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Abstract

Background: Schizophrenia is a disease diagnosed by visible signs and symptoms from late adolescence to early
adulthood. The etiology of this disease remains unknown. An objective diagnostic approach is required. Here, we
used a mouse model that shows schizophrenia-like phenotypes to study brain glucose metabolism and presynaptic
dopaminergic functioning by positron emission tomography (PET) and immunohistochemistry. PET scannings were
performed on mice after the administration of ['®F]-FDG or ['®F]-F-DOPA. Glucose metabolism was evaluated in
basal conditions and after the induction of a hyperdopaminergic state.

Results: Mutant animals show reduced glucose metabolism in prefrontal cortex, amygdala, and nucleus reuniens
under the hyperdopaminergic state. They also show reduced ['®F]-F-DOPA uptake in prefrontal cortex, substantia
nigra reticulata, raphe nucleus, and ventral striatum but increased ['®F]-F-DOPA uptake in dorsal striatum. Mutant
animals also show reduced tyrosine hydroxylase expression on midbrain neurons.

Conclusions: Dopamine D2 mutant animals show reduced glucose metabolism and impaired presynaptic
dopaminergic functioning, in line with reports from human studies. This mouse line may be a valuable model of
schizophrenia, useful to test novel tracers for PET scanning diagnostic.
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Background

Schizophrenia is a syndrome of still unknown etiology
that affects 1% of world population. It is diagnosed be-
tween late adolescence and early adulthood only by vis-
ible signs and symptoms [1]. Among them, the most
characteristics are hallucinations and delusions that
emerge in the context of a psychotic break. These symp-
toms are well treated by the administration of antipsy-
chotics, which are antagonists of dopamine D2 receptors
(DRD2) [2]. However, other symptoms of the disease do
not improve after antipsychotic administration, like low
mood, apathy, anhedonia, and cognitive impairments
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and, therefore, a specific pharmacological approach is
required.

The dopaminergic hypothesis of schizophrenia is the
most perdurable in the field. It postulates an abnormal
dopaminergic neurotransmission with an imbalance be-
tween cortical and subcortical regions. A reduction in
dopamine tone in prefrontal cortex is accompanied by
an increased dopamine tone in the striatum, underling
negative and positive symptoms of the disease, respect-
ively [3]. In this context, antipsychotic blockade of D2
receptors in the striatum might prevent excessive DRD2
signaling. Post-mortem studies from schizophrenia
patients have shown a reduced expression of the rate-
limiting enzyme of dopamine synthesis, tyrosine hydrox-
ylase (TH) in midbrain dopaminergic neurons [4]. This
observation was associated to the prefrontal hypodopa-
minergic state. However, there is no conclusive evidence
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of dysfunction within the dopaminergic system itself in
schizophrenia although increased dopamine signaling is
a common finding in schizophrenia patients. Instead, re-
search efforts are focused on the regulation of dopamine
release from midbrain neurons modulated by afferent
structures like the ventral subiculum [5], pedunculopon-
tine tegmentum [6], or the nucleus reuniens [7, 8]. Al-
ternatively, the GABAergic hypothesis of the disease
postulates an impaired development of inhibitory neu-
rons that results in an aberrant excitatory/inhibitory bal-
ance. Interestingly, among the population of inhibitory
neurons, those expressing the calcium-binding protein
parvalbumin seem to be particularly affected [9-11].

The generation of animal models by neonatal lesions,
pharmacological or genetic tools proved to be highly
valuable in the way to understand the origin of schizo-
phrenia [12—15]. In view of the aforementioned hypoth-
esis of schizophrenia, we generated a mice line with a
selective deletion of DRD2 exclusively from parvalbumin
interneurons [16]. DRD2 mutant animals show adult on-
set of behaviors reminiscent of schizophrenia and endo-
phenotypes at molecular, cellular, and physiological
levels similar to those described from patients studies
[16]. As the selective deletion of DRD2 from parvalbu-
min interneurons reproduces a number of phenotypes
found in patients, we decided to further characterize this
mouse line.

Positron emission tomography (PET) is a versatile,
non-invasive technique that detects tissue distribution
of specific labeled tracers. Among the most used
tracer in clinical diagnostics is the fluorinated glucose
analog [*®F]-FDG, which localizes in metabolically ac-
tive tissues and accumulates in an activity-dependent
manner. Many reports have shown reduced glucose
metabolic rate in the frontal cortex of patients with
schizophrenia, i.e., hypofrontality by [18F]-FDG PET
scanning [17-20]. Presynaptic dopaminergic function-
ing may be also studied by a PET scanner in vivo by
the administration of [**F]-F-DOPA (Fluorodopa), as
it is incorporated by presynaptic monoaminergic neu-
rons, decarboxylated to ['®F]-fluorodopamine by the
aromatic amino acid decarboxylase (AADC) and then
stored in vesicles. The conversion of ['*F]-F-DOPA to
[*®F]-fluorodopamine is useful to estimate the dopa-
mine synthesis capacity and vesicular storage of
monoaminergic neurons. It has been shown that
schizophrenia patients have an elevated striatal pre-
synaptic dopamine synthesis capacity by ['*F]-F-
DOPA PET scanning experiments [21-23].

In the clinic, psychiatric patients show different char-
acteristics associated to the phase of the illness, pharma-
cological treatment, environmental context, weight, sex
or age, among others, making the analysis of PET studies

variable and discrepant. As a consequence, PET
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scanning with ['®F]-FDG, ['®F]-F-DOPA, or other
tracers, is not a routine imaging study to assist in the
diagnosis and/or evolution of psychiatric diseases.

In this work, we took advantage of the mutant DRD2
mouse model [16] to perform preclinical PET experi-
ments in a genetically, physiologically, and environmen-
tally homogeneous animal population, naive of any
antipsychotic treatment, to assess glucose metabolism,
presynaptic dopaminergic functioning, and tyrosine hy-
droxylase expression. We tested the hypothesis that mu-
tant animals have reduced glucose metabolic
consumption in the prefrontal cortex and abnormal up-
take of ['®F]-F-DOPA compared to control animals. Sec-
ond, we investigated tyrosine hydroxylase in substantia
nigra (SN) and ventral tegmental area (VTA) to identify
changes in the expression level.

Methods

Animal model

To generate a selective DRD2 deletion from parvalbu-
min interneurons, a Parvalbumin-Cre line [24] was
mated to a floxed DRD2 line [25] in a C57BL6 back-
ground. Genotyping for the Cre gene and floxed alleles
was performed as previously described [16]. Animals
with DRD2¥ox o pyalb-Cre:DRD21¥1% genotype
were used as control or mutant groups, respectively. An-
imals were between 80 and 90 days old at the first ['8F]-
FDG scanning and all experiments were performed with
male mice.

Imaging system

Images were acquired using a preclinical PET TriFoil
Lab-PET 4 with an approximated spatial resolution of
1.2 mm (full width at half maximum) and 3.7 cm axial
and 11 cm trans-axial FOV (field of view).

Animal procedures

Two groups of adult animals (# = 10 controls and n =
10 mutants) were used for PET scanning experiments.
Both groups were studied with [**F]-FDG and ['®F]-F-
DOPA. The first experiment was the [**F]-FDG in basal
conditions. The next week, the [**F]-FDG with amphet-
amine experiment were performed and 1 week later the
['®F]-E-DOPA experiment. During the scanning, mice
were anesthetized using a mixture of isoflurane and O,
(inhalation, 4.5% induction and 1.5% maintenance dose)
and maintained in a warm table (35 °C).

For ['®F]-FDG acquisitions, adult animals were starved
during 4 h and then injected with 0.925 MBq/gr i.p. and
left undisturbed in an individual temperature-controlled
(29°C) cage for 30 min during radiopharmaceutical in-
corporation. Each subject was acquired for 12 min using
list-mode acquisition. [**F]-FDG experiment was per-
formed again a week later on both groups under the
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same conditions but in this setup 5mg/kg of amphet-
amine (i.p.) (Sigma) were administered 15 min before
the [®F]-FDG administration in order to induce a
massive dopamine outflow.

One week after the second [**F]-FDG acquisition, the
two groups of animals were injected with 3.7 MBq/gr i.v.
of [*®F]-E-DOPA, 30 min after the preadministration of
carbidopa (10 mg/kg, i.p.), and left undisturbed for 80
min during radiopharmaceutical incorporation. Then,
each subject was acquired for 30 min using list-mode
acquisition.

Imaging reconstruction

Images were reconstructed using an OSEM 3D algo-
rithm with 30 iterations, to maximize SNR (signal-to-
noise ratio). If motion was detected during acquisition, a
dynamic reconstruction was performed in order to cor-
rect it using SPM8 on MATLAB?® realign algorithm.

Spatial image processing

A previously generated normal ['*F]-FDG template was
used in order to have an anatomic reference for realign-
ment and normalization. ['*F]-FDG images were nor-
malized to the template using SPM8 on MATLAB®
(normalized mutual information as objective function
and 7-mm smoothing histogram for rigid co-registration
and affine regularization to the averaged template size,
no-smooth and 2-0.1 mm of separation for the non-
rigid normalization). All images were smoothened using
an isotropic Gaussian kernel with 1 mm FWHM. [*®F]-
F-DOPA images were previously co-registered to the
[®F]-FDG for each subject and transformation resultant
from each ['®F]-FDG normalization was applied to co-
registred ['8F]-F-DOPA images.

Intensity normalization of [*®F]-FDG images were ref-
erenced to gray cerebellum and [**F]-F-DOPA to all
brain uptakes. A brain masking avoiding Harderian
glands was used for [*®F]-FDG since the uptake in these
glands is too variable.

Image statistical analysis

For ['®F]-FDG, analyzed groups were as follows: control
in basal conditions, control after amphetamine treat-
ment, mutant in basal condition, and mutant after am-
phetamine treatment. For ['8F]-F-DOPA, analyzed
groups were control and mutant animals in basal condi-
tions. All subject groups were analyzed as a full-factorial
ANOVA test using SPM8 on MATLAB®. Intensity
normalization was considered as a regressor variable for
each factor using grand mean scaling (ANCOVA). Glo-
bal calculation of individual means was calculated over
each masked brain. Parametric statistical images were
calculated for group’s contrasts: control basal vs. mutant
basal, control basal vs. control amphetamine, mutant
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basal vs. mutant amphetamine, control amphetamine vs.
mutant amphetamine in the [**F]-FDG experiments, and
control vs. mutant in the ['*F]-F-DOPA experiment. In
order to correct for multiple comparisons, false discov-
ery rate (FDR) approach was applied using SPM8 (p
value FDR 0.05). In order to have an accurate anatomical
reference, all results of statistical differences where co-
registered with an MRI atlas. Spatial transformation was
applied to the MRI atlas to correct for the differences
between mice strains and methodological animal
handling.

Immunohistochemistry and image analysis

Mice were transcardially perfused with 4% paraformalde-
hyde (PFA) and the brain was removed and postfixed in
the same fixative for 180 min at 4°C. The tissue was
cryoprotected sequentially in 10%, 20%, and 30% sucrose
solution in phosphate buffer saline (PBS) and then cut
serially in a cryostat in 40 pm thick coronal brain sec-
tions. Sections were incubated 1h in 1% H,O, in PBS to
inactivate endogenous peroxidases and then rinsed in
PBS. A rabbit polyclonal anti-tyrosine hydroxylase anti-
body was used at 1:1000 (Millipore, AB152). Sections
were incubated overnight at 4°C in PBS, 0.25% Triton
X-100, 2% BSA, and 10% NGS (Normal Goat Serum,
Natocor). After washing twice for 10 min with PBS, sec-
tions were incubated with a solution containing a goat
anti-rabbit IgG-peroxidase 1:500 (Vector Laboratories;
PI-1000) in the same solution as described previously for
2 h and then rinsed twice 10 min in PBS. Finally, sec-
tions were incubated in a solution of 0.025% diamino-
benzidine (DAB), 0.05% H,O, in TBS (150 mm NaCl;
50 mm tris-HCl; pH 7.2). Immunohistochemistry in sec-
tions of control and mutant mice (n = 3 for each geno-
type) were performed in parallel with the same solutions
and equal developing time, preventing signal saturation.
Images were acquired using an Olympus IX83 micro-
scope. DAB intensity in control and mutant SN (sub-
stantia nigra)/VTA (ventral tegmental area) regions were
assessed by digital quantification to avoid observer bias
using Image ] color deconvolution plug-in [26, 27]. Sig-
nal intensity was analyzed by ¢ test.

Results
['®F]-FDG uptake analysis
Local [*®F]-FDG brain uptake differences between con-
trol and mutant animal groups in basal conditions show
that control animals have an increased glucose metabol-
ism in the somatosensory/insular cortex and lateral
hypothalamic area (Fig. 1a; red-yellow color) and mutant
animals show an increased metabolic rate in the basolat-
eral amygdala (Fig. 1a; blue-white color).

We expected wider metabolic differences between
groups, especially in prefrontal cortex, but found a
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Fig. 1 ['®F-FDG PET scanning in control and D2 mutant animals under basal conditions or after the induction of a hyperdopaminergic state.
Subtractive analysis of ['®F]-FDG incorporation in the following: a control and mutant animals in basal conditions. b Control animals in basal
condition and control animals in amphetamine-treated condition. ¢ Mutant animals in basal condition and amphetamine-treated condition. d
Control and mutant animals in amphetamine-treated conditions. ['®F-FDG incorporation is depicted in red-yellow color for metabolic activity
increase in control animals (@), animals in basal conditions (b, ), or control animal after amphetamine treatment (d) or blue-white color for
metabolic activity increase in mutant animals in basal condition (a) or animals after amphetamine treatment (b-d). t values for p < 0.05 are
specified for each comparison. FrA frontal association cortex, M1/2 primary/secondary motor cortex, Or orbital cortex, PrL prelimbic cortex, InL
infralimbic cortex, Cg cingulate cortex, Som somatosensory cortex, Ins insular cortex, Pir piriform cortex, Aud auditory cortex, Hipp hippocampus,

Amyg amygdala, Re reuniens nucleus, Lat Hyp lateral hypothalamus

J

significant change restricted to the somatosensory/insu-
lar cortex and basolateral amygdala. As the dopamin-
ergic hypothesis of schizophrenia postulates an increased
dopaminergic tone underling psychosis [3], we adminis-
tered amphetamine (5 mg/kg; i.p.) to animals of both ge-
notypes to induce massive dopamine outflow to evaluate
glucose metabolic consumption under these conditions
and performed a new [®F]-FDG PET scanning. Then,
we performed a voxel-wise statistical analysis in basal
and induced conditions between all groups.

['®F]-FDG brain uptake between control animals in
basal conditions and control animals after amphet-
amine treatment shows that the frontal cortex, in-
cluding the frontal association cortex, primary and
secondary motor cortex, prelimbic, infralimbic, or-
bital, and cingulate cortex as well as the dorsal

hippocampus, nucleus reuniens, and hypothalamus
exhibit an increased metabolic rate in amphetamine-
treated control animals compared to naive control
animals (Fig. 1b; blue-white color). However, the
piriform and somatosensory cortex of non-treated
animals show increased metabolic rate compared to
those that received amphetamine (Fig. 1b; red-yellow
color).

Amphetamine-treated mutant animals show in-
creased glucose metabolic rates compared to naive
mutant animals in the frontal associative cortex, sec-
ondary motor cortex, and rostral somatosensory cor-
tex but not in the prelimbic, infralimbic, orbital, and
cingulate cortex (Fig. 1c; blue-white color). Naive mu-
tant animals show increased glucose metabolic rate in
the piriform cortex and somatosensory cortex, but
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not in the hypothalamus (Fig. 1c; red-yellow color).
Interestingly, the amygdala of naive mutant animals
show increased glucose metabolic rate relative to
amphetamine-treated mutant animals.

Finally, amphetamine-treated mutant animals show re-
duced glucose metabolism in the orbital cortex, second-
ary motor cortex, cingulate, prelimbic and infralimbic
cortex, somatosensory cortex, amygdala, and nucleus
reuniens when compared to control, amphetamine-
treated animals (Fig. 1d; red-yellow color).

['8F]-F-DOPA uptake analysis

Statistical differences between groups show that mutant
D2 animals exhibit reduced ['®F]-DOPA accumulation
in prefrontal cortex, ventral striatum, substantia nigra
reticulata, and in the raphe nucleus (Fig. 2; red-yellow
color) but an increased uptake in dorsal striatum, som-
atosensory, and visual cortex (Fig. 2; blue-white color),
even in the absence of a hyperdopaminergic state.

Tyrosine hydroxylase expression in midbrain neurons

As our PET studies show reduced [*®F]-F-DOPA incorp-
oration in mutant animals compared to controls in
frontal cortex and other brain areas, we performed im-
munohistochemical experiments to determine the ex-
pression levels of the rate-limiting enzyme of dopamine
synthesis, tyrosine hydroxylase (TH). Our results show
that TH expression is reduced in the VTA region of mu-
tant animals but not in the substantia nigra compacta.
Along the rostro-caudal axis, the expression of TH
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shows a consistent reduced expression in the VTA re-
gion, including the parabrachial pigmented nucleus
(PBP), paranigral nucleus of the VTA (PN), and VTA it-
self (Fig. 3a—f). A quantitative assessment of TH levels
shows that the expression is significantly reduced in the
VTA of mutant animals but not in the SN (Fig. 3g, h).

Discussion

In this work, we performed preclinical PET scanning ex-
periments in an animal model of schizophrenia to evalu-
ate brain glucose metabolism and dopamine presynaptic
functioning after the administration of [**F]-FDG or
['®F]-E-DOPA, respectively. The voxel-wise statistical
analysis between control and mutant animals allowed
identifying brain regions that exhibit differential glucose
metabolic activity or [**F]-E-DOPA uptake.

[*®F]-FDG experiments show that mutant animals have
an impaired glucose metabolism compared to control
animals both in basal and hyperdopaminergic condi-
tions. In basal conditions mutant animals show abnor-
mal glucose metabolic activity in the somatosensory/
insular cortex, auditory cortex, lateral hypothalamus,
and amygdala. However, under a hyperdopaminergic
state, mutant animals show a reduced metabolic activity
in prefrontal cortex, a pathological condition already de-
scribed from patient PET studies [18, 20, 28]. Interest-
ingly, in the hyperdopaminergic condition, glucose
metabolism is also abnormal in the nucleus reuniens
and amygdala, two brain regions involved in the modula-
tion of dopamine release [7, 29]. Our results suggest that

Vis visual cortex, SNr substantia nigra reticulata, MnR median raphe

Fig. 2 ['®F-F-DOPA PET scanning in control and D2 mutant animals. Red-yellow color represents a significant increase of ['®F]-F-DOPA
incorporation in control animals and blue-white color a significant increase of ['®F]-F-DOPA incorporation in mutant D2 animals. t value for p <
0.05 is specified. Plex plexiform region, M motor cortex, Or orbital cortex, PrL prelimbic cortex, InL infralimbic cortex, Cg cingulate cortex, Som
somatosensory cortex, Ins insular cortex, dSt dorsal striatum, vSt ventral striatum, Sep septum, Re reuniens nucleus, Lat Hyp lateral hypothalamus,
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the metabolic performance of the prefrontal cortex in
mutant animals is affected and the metabolic activity
cannot be further increased to compensate the demand
imposed by the enhanced dopaminergic tone. In
addition, the amygdala and nucleus reuniens follow the
same deficient metabolic activity pattern as the pre-
frontal cortex, highlighting the relevance that these nu-
clei may have in the disease.

Reduced dopamine D2 receptor availability was associ-
ated to a reduction in glucose metabolism [30] and sim-
ultaneous voltammetric studies showed an association
between dopamine and increased metabolic demand
[31]. A recent study in humans showed a linear relation-
ship between dopamine D2/D3 receptor availability and
glucose metabolism, suggesting that a hyperdopaminer-
gic state may contribute to the downregulation of

dopamine receptors but also to the hypometabolism in
unmedicated schizophrenia patients [32]. In our mouse
model, we selectively deleted dopamine D2 receptors
from parvalbumin interneurons resulting in subcortical
hyperdopaminergia, prefrontal hypodopaminergia, and a
marked decrease in prefrontal total DRD2 mRNA [16].
Therefore, diminished dopamine D2 receptor availability
and reduced dopaminergic neurotransmission in PFC of
mutant animals may drive the poor metabolic adaptation
observed in the [**F]-FDG experiment in the context of
hyperdopaminergic state, as reported from individuals
with schizophrenia [32].

The dopaminergic hypothesis of schizophrenia postu-
lates an increased presynaptic dopamine functioning in
the dorsal striatum [22, 23]. Dopaminergic neurons can
incorporate L-DOPA and use it to synthesize dopamine.
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However, it has been shown that serotonergic neurons
also incorporate L-DOPA and then co-release dopamine
and serotonin in target regions [33]. L-DOPA adminis-
tration to rodents produces an increased dopamine ac-
cumulation in the prefrontal cortex and substantia nigra
reticulata, mainly by the incorporation into serotonergic
neurons [34]. Brain metabolism of ['®F]-E-DOPA is
comparable to that of L-DOPA [35]. Taken together, our
results point to a regional hypodopaminergic/hyposero-
tonergic state in mutant animals, as [**F]-F-DOPA up-
take is reduced in frontal cortex, substantia nigra
reticulata, ventral striatum, and raphe nucleus. However,
mutant animals show a hyperdopaminergic/hyperseroto-
nergic state in dorsal striatum, visual, and somatosensory
cortex due to an increased uptake of [**F]-E-DOPA.

Although dysfunction of the dopaminergic system is
central in the pathophysiology of schizophrenia, the role
of the serotonergic system in the disease is of interest, as
most second generation antipsychotics antagonize sero-
tonin receptors. The mesocortical dopaminergic pathway
shows a preference to innervate rostral brain regions,
and the dopamine D2 receptor distribution and dopa-
mine concentration show the same rostro-caudal gradi-
ent. However, the dopaminergic system exhibits minimal
innervations of the visual cortex [36—38]. In contrast,
the serotonergic system shows a prominent axonal con-
nectivity to sensory areas including visual, auditory, and
somatosensory cortex [38]. Our PET experiment shows
an increased ['®F]-F-DOPA uptake in the visual and
somatosensory cortex that may be associated to a hyper-
serotonergic activity. In patients, this exacerbated seroto-
nergic activity may be the substrate of visual and/or
auditory hallucinations and may be blocked by the sero-
tonin receptor antagonism activity of second generation
antipsychotics.

Midbrain dopaminergic neurons mainly project their
axons to the prefrontal cortex. As we observed re-
duced [*®F]-F-DOPA uptake in frontal cortex of mu-
tant animals, we performed a quantitative assessment
of TH expression in ventral tegmental area (VTA)
neurons. It has been reported that the expression of
TH, the rate-limiting enzyme of dopamine synthesis,
is increased in the substantia nigra (SN) of schizo-
phrenia patients [39]. However, other authors found a
reduced expression of TH in the rostral subregion of
the ventral tegmental area [4, 40]. These apparent
discrepancies may relay on methodological reasons in
tissue preparation and immunohistochemistry [4]. Di-
aminobenzidine developing time was carefully ob-
served in our experiments, as prevention of signal
saturation is crucial for accurate quantification [26].
TH expression from midbrain VTA neurons of mu-
tant animals shows a consistent decreased expression,
in line with a previous report [4].
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The development of mouse models of schizophrenia
proved to be useful to understand different aspects of
the disease [5, 14, 15]. However, few studies used them
to analyze brain metabolic activity or presynaptic dopa-
minergic function by PET scanning [41]. We previously
showed that parvalbumin D2 mutant animals exhibit
molecular, cellular, physiological, and behavioral impair-
ments highly reminiscent of symptoms observed in
schizophrenia patients and a parallel developmental on-
set [16]. Here, we provide evidence of impaired brain
glucose metabolism, presynaptic dopamine dysfunction,
and reduced TH expression, phenotypes that has a cor-
relate with patient studies [4, 17-19, 23, 32].

Different PET tracers are available to evaluate dopa-
mine receptors [42], acetylcholine receptors [43] or glial
activation [44] by a non-invasive approach. However,
most of them are still under clinical research, as no con-
clusive evidence supports their use in clinical psychiatric
diagnostics. The parvalbumin D2 null mice line
(pyP2nully may be an interesting preclinical model to test
these and other novel PET tracers with potential use in
schizophrenia diagnostics. In our [*F]-FDG experi-
ments, mutant D2 animals show a parallel pattern of
glucose metabolism as patients in the frontal cortex but
points to nucleus reuniens and amygdala also playing a
critical role in the disease. At the same time, [**F]-F-
DOPA experiments highlight the relevance that substan-
tia nigra reticulata and raphe nucleus may have in the
pathophysiology of schizophrenia. Careful analyses of
PET scannings with ['®*F]-FDG and ['®F]-E-DOPA taking
into account these brain regions may lead to accurate re-
sults with potential use in psychiatric diagnostics.

Conclusions

Dopamine D2 receptor mutant mice line may be a suit-
able schizophrenia model, providing homogenous gen-
etic background and developmental physiological
conditions to test novel tracers with the potential to de-
velop a reliable diagnostic imaging method. Finally, it
may pave the way to translate preclinical settings into
the clinic, expanding the diagnostic potential of PET
scanning.
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