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We analyze the nature of a Mott metal-insulator transition in multiorbital systems using dynamical mean-field
theory. The auxiliary multiorbital quantum impurity problem is solved using continuous-time quantum Monte
Carlo and the rotationally invariant slave-boson (RISB) mean-field approximation. We focus our analysis on
the Kanamori Hamiltonian and find that there are two markedly different regimes determined by the nature
of the lowest-energy excitations of the atomic Hamiltonian. The RISB results at 7 — 0 suggest the following
rule of thumb for the order of the transition at zero temperature: a second-order transition is to be expected
if the lowest-lying excitations of the atomic Hamiltonian are charge excitations, while the transition tends to
be first order if the lowest-lying excitations are in the same charge sector as the atomic ground state. At finite
temperatures, the transition is first order and its strength, as measured, e.g., by the jump in the quasiparticle weight
at the transition, is stronger in the parameter regime where the RISB method predicts a first-order transition at
zero temperature. Interestingly, these results seem to apply to a wide variety of models and parameter regimes.
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I. INTRODUCTION

The transition between a Fermi liquid and a paramagnetic
Mott insulator remains one of the most interesting phenomena
driven by electronic correlations. When the interactions among
electrons prevail over their itineracy, there is an increase of the
electronic effective masses and of the magnetic correlations.
These effects give rise to fascinating properties; for instance,
they are thought to be deeply related to the mechanism behind
unconventional superconductivity such as the one in copper-
and iron-based materials [1-3].

In his original analysis of the insulating character of nickel
oxide, Mott pointed to the role of Coulomb interactions and
argued, starting from the insulating phase, that there should
be a sharp insulator-to-metal transition as the lattice spacing
is reduced [4]. Hubbard introduced a lattice model with a
single level per atom, a local repulsion U, and a hopping
integral t between nearest-neighbor sites [5,6]. At half filling
and low-enough 7, the system is in an insulating phase with
upper and lower Hubbard bands, separated by a gap, which
are associated to the dispersion of an extra electron or hole in
the system, respectively. In the Hubbard picture, the transition
to a metal, as ¢ is increased, is expected to occur when the
gap for charge excitations vanishes, i.e., when the average
bandwidth of the upper and lower Hubbard bands is of the
order of U. A complementary analysis starting from the Fermi
gas was provided by variational methods such as the Gutzwiller
approximation [7,8]. These in turn gave place to the so-called
Brinkman and Rice scenario of the metal-insulator transition
(MIT) [9,10], in which as the Coulomb repulsion is increased,
the effective mass of the low-energy quasiparticles increases
and diverges at the transition.

A bridge between these two limits was provided by the dy-
namical mean-field theory (DMFT) [11], which was first used
to analyze the transition between a paramagnetic metal and
a paramagnetic insulator within the Hubbard model [12-14].
The DMFT approximation made it possible to treat, on equal
footing, high-energy features, such as the Hubbard bands, and
the low-energy quasiparticle physics across the transition.
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A decade of studies [12-20] of the phase diagram for the
one-band Hubbard model concluded that the transition is first
order at finite temperatures with a critical second-order end
point. At zero temperature, the transition from the metallic
side to the insulator occurs by a continuous reduction of the
width of a quasiparticle band which, close to the MIT, is located
between well-separated Hubbard bands.

The experimental evidence of the Mott transition predicted
originally for the transition-metal monoxides (TMMOs) such
as NiO, MnO, or FeO under pressure was evasive for more than
five decades due to the high critical pressures required. Once
confirmed [21], it proved to be a much richer phenomenon
than expected due to the multiorbital physics of the 3d band
in the TMMOs [22,23]. The MIT in 4d materials, for which
a multiorbital description becomes essential, has also been
experimentally detected, such as in Ca,RuOy driven by tem-
perature [24], pressure [25], and doping [26]. This represents
just a few cases among the large variety of experiments that
have exhibited signatures of a MIT in multiorbital systems
[27-30].

Recent experiments by Camjayi et al. [31] show clear
indications of a first-order phase transition in the GaTasSeg
compound, which can be modeled with a three-orbital Hamil-
tonian. In the coexistence regime, an external current can take
the system from the insulating to the metallic phase, and vice
versa, giving the possibility to use this compound as a resistive
memory [32,33].

In the last few years, much progress has been achieved
in understanding the role of interorbital interactions in the
electronic effective mass in multiorbital models and materials
[34]. In general, the interorbital repulsion U’ and the Hund’s
coupling J modify the local multiplet structure in two ways:
by changing the energy gaps between multiplets in different
charge sectors and by splitting multiplets within each charge
sector, which changes the degeneracy of the atomic levels.
The level degeneracy is naturally of great importance within
DMEFT because the Kondo scale in the associated quantum
impurity problem depends exponentially on it [35]. The gap
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for charge excitations in the atomic limit is determined by
the multiplet structure and is of crucial importance to set the
critical value of the interactions that induce the MIT in the
Hubbard picture. In Refs. [36] and [37], it was shown that these
effects help one to understand the antagonistic consequences
of the Hund’s coupling J which, for some electronic fillings,
increases both the effective mass of the quasiparticles and the
critical interaction.

Interorbital couplings have also been reported to affect the
way in which the quasiparticle band vanishes at the MIT.
Biinemann et al. [38,39], in a two-orbital implementation of
the Gutzwiller approximation, showed that the inclusion of J
modifies the Brinkman-Rice scenario and that at half filling,
the transition is first order at zero temperature, while it remains
continuous for an average occupation of a single electron per
site. A similar effect of J at half filling was reported for
two orbital models using different approximations to solve
the DMFT equations [40—42].

Despite these important advances in the understanding
of the multiorbital physics, a detailed study of the role of
interorbital interactions in the nature of the MIT is still lacking;
precisely, how they affect the order of the transition, the
quasiparticle weight, and the way it vanishes at the MIT.

Here we report DMFT results for two- and three-orbital
models at different electronic fillings. In order to disentangle
the role of the interorbital interactions on the Mott transition,
we consider no crystal-field splitting terms nor any asymmetry
in the width or shape of the bands. We solve the DMFT
equations using different quantum impurity solvers. The
main results are obtained using the rotationally invariant
slave-boson (RISB) technique in the mean-field approxima-
tion [43]. We also use the numerically exact continuous-
time quantum Monte Carlo (CTQMC) at finite temperatures
[44—47]. Our RISB results in the 7 — 0 limit, which are based
on calculations of the quasiparticle weight and of the lattice
free energy, show that in multiorbital models, the order of
the transition at zero temperature in general depends on the
electronic filling and on the values of interorbital interactions.
We argue that this behavior can be understood in terms of the
effects of interorbital interactions on the degeneracy of local
multiplets and on the gap for charge excitations.

The rest of this paper is organized as follows. Section II
describes the model and the methods. In Sec. III, the Mott
transition is analyzed in the limit of vanishing Hund’s rule
coupling J = 0. This simplified case with intraorbital (U) and
interorbital (U’) interactions contains the main ingredients
needed to understand the physics of the more physically
relevant case, with J £ 0 and U’ = U — 2J, which is treated
in Sec. IV. Finally, the main results concerning the nature of
the MIT and the role of interorbital interactions determining it
are summarized in Sec. V.

II. MODELS AND METHODS

We consider the Kanamori Hamiltonian to describe the local
interactions in multiorbital systems,

H = Z til}lm/dt:rmadjm’a + ZHiat’ (1)
i

ijmm'o
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where ti';’"" is a hopping term between orbital m on site i and
orbital m’ on site j, and the local Hamiltonian H" is given for
each site i of the lattice by

I‘Ial = UZnaTnai —i—U/ZnaTnm
o aFp

HWU' =) D nagnpe — Y dlydaydy day
a>fp,0 a#p

P .
+J) didl dgdgr — uN. )
aFp

Here, N = > Za=¢, | Nao, 14 is the chemical potential,
U and U’ are the intraorbital and interorbital interactions,
respectively, and J is the Hund’s rule coupling. As mentioned
before, we focus our analysis on the role of the multiorbital
interactions on the Mott transition. To that aim, we consider
no crystal-field splitting terms nor asymmetries in the width
or shape of the bands, and set the interorbital hybridizations
to zero. For simplicity, we consider a semicircular density of
states for each orbital,

D(e) = %\/1 — (¢/D)?, 3)
where D is the half bandwidth of the conduction electron band
in the absence of interactions, but our main conclusions do not
depend on this choice.

We solved this model using DMFT [11]. This theory is
based on the assumption of a local self-energy and maps
the lattice interacting problem onto a multiorbital quantum
impurity problem, where the impurity is described by H* and
the electronic bath is subject to a self-consistency condition.

We implemented the rotationally invariant slave boson [43]
(see Ref. [39] for a related approximation) in a quantum im-
purity formulation [48]. The RISB formalism is a multiorbital
generalization of the Kotliar-Ruckenstein [10] approach that
preserves the rotational invariance at the mean-field level [49].
In this approximation, the local electron operators d,,, where
« is an orbital index, are represented as a linear form in
introduced quasiparticle operators fg,

dy = Rep f5. 4)

Here, R, depends on a set of parameters that need to be
calculated minimizing a free energy. The resulting self-energy
has a simple linear form, which in matrix notation reads

S(iwy) = iw,1 —Z7 )+ RITTAR™! — ¢, (5)

where Z is the quasiparticle weight which can be calculated
as Z = RR', €y contains the quadratic part of the atomic
Hamiltonian, and A is formed by Lagrange multipliers
introduced in order to enforce a proper mapping between the
original Hilbert space and its new representation.

We also solved the DMFT equations at finite temperatures
using the numerically exact CTQMC impurity solver, for
which we use the TRIQS code [50,51]. For each impurity prob-
lem, we typically performed 2 x 107 measurements separated
by 200 moves. We estimate the quasiparticle weight at finite
temperatures as Z,, = [1 — Im¥,, (ia)o)/a)o]’l.
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III. J =0LIMIT

In this section, we focus our analysis on the J = 0 limit
of the atomic Hamiltonian of Eq. (2), which, for M orbitals,
reads

Z NgoNge — MN (6)

a>p,o00’

M
HiY =U> naynay + U’
a=1

As we will see below, this limit captures many important
features observed in the more relevant (J # 0) case and allows
a simple interpretation of the results.

Figure 1 outlines the lowest-lying multiplet structure of
H3, for M orbitals and u = U/2 + (M — 1)U’. The ground
state of the atomic Hamiltonian has a level occupation N = M
(half filling) and a degeneracy (2M)!/M!? for U’ = U, which
is reduced to 2¥ for U’ < U. The main effect of a finite U’ <
U is to break the degeneracy of the ground state pushing to
higher energies the states on the same charge sector, but having
one or more orbitals doubly occupied. These states are shifted
by n,468, where n, is the number of doubly occupied orbitals and
8 = U — U’ (see Fig. 1). The gap for charge excitations in the
atomic limit is A(N) = Eo(N + 1) + Eo(N — 1) —2Eo(N),
with Ey(N) indicating the energy of the lowest-lying state for
the charge sector with N electrons. At half filling, A(M) = U
is independent of U’.

In the limiting case U’ =0, § is maximal, the orbitals
decouple, and the model reduces to M copies of the single-
orbital problem (Hubbard model), which has been extensively
studied [12-20]. At zero temperature, there is a range of values
of U where there is a coexistence of metallic and insulating
solutions. The metallic solution has a lower free energy and
disappears continuously at a critical interaction U,,, leading
to a second-order phase transition. At finite temperatures, the
large degeneracy of the insulating phase leads to a decrease of
its free energy due to entropic effects and leads to a first-order
phase transition at U = U..

The highly degenerate case for § = 0 (U’ = U) has also
been studied and leads to an enhanced critical interaction
[52,53]. As § increases from O to U, the charge fluctuations
to states having doubly occupied orbitals and N = M are

E

N=M-1 N=M+1

U/2 —
5=U-U

s=U-U'

N

FIG. 1. Lowest-lying multiplet structure of Hamiltonian (6) at
half filling and § <« U. For U'/U > 1/2, the lowest-lying states in
the charge sectors with N =M — 1 and N = M + 1 particles are
lower in energy than the states in the charge sector with N = M and
one or more orbitals having double occupancy.
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expected to decrease, and some questions are in order: What is
the role played by excited states with doubly occupied orbitals
at the MIT? How does the degeneracy or quasidegeneracy of
the ground state of the atomic Hamiltonian influence the MIT?

A. Two-orbital model

We first present results for the two-orbital version of the
Hamiltonian of Eq. (6) at half filling. The bulk of our analysis
is performed using the RISB approach, which allows us to
explore a wide range of parameters. We also perform DMFT
calculations using CTQMC at finite temperatures, for specific
sets of parameters, which allow us to support our main
conclusions.

1. RISB results

Figure 2 presents zero-temperature results for the quasi-
particle weight and the free energy calculated using RISB
for J =0 and fixed values of U'/U. As U is increased,
the quasiparticle weight Z decreases monotonically from its
U =0 value, Z = 1. For values of the interaction U larger
than a critical value U,,, there is a single solution to the
RISB equations which is insulating (Z = 0). The critical

1
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N 0.5
0.25
0
4 Metal
Q3f-
-0.02(=~ Mott Insulator
Q b2— /
~ 1k
> U =0U/2
T o4 0
3 35 4.5 ]
U?D
-0.06} R
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FIG. 2. (a) Quasiparticle weight Z vs U obtained using RISB for
different values of U’'/U = 0,0.2,0.5,0.6,0.7,0.8, 0.9, 0.98, 0.99,
and 1. The ratio U’/ U increases from left to right as indicated in the
figure. Blue disks are used for U’/U < 0.5, black disks for 0.5 <
U'/U <1, and red disks for U’'/U = 1. Inset: Zoom of U, for
U'/U < 0.8. (b) Free-energy difference between the metallic and
insulating solutions for the parameters of the upper panel. Inset: U —
U’ phase diagram.
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interaction remains constant within our numerical precision up
to U’/U ~ 0.5 and increases monotonously for larger values
of U'/U up to U'/U =1, where it attains the maximum
value.

For U < 1.5D, there is a small decrease in Z when U’/ U
increases, as expected from perturbation theory. For larger
values of U, up to the MIT, an increase in U’ enhances Z, i.e.,
in this regime, the interorbital repulsion decreases the effective
mass of the electrons [54]. This behavior can be traced back to
the role of the degeneracy in the auxiliary quantum impurity
problem of the DMFT equations: by changing U’/U from 0
to 1, the degeneracy of the associated Kondo model increases
from 2 to 6, which leads to an increased Kondo scale [35].

The quasiparticle weight Z has two qualitatively different
behaviors as U — U,,, depending on the value of U'/U.
For U'/U =1 or values of U’/U lower than a critical ratio
ne ~ 0.5, Z vanishes continuously as U — U, while for
ne < U'JU < 1, there is a jump in Z from a finite value to
zero at U = U,,. These two behaviors are associated with
a second- and a first-order phase transition, respectively. To
unambiguously characterize the MIT in the different regimes,
we analyze the behavior of the free energy at the transition
which, in the RISB formalism, can be readily evaluated [55].
Itis important to remark that within the RISB method, different
choices for the noninteracting density of states D(e) lead to
different effective bandwidths but do not change the nature of
the MIT (see Appendix).

An analysis of the free-energy difference A F between the
conducting and insulating solutions confirms the conclusions
drawn from the analysis of the quasiparticle weight. Figure
2(b) presents A F' as a function of the interaction U for different
values of theratio U’/ U . For values of U’/ U where Z vanishes
continuously at the transition, the slope of AF as a function
of U vanishes at U, (which coincides with U,,), while a jump
in Z at U, is associated with a finite value of the slope at U.,.
In the inset of Fig. 2(b), we present the phase diagram in the
U-U’ plane, which shows that for U’'/U < 5., the critical
interaction is within our numerical precision, independent
of U’ and equal to the single-orbital critical U. For larger
values of U’/ U, the critical interaction rapidly increases and
attains its maximum value at U’/U = 1, in agreement with
Ref. [54].

Figure 3(a) presents the derivative of §F with respect
to U at U. (where AF =0) as a function of U'/U and
different temperatures. A finite value of this derivative signals
a first-order transition, which is the case for all the T > 0
studied [56]. For values of U’/ U lower than ~ 0.5 and for
U'/U =1, the derivatives decrease with T following the
single-orbital behavior. This can be seen in Fig. 3(b), where
the data has been scaled with the single-orbital temperature
dependence. This indicates that for these values of U’/ U, the
derivatives vanish in the limit 7 — 0 and the MIT is second
order. For values larger than ~ 0.6 and smaller than 1, the data
no longer follow the single-orbital temperature dependence.
The derivatives tend to saturate to a finite value as 7 is reduced,
which is consistent with a first-order transition at 7 = 0. The
strongest first-order character is obtained for U'/U ~ 0.9,
and both the size of the jump of Z at the transition [see
Fig. 3(c)] and the value of the change of the slope of the free
energy decrease continuously and approach the single-orbital

PHYSICAL REVIEW B 95, 085119 (2017)

T T - T T
0.09 t (a) ‘ . t,f.\\ ]
.i./.”./.t \
0.06 ¢o0e0000®0e®?® A0
° 3 b d ®
0.03 § pe h
: 4
""V——w'v"V~vr)v"v——v-v-v~vr—v—§-v~7"V/"’
0 i —t :
S o 3
JL 10 BD =200 e | .
=* 7L 8D = 1000 |
g BD = 10000 --v-- § ST
o 4} BD = 30000 ‘ ,/
e | v .,
-0-0 T o
1 “’v——’v‘—»’o#/‘»ﬂ‘-—e--’v‘"v«rw:a-v——v—ivv—sr—' - 0?0—0; o
_ (c) |
‘ﬁ 10 J
\b r v Vv
= -
Noap o |
N ‘ v 7
1dvo0-0-080000-0-0etee 600000
1 | : | |
0 0.2 0.4 0.6 0.8 1
u'/u

FIG. 3. (a) Derivative of the difference between the free energies
of the metal and insulator solutions at the free-energy crossing point
within the RISB method as function of U’/ U. (b) Same data scaled
with the single-orbital temperature dependence. (c) Quasiparticle
weight at U, scaled by its single-orbital temperature dependence.

dependence as U’/U approaches 1 or the critical ratio 7.
These considerations place 1, between 0.5 and 0.6.

To gain physical insight into the behavior of the system,
it proves useful to study the statistical weight of the local
multiplets (the eigenstates of H" ; see Table I) in the partition
function. The most relevant states to be considered in order
to understand the physics can be grouped according to their
total charge and number of doubly occupied orbitals: states of
two electrons without double occupancy (referred to as 2 P.S),
states of two electrons having double occupancy in a single
orbital (referred to as 2P D), and the single-particle states
(referred to as 1P), which due to the electron-hole symmetry
considered have the same weight as the three-particle states
(3P). Figure 4 presents the statistical weight of these states
calculated within RISB (see Ref. [48]) for different values
of the U’'/U ratio. While the description of the insulating
phase by RISB is overly simplified, having a nonzero statistical
weight for the ground state only, the overall behavior of the

TABLE 1. Selected eigenstates of the atomic Hamiltonian of
Eq. (6).

Label Eigenstates Occupation Energy

2PS lo,a’) 2 -U-U
2PD [1.0),10,11) 2 —2U’
1P |0,0), 0,0) 1 -U/)2-U’
3P A0, o, 1)) 3 —UpR-U
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FIG. 4. Total statistical weight of local multiplets in the partition
function calculated with the RISB method for three values of the ratio
U'/U (1,0.9, and 0.2). For U'/U = 1, the six 2P S and 2P D states
are degenerate and have the same weight. In the insulating phase,
within the RISB approximation, there are no charge fluctuations and
the full statistical weight is on the ground-state sector of the atomic
Hamiltonian.

weights is in qualitative agreement with CTQMC results, as
we show in the next section. The weight of the 2P S states
increases as the system approaches the MIT from the metallic
side, while the weight of the 1 P states decreases. As expected,
for values of U’/ U such that the MIT is first order, there is
a jump in the weights at the transition that is not present in
the other cases at zero temperature. Besides the jump in the
weights, the other feature that makes the U’'/U = 0.9 case
different is the behavior of the 2 P D states.

The two behaviors emerge from a compromise between the
reduction of the kinetic energy and the additional Coulomb
repulsion § = U — U’ associated with the participation of
the 2P D states in the ground-state wave function. In the
single-orbital case (U’/U = 0), the weight of the 2P D states
is continuously and strongly suppressed as U — U, [10].
For moderated values of U’'/U < 0.5, the gap § between
2PS and 2P D states is ~ U, which leads again to a strong
suppression of the weight of 2 P D states to reduce the Coulomb
repulsion as U — U,,. The suppression of the 2P D states
effectively decouples the two orbitals, bringing the system
to the single-orbital U’ = 0 situation. This is why increasing
U’/ U to 0.2 produces no qualitative change in the behavior of
the system close to the Mott transition and U, = UUV'=0.

Inthe case U'/U = 1 and § = 0, the 2P D and 2P S states
are degenerate and have equal statistical weight for all values
of U. The kinetic energy gain due to charge fluctuations to
the 2P D states leads to an increase of the critical interaction.
Reducing U’/ U from this limit leads to a qualitative change in
the behavior of the system. For all values of U up to the MIT, it
is convenient to reduce the kinetic energy using the 2 P D states,
which have a significant statistical weight in the free energy.
As U is increased, however, the low-energy quasiparticles are
increasingly heavy and the kinetic energy gain relative to the
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FIG. 5. Quasiparticle weight Z vs U obtained using RISB (top)
and CTQMC (bottom) techniques as impurity solver for 8D = 200.

Coulomb energy loss associated with the 2P D states ~ ZD /8
is reduced. The MIT transition occurs for the value of U
such that it becomes energetically more favorable to suppress
the 2P D states. This suppression drives the system to the
single-orbital regime, which has a lower critical interaction.
Our RISB calculations indicate that this change of regime from
a sixfold-degenerate to a twofold-degenerate Kondo model
for the associated quantum impurity problem occurs through
a first-order phase transition. This low-energy quasiparticle
picture obtained with the RISB method is supported at finite
temperatures by DMFT calculations using the numerically
exact CTQMC, as shown in the next section.

2. CTQMC results

We analyzed the MIT at finite temperatures using DMFT
with CTQMC as the impurity solver to compare with the RISB
results.

Figure 5 shows the quasiparticle weight as a function of U
for different values of U’/ U and 8D = 200. Results obtained
using the RISB (CTQMC) technique are shown in the top
(bottom) panel. Both techniques give the same qualitative
behavior. The main difference is a ~ 20% overestimation of
U, by the RISB method.

The statistical weight of the local multiplet states calculated
with CTQMC and RISB as quantum impurity solvers is
presented in Fig. 6 as a function of U for two values of
the U’/ U ratio, where a continuous transition (U'/U = 0.2)
and a first-order transition (U’/U = 0.9) are observed at
zero temperature. The interaction U is scaled by the critical
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FIG. 6. Statistical weight of local multiplets in the partition
function as a function of U/ U, for the two-orbital case and J = 0.
The results were obtained at 8D = 200 using RISB (lines) and
CTQMC (symbols) as impurity solvers. The insets present in each
case the CTQMC weights close to the transition.

interaction U, for each method and value of the ratio
U’/ U to ease the comparison. Both methods present a good
quantitative agreement with each other; the largest difference
occurs in the insulating phase, where the RISB method does
not describe fluctuations and all the weight is carried by
2PS states. The agreement between the two methods, in
particular concerning the behavior of the statistical weight
of the 2P D states, supports the main conclusions and the
interpretation, based on the RISB results, of the previous
section. Namely, there are two markedly different regimes for
the behavior of the system at the MIT determined by the ratio
U'/U.

The insets in Fig. 6 present the statistical weight of the
excited states 2P D and 1P as obtained with CTQMC in both
phases. On the metallic side, the relative weight of the 2P D
and 1P states follows the RISB trend. On the insulator side,
the weight of the 2 P D states is negligible for any U’/ U ratio.
This contributes to obtaining a stronger first-order transition
for U'/U = 0.9 where the 2P D states have a much larger
weight on the metallic side.

B. Higher orbital number

We analyzed the MIT in systems with more than two
orbitals in the J = 0 limit. Figure 7 presents RISB results for
Z as afunction of U for different ratios U’/ U in a three-orbital
case. The behavior of Z is qualitatively equivalent to the
two-orbital case. The main difference is an increase in the
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U/D

FIG. 7. Quasiparticle weight for the half-filled three-orbital
model given by Eq. (6) and for different values of U'/U =
0.0,0.2,0.4,0.5, 0.6, 0.7,0.8, 0.9,0.98,0.99, and 1. Inset: quasi-
particle weight close to the transition at half filling for two and three
orbitals and U'/U = 0.9.

critical interaction for all ratios U’/ U > 1., which is due to
the increase in the degeneracy of the ground state of the atomic
Hamiltonian that leads to an exponential increase in the Kondo
temperature of the associated quantum impurity model. For
U'/U < 7., the critical interaction is, within the numerical
precision, the single-orbital one, which supports our analysis
that in this parameter regime the interorbital correlations are
strongly suppressed close to the MIT. Interestingly, the jump
in Z increases for a given U’/U ratio with the number of
orbitals which can be associated to a stronger reduction in the
degeneracy of the ground state for § # 0.

For a larger number of orbitals, we expect the same pattern
to follow: (i) a maximal critical U at the highly symmetric
point U’/U =1, where the transition is continuous, with
a dependence U,(M) = U.(M) x M with the number of
orbitals [52,57]; (ii) a continuous transition with a single-
orbital behavior for U’/ U lower than a critical ratio n. ~ 0.5
which is weakly dependent on the number of orbitals; and
(iii) a first-order transition, which becomes stronger as the
number of orbitals is increased, for U’/U in the interval

(¢, D).

IV. ROTATIONALLY INVARIANT KANAMORI
HAMILTONIAN

In the previous section, we analyzed the J = 0 limit in
which the atomic gap for charge excitations, A(N), depends
only on the intraorbital interaction U at half filling. This
simplified the analysis of the role played by the interorbital
interaction U’, since it only changes the structure of the low-
energy excitations of the atomic Hamiltonian. In particular,
we found that two different regimes for the behavior of
the statistical weight of the atomic multiplets are obtained
depending on the nature of the atomic excitations. Slave-boson
mean-field theory calculations suggest that these two regimes
are associated with the order of the MIT at zero temperature,
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FIG. 8. (a) Quasiparticle weight Z vs U/D for different values
of J/U in a half-filled three-orbital Kanamori system. (b) Statistical
weight for high-spin (S =3/2) and low-spin (S = 1/2) states.
The inset presents the structure of the lowest-lying excitations of
the atomic Hamiltonian for J/U = 0.25 and J/U = 0.05. AE is
the energy difference between the lowest-lying excited states and the

ground state, which is in the N = 3 charge sector and has a spin
S =3/2

and both CTQMC and RISB calculations indicate that they
are associated with the strength of the Mott transition at finite
temperatures.

In this section, we analyze a more physically relevant
parameter regime for the Kanamori Hamiltonian using the
usual approximation of spherical symmetry for which U’ =
U — 2J. In this case, the interorbital interactions also affect
the energy gaps between multiplets in different charge sectors,
and the multiplet structure itself is more complex.

Figure 8(a) presents results in a three-orbital Kanamori
system at half filling for the behavior of Z as a function
of U and different values of J/U. As expected [36,37], the
critical interaction is reduced when J is increased due to the
increase of the atomic gap for charge excitations A = U + 2J
at half filling. For J = 0, the model reduces to the U’ = U
case analyzed in the previous section and the transition is
continuous. For the values of J > 0 studied, the transition is
first order, as signaled by a discontinuity in Z at the MIT.
We checked this by analyzing the behavior of the free energy
across the transition.

The order of the zero-temperature MIT can, as in the J = 0
case of the previous section, be understood by analyzing
the low-lying excitations of the atomic Hamiltonian. In the
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half-filled case, for the values of J presented in Fig. 8, the
charge excitations in the Kanamori model have a higher energy
than the low-lying excited states in the N = M charge sector.
As a consequence, the latter have a finite statistical weight up
to the MIT where they are suppressed, leading to a first-order
transition. Figure 8(a) presents the statistical weight of the
three-particle states with high-spin S = 3/2 ground state and
low-spin S = 1/2 excited state. For J = 0, these states are
degenerate and have the same statistical weight for all values
of U. For a fixed finite value of J/U, the energy gap between
the atomic ground state and the S = 1/2 states increases with
U and statistical weight is transferred from the latter to the
S = 3/2 states. Confirming this argument, we have checked
that the critical interaction U, for finite J is smaller than in
the J = 0O case, but larger than in a system with the § = 1/2
states artificially suppressed. The transition is expected to
occur when the gap between the ground state and the S = 1/2
states is of the order of the effective width of the quasiparticle
band J ~ ZD. The strength of the first-order transition, as
measured by the jump in Z or in the slope of the self-energy,
increases with J for J/U < 0.1 and decreases as J increases
for J/U 2 0.1. For J/U ~ 0.3, the lowest-lying charge
excitations and spin excitations of the atomic Hamiltonian
are nearly degenerate. In this case, we obtain a first-order
transition, although with a reduced strength compared to the
J/U = 0.1 case. Close to the degeneracy point where the
charge excitations and excited states on the charge sector
of the ground state have the same energy, we expect the
detailed structure of the matrix elements for the coupling of
each multiplet with the electron bath and the degeneracy of
each multiplet to be important to determine the nature of the
transition. This overall behavior caused by J (first increasing
the strength of the MIT and then softening it) is consistent with
DMEFT results in Refs. [37,40,42].

For a filling of a single electron or hole per site, the
degeneracy of the ground-state multiplet does not depend on
the interactions, and the lowest-lying excited states are in
a different charge sector. Although the value of the critical
interaction depends on the number of orbitals and on the
value of the interorbital interactions, the transition is always
continuous.

For intermediate fillings, the situation is more complex
but can again be understood in terms of the lowest-lying
excitations of the atomic Hamiltonian. Figure 9 presents results
for the MIT transition in a three-orbital Kanamori system with
a filling of two electrons per site. In this case, the critical
interaction has a nonmonotonic behavior as a function of J
[34]. Tt decreases for J/U < 0.06, but increases for larger
values of J/U. The decrease is governed by the breaking
of the degeneracy by J of the low-energy manifold which
also drives the MIT. In the low J/U regime, there is a small
reduction in the charge excitation gap, and for low values of U,
the behavior of the system closely resembles the J = 0 case.
As U approaches the critical value, the quasiparticle weight
decreases linearly as Z ~ a(U5™" — U)/ UL, where a ~ 1
is a constant that depends on the number of orbitals. When
the level splitting produced by J becomes of the order of the
quasiparticle bandwidth Z D, the spin excitationsonthe N = 2
charge sector are blocked, leading the system to an insulating
state at a critical U < UCJZZO. Taking a constantratio J /U = «,
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FIG. 9. (a) Quasiparticle weight Z vs U/D for different values
of J/U in a three-orbital Kanamori system with an occupation of
two electrons per site. (b) Statistical weight for high-spin (S = 1)
and low-spin (S = 0) states. The inset shows the structure of the
lowest-lying excitations of the atomic Hamiltonian for J/U = 0.15
and J/U = 0.01. AE is the energy difference between the lowest-
lying excited states and the ground state which is in the N = 2 charge
sector and has a spin § = 1.

we have

Uon(a ~0) = —=—, )

which accurately describes the behavior of U, obtained
numerically for @ < 1. These results are consistent with the
ones obtained by Attaccalite and Fabrizio [58] using the
Gutzwiller approximation, and with CTQMC results at finite
temperature [59].

In the regime of large J, the charge fluctuations are
dominated by the ground-state manifold of the N = 2 charge
sector which has S = 1. The MIT is dominated by fluctuations
to these states and by the reduced gap for charge excitations
in the atomic limit, A* = U — 3J. Figure 9 shows that the
quasiparticle weight Z for the ratios J/U = 0.15,0.25 differs
from the small J/U case for moderate values of U, where
the statistical weight of the low-spin states in the N =2
charge sector is strongly suppressed. The nature and the
critical interaction of the Mott transition is determined by the
atomic charge gap that defines a reduced effective interaction,
Ut = U —3J, and by the degeneracy of the ground-state
manifold. In this regime, in which spin excitations on each
charge sector are strongly suppressed, the transition is second
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order at zero temperature and occurs at a critical interaction
that can be larger than in the J = O case.

V. SUMMARY AND CONCLUSIONS

We analyzed the role played by interorbital interactions on
the Mott metal-insulator transition. To that aim, we performed
dynamical mean-field theory calculations to treat a model
Hamiltonian with Kanamori interactions.

We first studied, using RISB in the limit 7 — 0, a simplified
case with no Hund’s rule coupling (J = 0) characterized by
an intraorbital repulsion U and an interorbital repulsion U’.
Depending on the U’/U ratio, we obtained two markedly
different regimes characterized by the order of the metal-
insulator transition at zero temperature. Remarkably, these
regimes are closely associated with the low-lying multiplet
structure of the atomic Hamiltonian. For U’/U = 1, the local
orbital degeneracy is maximal (all states in the N = M charge
sector are degenerate), leading to the highest value of the
critical interaction U, and a second-order transition. For
smaller U’/ U ratios, the reduced orbital degeneracy leads
to a decrease in U, and, depending on the value of U’/ U,
to a change in the nature of the transition. For U’/ U in the
range (0.5,1), the lowest-lying atomic excitations have the
same charge as the ground state and a significant statistical
weight in the metallic phase at the MIT. In the insulating
phase, the participation of these states is strongly suppressed,
giving rise to a discontinuity associated with a first-order
transition for a wide range (n.,1) of values of U’/U, with
ne ~ 0.5. For lower values of U’/ U, these states have a higher
energy than the charge excitations, and are strongly suppressed
in the metallic phase close to the MIT, driving the system
to an orbital-independent regime and a to continuous phase
transition as in the single-orbital case. The results suggest
that the nature of the lowest-lying excitations of the atomic
Hamiltonian determines the order of the transition at zero
temperature. We do not expect, however, the critical ratio 7,
for the change in behavior to be exactly 1/2 because other
factors such as the relative degeneracy of the excited states
and the intensity of their coupling with the effective bath are
likely to play a role in determining its value. In particular, we
expect the critical ratio to depend (although weakly) on the
number of orbitals. Moreover, while in the RISB mean-field
approximation the noninteracting spectral density does not
affect the critical ratio 7., we do expect it to have an effect on
its exact value (see Appendix).

For the rotationally invariant Kanamori Hamiltonian, we
find the same approximate connection between the nature of
the MIT at zero temperature and the atomic multiplet structure.
In this case, a finite Hund’s rule coupling J reduces the orbital
degeneracy favoring high-spin states on each charge sector
and also changes the charge excitation gap. At half filling, the
transition, as predicted by the RISB method, is first order at
zero temperature for the studied range of values of J (0 <
J/U < 0.3), while in the single electron (or hole) per site
case, the transition is second order. For intermediate fillings,
as two (or four) electrons in three orbitals, the transition is first
order for low values of J/U, and is second order for J =0
and for large enough values of J/U. Similar results have been
reported in the literature [40,42].
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As a general rule, we find that the low-energy multiplet
structure of the atomic Hamiltonian, more precisely the nature
of the lowest-lying excitations, determines the nature of the
MIT at zero temperature. When the lowest-lying excited states
are charge excitations, we expect a second-order transition,
but if the lowest-lying excited states are on the same charge
sector as the ground state, we expect it to be first order. Note
that this result not only applies to the models studied here,
but is also consistent with previous reports where the atomic
multiplet structure is changed by the introduction of a crystal-
field splitting A. For example, in Ref. [60], it has been found
that in a quarter-filled two-orbital system, the order of the
transition depends on the magnitude of A. The rule proposed
in this work naturally explains this behavior since a large
crystal-field splitting implies that the low-energy excitations
are charge excitations giving rise to a continuous transition.
For a small crystal-field system, the lowest-lying excitations
are states in which an electron is transferred to the high-energy
orbital within the same charge sector and the transition is first
order. A similar behavior is reported in Ref. [61], where the
effect of a crystal field is analyzed in a two-orbital system
at half filling (see also Ref. [62]), and in Ref. [63] in the
three-orbital case.

A detailed analysis using state-of-the-art numerically exact
methods [64,65] would be needed to confirm the RISB results
for the nature of the transition at zero temperature. At finite
temperatures, however, the transition is first order and the
RISB results are nicely confirmed by the numerically exact
continuous-time quantum Monte Carlo. In particular, the
CTQMC results also show two regimes for the Mott transition
characterized by the behavior of the statistical weight of
the atomic multiplets, and the strength of the transition as
measured by the jump in the quasiparticle weight. Remarkably,
the first-order transition is stronger in the parameter regime
where the slave bosons predict a first-order transition at zero
temperature.

Materials showing strong first-order MITs are known to
be good candidates for resistive memory applications [66].
Our results could help as a guide in the quest for this kind
of materials. While the MIT at finite but small tempera-
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tures is first order, we expect its strength to be determined
by the nature of the low-lying excitations of the atomic
Hamiltonian.
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APPENDIX: NONINTERACTING SPECTRAL DENSITY

In the case of neither interorbital hybridizations nor orbital
asymmetries considered in this paper, it is easy to show that
different choices of D(¢g) do not change the nature of the MIT in
the RISB approximation. Under this approximation, the lattice
free energy for the metallic (M) and insulating () solutions can
be written in the form

Fist) = e FMD @iy, (A1)
where it = U /g, ii' = U'/E,
o0
g = f eD(e)de, (A2)
0

is the noninteracting average kinetic energy, and {F™ F'}
are universal functions. While the critical interactions and the
free energy at the transition do depend on D(e), the phase
diagram is a universal function of it and &’. As a consequence,
at zero temperature, the critical ratio i1 /i’ = U’/ U, where the
transition changes its nature, is independent of D(¢). Although
this independence is probably an oversimplification of the
RISB approximation, we expect the different regimes to be
set primarily by the low-energy multiplet structure of the
atomic Hamiltonian. In particular, to obtain a strong first-order
transition at finite temperatures, we may require, as a rough
estimate, the level splitting § = U — U’ to be smaller than
the bandwidth for a range of values of U > U, (U’ = 0). This
leads to the condition U’/U >~ 0.6 as the critical interac-
tion U, (U’ =0) ~ 3D is weakly dependent on the lattice
structure [67].
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