : supp µx}.

Proof. By hypothesis there exists a sequence of positive numbers {δn} tending to 0 such that
on MA

|f | ≤ α(|g|) ≤ |g|n if |g| < δn. (6)

Let Gn be an outer function defined by condition

|Gn(eiθ)| =
{
|g(eiθ)| if |g(eiθ)| ≥ δn

1 if |g(eiθ)| < δn

almost everywhere on ∂D. Then Gn is invertible in H∞ and on ML∞ we have

|gG−1
n | =

{
1 if |g| ≥ δn

|g| if |g| < δn
(7)
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By (??) and Corollary ??, f is divisible by (gG−1
n )n in A for all n ≥ 1. Furthermore, (??)

and (??) imply that |f/(gG−1
n )n| ≤ 1 on ML∞ . Therefore

|f | ≤ |(gG−1
n )n| on MA for all n ≥ 1. (8)

The hypotheses of the theorem clearly imply that Z(g) ⊂ Z∞(f). On the other hand, if
x ∈ MA is not a zero of g, then Jensen’s inequality implies that log |g| ∈ L1(dµx). Therefore
it will be enough to prove that if x ∈ MA is such that log |g| ∈ L1(dµx) and the inequality
(??) is strict, then x ∈ Z∞(f).

Using the fact that |g| ≤ 1 and that Gn is invertible we get
∫

log |g| dµx ≤
∫

{|g|≥δn}
log |g| dµx =

∫
log |Gn| dµx = log |Gn(x)|

for every n ≥ 1. This inequality together with the strictness in (??) implies that

|g(x)| < βx
def
= exp

∫
log |g| dµx ≤ |Gn(x)| for every n ≥ 1.

Therefore |g(x)G−1
n (x)| ≤ |g(x)|β−1

x < 1, a number independent of n. Fix some r with
0 < r < 1 and consider all the points y ∈ P (x) such that ρ(y, x) ≤ r. Since (gG−1

n )|P (x) is
an analytic function of norm bounded by 1, the Schwarz-Pick inequality ([?], p. 2) tells us
that ρ(g(y)G−1

n (y), g(x)G−1
n (x)) ≤ ρ(y, x) ≤ r for every n ≥ 1. Therefore

s
def
= sup{|g(y)G−1

n (y)| : ρ(y, x) ≤ r, n ≥ 1} < 1.

So by (??) we conclude that for every y satisfying ρ(y, x) ≤ r

|f(y)| ≤ |g(y)G−1
n (y)|n ≤ sn→0 when n→∞.

That is, x ∈ Z∞(f). ♦

Before proceeding to the next proof, we show here the well-known fact that if A is a Douglas
algebra and f ∈ A, then Z∞(f) is closed. To see this, let xα ∈ Z∞(f) be a net converging
to x ∈ MA. Then f ◦Lxα→f ◦Lx uniformly on |z| ≤ r < 1, implying that f ≡ 0 on the part
of x and hence x ∈ Z∞(f).

We say that a Douglas algebra A is countably generated if it is generated as a uniform
algebra by H∞ and a finite or countably infinite set of complex conjugates of inner functions.

Lemma 4.6 A Douglas algebra A is countably generated if and only if MA is a Gδ set in
MH∞.

Proof. First suppose that A is countably generated. Then there is a finite or countably
infinite collection of Blaschke products {bn} with bn ∈ A such that A = H∞[bn : n = 1, . . .].
Since MA = ∩n{φ ∈ MH∞ : |φ(bn)| = 1}, we see easily from this that MA is a Gδ set.
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Now suppose that there is a countable collection of open sets Vn such that MA = ∩∞1 Vn.
By the Chang-Marshall theorem, A is generated by H∞ and the complex conjugates of
Blaschke products. Since each such Blaschke product b has modulus one on MA, we see that
∩{|b| = 1} = ∩∞n=1Vn ⊆ Vm for each m. A compactness argument shows that there exist
Blaschke products b1, . . . , bk such that cm = b1b2 · · · bk is invertible in A and {|cm| = 1} ⊆ Vm.
Now H∞[cm : m = 1, . . .] ⊆ A and M(H∞[cm : m = 1, . . .]) = ∩{|cm| = 1} ⊆ ∩Vm = MA.
By the Chang- Marshall theorem, we conclude that A = H∞[cm : m = 1, . . .]. ♦

Lemma 4.7 Let A be a countably generated Douglas algebra different from H∞, and f ∈ A.
Then Z(f)◦ = Z∞(f).

Proof. First we note that due to the analytic structure of the Gleason parts in A, the
inclusion Z(f)◦ ⊂ Z∞(f) is clear.

To prove the reverse inclusion, let x ∈ Z∞(f) and U be a neighborhood of x in MA. Since
A is countably generated, by Lemma ?? there exists a sequence {Vn} of open sets in MH∞

such that MA =
⋂

Vn. Without loss of generality, we may also assume that V n+1 ⊂ Vn.
Choose an open set V in MH∞ so that x ∈ V and MA ∩ V ⊂ U . By the corona theorem
there exists a net (zα) in V ∩D converging to x. By Hoffman [?] g ◦ Lzα→g ◦ Lx uniformly
on {z ∈ D : |z| ≤ r} for every r such that 0 < r < 1 and every g ∈ C(MH∞). The harmonic
extension f̃ (defined by f̃(x) =

∫
ML∞ fdµx) of f is continuous on MH∞ and coincides with

f on MA. So, fixing r with 0 < r < 1, we get sup|z|<r |f̃ ◦Lzα|→0. Moreover, we see that we
may choose a sequence zn consisting of points of the net (zα) such that

(i) sup|z|≤r |f̃ ◦ Lzn|→0,

(ii) zn ∈ V ∩ Vn ∩D, and

(iii) {zn} is an interpolating sequence.

Now every accumulation point of {zn} is in V ∩ ⋂
n≥1 V n ⊂ U ∩MA. Let b be the associated

interpolating Blaschke product. Then Z(b) = {zn} [?, p. 314] (here Z(b) denotes the zero
set of b in MH∞), and consequently Z(b) ∩ U 6= ∅. By (i) f has a zero of infinite order on
the zeros of b. Thus Z(b) ⊂ Z∞(f). By Lemma ??, Z(b) ⊂ Z(f)◦. Therefore Z(f)◦ is dense
in Z∞(f). ♦

We remark that Lemma ?? is not true for arbitrary Douglas algebras. To see this, let
A = {f ∈ L∞ : f |M1 ∈ H∞|M1}, where M1 = {m ∈ MA : m(z) = 1} is the fiber over 1. Let
f(z) = 1 + z. Then Z(f)◦ = ∅, but Z(f) = Z∞(f) = {m ∈ ML∞ : m(z) = −1}.

The equivalences from (c) to (e) in our next theorem were stablished by Izuchi for general
Douglas algebras in Corollary 4.5 of [?].
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Theorem 4.8 Let A be a countably generated Douglas algera and u ∈ A such that |u| = 1 on
ML∞. Let I = uA be the ideal generated by u. Then I is closed and the following assertions
are equivalent:

(a) I has the local approximation property,

(b) Z(u)◦ = ∅,
(c) Z∞(u) = ∅,
(d) ord (u, x) ≤ N for some integer N and all x ∈ Z(u),

(e) u = bv, where b is a finite product of interpolating Blaschke product s and v is a
unimodular function invertible in A.

If (e) holds, then I = bA.

Proof. The ideal uA is closed because |u| ≡ 1 on ∂A = ML∞ . First we show that (a)
fails when (b) fails. Suppose that there is x ∈ Z(u)◦ (hence x 6∈ ML∞). Let U be an
open set in MH∞ such that x ∈ U and U ∩ MA ⊆ Z(u)◦. If x is a trivial point then we
may choose (see [?]) a nontrivial point m ∈ U satisfying supp µm ⊂ supp µx. If x itself
is nontrivial we choose m = x below. Take an interpolating Blaschke product b with zero
sequence contained in U ∩D such that b(m) = 0. The inclusion of support sets implies that
|b(x)| < 1. Furthermore, if Z(b) denotes the zero set of b in MA then Z(b) ⊂ U∩MA ⊂ Z(u)◦.
By [?] or [?] u is divisible by b in A, which we denote by u/b ∈ A.

We will see that u/b is locally approximable by functions in I. In fact, let x ∈ MA\Z(u)◦.
By Lemma ?? we can choose a closed A-convex neighborhood V of x in MA which does not
meet Z(b). Thus on V we have 1/b ∈ RA(V ) = AV , where the equality of algebras follows
from Lemma ??. Therefore, 1/b can be uniformly approximated on V by elements of A|V .
Consequently, u/b can be approximated on V by elements in I|V , as claimed.

We now show that despite this fact, u/b is not in I. Suppose, to the contrary, that there
are fn ∈ A such that u/b = lim ufn. Multiplying through by b we see that u(1 − bfn) → 0.
Thus, for n sufficiently large, bfn is invertible in A. Since b is not invertible in A, this is not
possible. This finishes the proof of (a) implies (b). (We note that we have not used here,
that A is countably generated).

Due to the assumption that A is countably generated, Lemma 4.7 shows that (b) implies
(c). As we mentioned earlier, the equivalences from (c) to (e) were given by Izuchi.

It is clear that if (e) holds, then I = bA. But this implies that (a) holds. Indeed, let
f ∈ C(MA) be a function that is I-holomorphic. Then clearly ord (f, x) ≥ ord (b, x) for every
x ∈ Z(I). Hence, by [?] or [?], f is divisible by b in A, that is f ∈ I. ♦

We remark that the proof of (e) implies (a) in the theorem above is valid for arbitrary
Douglas algebras. The theorem contains a description of a wide class of ideals having the
local approximation property. Of course, every such ideal is local. We don’t know if the
converse holds. With the aid of some classical theory, the results of this paper easily produce
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an ideal in H∞+C that is not local, as showed in the example below. The sets of the example
are taken in the maximal ideal space of H∞ + C.

Example. Let E be a clopen subset of ML∞ . Let b be a Blaschke product such that b = 0
on the set {0 < χE < 1}. Then b (H∞ + C) is not a local ideal.

First we remark that such a Blaschke product always exists. To see this, note that
Marshall has shown ([?], p. 398) that there is an interpolating Blaschke product c such that
H∞[χE] = H∞[c]. By the Chang-Marshall theorem and Shilov’s idempotent theorem,

{|c| = 1} = MH∞[c] = MH∞[χE ] = {χE(x) = 0, 1}.

A classical construction of Newman ([?], p. 195) then provides a Blaschke product b that
vanishes on {|c| < 1} = {0 < χE < 1}. Consider the function f ∈ C(MH∞+C) defined
by f(x) = b(x)χE(x). Clearly, f = 0 on {χE < 1} and f = b on {0 < χE}. Therefore,
f is locally in the ideal, which together with Corollary ?? implies that f ∈ H∞ + C. If
f = bχE ∈ b(H∞ + C), then χE ∈ H∞ + C, which is impossible. ♦

References

[1] S. Axler, Factorization of L∞ functions, Ann. of Math. 106 (1977), 567-572.

[2] S. Axler and P. Gorkin, Division in Douglas algebras, Michigan Math. J. 31
(1984), 89- 94.

[3] R. Arens, The problem of locally-A functions in a commutative Banach algebra
A, Trans. Amer. Math. Soc. 104 (1962), 24-36.

[4] L. Carleson, Interpolations by bounded analytic functions and the corona the-
orem, Ann. of Math. 76 (1962), 547-559.

[5] S.-Y. Chang, A characterization of Douglas algebras, Acta Math. 137 (1976),
81-90.

[6] T. W. Gamelin, “Uniform Algebras”, Prentice Hall, Englewood Cliffs, New
Jersey (1969).

[7] J. B. Garnett, “Bounded Analytic Functions”, Academic Press, New York
(1981).

[8] P. Gorkin and R. Mortini, Division theorems and the Shilov property for
H∞ + C, to appear in Pacific J. Math.

12



[9] P. Gorkin and R. Mortini, Interpolating Blaschke products and factorization
in Douglas algebras, Mich. J. Math. 38 (1991) 147-160.

[10] C. Guillory, K. Izuchi and D. Sarason, Interpolating Blaschke products
and division in Douglas algebras, Proc. R. Ir. Acad. 84 (1984), 1-7.

[11] C. Guillory and D. Sarason, Division in H∞ + C, Michigan Math. J. 28
(1981), 173-181.

[12] K. Hoffman “Banach Spaces of Analytic Functions”, Dover Publ., New York,
1988. (reprint of 1962)

[13] K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86
(1967), 74-111.

[14] K. Izuchi, Interpolating Blaschke products and factorization theorems, J. Lon-
don Math. Soc. 50 (1994), 547-567.

[15] K. Izuchi and Y. Izuchi, Inner functions and division in Douglas algebras,
Mich. Math. J. 33 (1986), 435- 443.

[16] E. Kallin, A non-local function algebra, Proc. Nat. Acad. Sci. 49 (1963), 821-
824.

[17] D. E. Marshall, Subalgebras of L∞ containing H∞, Acta Math. 137 (1976),
91-98.

[18] Rickart, C., The maximal ideal space of functions locally approximable in a
function algebra, Proc. Amer. Math. Soc. 17 (1966), 1320-1326.

[19] G. E. Shilov, Analytic function in a normed ring, Uspehi Mat. Nauk 15 3(93),
(1960) 181-183.

[20] S. Sidney, More on high-order non-local uniform algebras, Illinois J. Math.18
(1974) 177-192.

[21] E. L. Stout, “The Theory of Uniform Algebras”, Bogden and Quigley, Belmont,
California (1971).
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