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Abstract.  

Plants of the Amaryllidaceae family are well-known (not only) for their ornamental 

value but also for the alkaloids they produce. In this report, the first phytochemical study of 

Clinanthus genus was carried out. The chemical composition of alkaloid fractions from 

Clinanthus microstephus was analyzed by GC-MS and NMR. Seven known compounds 

belonging to three structural types of Amaryllidaceae alkaloids were identified. An 

epimeric mixture of a haemanthamine-type compound (6-hydroxymaritidine) was tested as 

an inhibitor against acetyl and butyryl cholinesterase enzymes (AChE and BChE, 

respectively), two enzymes relevant in the treatment of Alzheimer’s Disease, with good 

results. Structure-activity relationships through molecular docking studies with this alkaloid 

and other structurally related compounds were discussed. 
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Introduction 

Amaryllidaceae species are known as ornamental plants that produce alkaloids with 

a wide range of interesting biological activities, such as antimalarial, antitumoral, antiviral, 

cholinesterase inhibition, among others.[1-3] Many Amaryllidaceae species have been 

extensively used in traditional medicine to treat a variety of health problems and as a 

promising source for new and bioactive molecules.[4] Within all the bioactive alkaloids 

reported in this family,[5, 6] the compound galanthamine worth to be mentioned. It was 

approved as a prescription drug by the FDA for the treatment of Alzheimer´s disease (AD) 

due to its high inhibitory efficacy, through a competitive, reversible and selective 

mechanism on acetylcholinesterase enzyme (AChE).[7, 8]  

AD is the most predominant cause of dementia in the elderly population. Recent 

studies indicate a clear increase in its prevalence. Today, 47 million people live with 

dementia worldwide. This number is projected to increase to more than 131 million by 

2050, at a similar rate as the increase in life expectancy.[9] Therefore, AD is a major public 

health concern and has engaged significant research efforts.  

AD patients present a deficit of the cholinergic functions, such as memory 

impairments and loss of intellectual abilities, due to decreased levels of the critical cationic 

neurotransmitter acetylcholine (ACh) in the cortex.[10] This neurotransmitter is quickly 

hydrolyzed by AChE, finishing with the nerve impulse transmission at cholinergic 

synapsis. For this reason, a palliative strategy employed to treat symptoms of the disease is 

to inhibit the action of AChE, increasing the level of ACh in presynaptic space.[11, 12] Also, 

the inhibition of this enzyme is related to other types of neurodegenerative diseases such as 

senile dementia, ataxia, myasthenia gravis, and Parkinson´s disease.[13] The enzyme 

butyrylcholinesterase (BChE) is also involved in the metabolic degradation of ACh. In AD 

patients, the AChE/BChE ratio depends on the brain region and the stage of the disease 

progression. BChE can compensate AChE activity when its levels are decreased. Since 

BChE activity increases as AD progresses, this enzyme may also play an important role in 

cholinergic dysfunction, particularly in the later stages of AD.[14] 

In recent years, alkaloids from the Amaryllidaceae family have received great 

attention due to their well-known anticholinergic activity, which generally have in common 

the presence of nitrogen atoms in a heterocyclic ring. The chemical structures of these 

alkaloids are unique due to their variability and their pharmacological properties. This fact 
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has motivated the search of more potent and effective AChE inhibitors (AChEIs) from 

Amaryllidaceae species leading to the isolation of different active alkaloids. [15, 16]  

From this perspective, one of the plant families of our interest is the Amaryllidaceae 

family. This botanical family is richly represented in the tropics and has significant centers 

of diversity in the Andean region of South America.[17] In Peru, the varied climatic and 

geographical conditions have allowed a great diversity of flora to explore, with a great 

number of species to be discovered. This region is a major center of diversity for the genus 

Clinanthus which contains between 15 and 20 non-monographed species.[18] Therefore, the 

need for preliminary studies is imperative in order to know their phytochemical 

composition. 

Given the increased inhibitory activity shown by the alkaloids of this family on the 

AChE enzyme and considering that the genus Clinanthus does not possess any previous 

phytochemical studies to date, in this manuscript we report the first phytochemical study of 

the Peruvian bulbous plant Clinanthus microstephus (Ravenna) Meerow in the search of 

bioactive alkaloids and with the aim to contribute to the taxonomy of the Clinanthus 

genus.[19] The purpose of the study was to begin the revision of recently described species 

of the Peruvian flora.  

In addition, to understand the differences in the AChE inhibitory activity displayed 

by different alkaloids from Amaryllidaceae family, molecular modeling studies were 

performed. 

Results and Discussion 

One fresh bulb of C. microstephus was extracted exhaustively with methanol (1 L). 

After concentration and subsequent acid-base extractions of the crude extract, an alkaloidal 

fraction (approximately 100 mg) was obtained. This residue was fractionated by a 

combination of chromatographic techniques, ultimately giving nineteen fractions of very 

low mass (see experimental section for details). According to the 1H-NMR analysis, most 

of them were a complex mixture of alkaloids and in many cases, they could not be purified 

given the low quantities available. Only three of them could be analyzed by CG-MS 

(renamed A, B, and C). Despite the complexity of these fractions, some reported alkaloids 

were identified (they are summarized in Table 1). Their identification was performed by 

comparison of retention times and mass spectra, with the information from reference 

databases. A complete set of 1D and 2D-NMR experiments allowed the structural 
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elucidation of 6-hydroxymaritidine (hereafter named as compound 1 isolated in fraction C 

almost as main component), recently isolated from Hippeastrum reticulatum 

(Amaryllidaceae).[20] This compound (figure 1) was isolated as a  epimeric mixture, 

83:17.[21] All the spectral data (NMR assignments, HRESIMS and mass fragmentation 

pattern observed in the GC-MS) are in agreement with the information reported in the work 

of Tallini et al.[20] 
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Figure 1. epimeric mixture of 6-hydroxymaritidine 

The remaining fractions (A and B) were analyzed by GC-MS to identify the 

alkaloids in the obtained mixtures, due to their low quantity and complexity. GC-MS 

analysis has demonstrated to be a useful, robust and efficient technique for the rapid 

identification and/or quantification of many complex mixtures of alkaloids from 

Amaryllidaceae plant extracts.[22, 23]  

Seven alkaloids of three structural types were identified by GC-MS analysis (Table 

1). The area of the GC-MS peaks depends not only on the corresponding compounds, but 

also on the intensity of their MS fragmentation (response factor). Thus, data given in the 

table represent relative ratios that can be used for comparison between samples, though 

they do not correspond strictly to a quantification. 

Table 1. Alkaloids identified by GC-MS analysis of fractions A, B and C 

Fraction Compound tR (min) 

[M]+ [m/z (% 

relative 

intensity)] 

MS [m/z (% 

relative 

intensity)] 

% TICa 
Complementary 

ID by: 

A 
 

Anhydrolycorine (I) 

     20.8 251 (35) 

250 (100), 192 

(15), 191 (10), 

97 (10) 

5.4  
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11,12-

Dehydroanhydrolycorine (II) 

     22.3 

 
249 (50) 

248 (100), 191 

(15), 192 (30), 

96 (20) 

1.3  

Lycorine derivative 
     23.6 

 
301 (100) 

286 (20), 254 

(20), 226 (15), 

172 (25) 

4.5  

 

Hippeastrine (III) 

      26.4 

 
315 (3) 

126 (5), 125 

(85), 124 (10), 

96 (100), 94 

(10) 

23.7 
1D and 2D 

NMR spectra. 

 

1-O-Butenoyllycorine (IV) 

      27.0 

 
355 (65) 

268 (40), 227 

(70), 226 (100), 

69 (35) 

1.3  

 

1-O-(3´-hydroxybutanoil) 

lycorine (V) 

     28.5 

 
373 (60) 

268 (30), 250 

(20), 227 (65), 

226 (100) 

40.6 
1D and 2D 

NMR spectra. 

B 

 

Anhydrolycorine (I) 
     21.3 251 (35) 

250 (100), 192 

(20), 191(10), 

97 (10) 

2.3  

 

11,12-dehydroanhydrolycorine 

(II) 

     23.0 249 (50) 

248 (100), 191 

(15), 192 (30), 

96 (20) 

1.1  
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Lycorine (VI) 

     25.2 287 (40) 

288 (15), 286 

(15), 268 (20), 

227 (65), 226 

(100) 

78.6  

C 
 

6-hydroxymaritidine (1) 

     22.1 303 (15) 

285 (15), 260 

(25), 259 (100), 

256 (25), 241 

(70), 115 (30), 

77 (20) 

43.6 
1D and 2D 

NMR spectra 

a Values are expressed as a percentage of the total ion current (TIC) of every fraction. 

Biological activity, molecular docking and structure–activity relationship 

One of the main objectives of our research group is the exploration of the chemical 

diversity of natural compounds in search of bioactive metabolites. Due to the marked 

biological activity as cholinesterase inhibitors that this family of compounds presents and 

since the epimeric mixture of 6-hydroxymaritidine was obtained in appropriate quantity and 

purity, it was re-evaluated for their AChE and BChE inhibitory activities (using 

galanthamine as reference compound). In addition, a docking study was performed 

including a group of alkaloids structurally related and previously reported. The main 

purpose was to deepen the analysis of interactions with the enzyme through a detailed 

structure-activity analysis. 

Acetyl- and Butyrylcholinesterase inhibitory activities 

Compound 1 as an epimeric mixture, was tested for in vitro inhibition of 

cholinesterase on the commercially available eel AChE and horse serum BChE (results are 

summarized in Table 2). The activity was determined according to the method of Ellman et 

al. with slight modifications.[24] The inhibition percentages obtained after 3 replications at 

25 µM, were shown to be interesting (70.1% for AChE and 87.9% for BChE) and IC50 was 

calculated in both assays. For comparison purposes, galanthamine was used as a reference 

inhibitor. 

It is noteworthy that this IC50 value for compound 1 is quite different from those 

recently reported for this alkaloid.[20] This different outcome may be attributed to the 

differences in the experimental conditions. As can be observed in numerous reports, [25-30] 
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although the conditions are similar, the results for the same compound (for example 

galanthamine) present variations (in Supporting Information, Table S1 summarizes some 

differences found). In this study, MeOH (2.5 %) was used as a cosolvent to improve and 

guarantee alkaloid solubility in the buffer where the assay was carried out. Also, the 

incubation of the enzyme along with the inhibitors for longer periods of time before adding 

the reactive according to the optimized Ellman protocol in our research group (See 

experimental section and Supporting Information for a more detail explanation). 

Furthermore, it is interesting to note that it is essential to carry out the measurement of 

positive control in each assay or study in particular.  

 

Table 2. AChE and BChE inhibitory activity of the tested alkaloids expressed as IC50 
values. 

 

Compound IC50 AChE (M) IC50 BChE (M) 

1 

 

10.53 ± 1.19 

 

       9.51 ± 1.24 

Galanthamine 

 

0.76 ± 0.01 

 

23.85 ± 1.12 

All results are expressed as IC50 values (M). Each value is the mean of three replications. 

IC50 values for AChE inhibition for compound 1 and related alkaloids (previously 

reported in bibliography) are summarized in Table 3 for comparison purposes and to obtain 

structure-activity relationships. As it can be observed, beyond galanthamine, epimeric 

mixture 1 showed the best IC50 value (10.35 ± 1.19 μM) among the other related structures 

for AChE inhibition.   

Molecular modeling studies were performed to investigate key interactions of these 

compounds with the enzymes and the role that the structural differences between them may 

play in the enzyme inhibition. This verifies the reliability of the experimental result found. 
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In addition, the contribution and the differential composition of the isomers according to 

the physiological pH was also evaluated.   

Structure-activity analysis through Molecular Docking  

To date, there is information from hundreds of isolated alkaloids in the 

Amaryllidaceae plant family. Some of them with very promising activities as AChEIs. 

Performing structure-activity relationship studies from molecular modeling results is 

sometimes difficult. This is due to the high variability of compounds and the quantity and 

structural diversity of isolated nuclei in the same species.[31] In the area of medicinal 

chemistry, the "similarity paradox"[32] establishes that small structural changes in molecules 

can drastically impact their biological activity. So, it is important to carry out an analysis of 

the molecular interactions between inhibitor and protein that determine the activity 

found.[33, 34] 

Numerous reports consider that alkaloids are the most promising candidates within 

the products of natural origin for use in AD.[35] This is because of their complex structures 

that contain at least one nitrogen atom.[36] Structure-activity studies have demonstrated that 

the ability of the nitrogenous functionalities to be positively-charged at physiological pH is 

one of the most important characteristics related to the potency of these compounds. This 

ensures the interaction with key sites of the AChE enzyme cavity.[37]  

AChE inhibitors are interesting since they could restore the cholinergic deficit by 

blocking the catalytic site of the enzyme. Several studies showed that one of the remarkable 

features of the structure of the AChE enzyme[38] is the presence of a "catalytic cavity" of 

approximately 20 Å depth and 4.5 Å narrow channel. This one possesses an active site 

where the neurotransmitter is hydrolyzed. The residues responsible for the catalytic activity 

(Ser, His and Glu), are known as “catalytic triad". In the active site there are also three 

additional subsites; anionic, oxyanionic and acyl binding. At the surface of the cavity, there 

is a region called peripheral anionic site (PAS, allosteric site) that is related to the inhibition 

of other neurodegenerative processes.[39] Between the active site and PAS there is a region 

called "bottleneck" formed by Phe and Tyr that regulates the entrance of different 

substrates (see Figure S3 in Supporting Information for visualization).  

As mentioned above, AChE plays an important biological function and knowing the 

possible interactions of the substrates in the three-dimensional structure of the enzyme is 

important to achieve a more efficient inhibition. To evaluate this effect, compound 1 (four 
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structural types: two epimers, as their neutral and protonated forms) together with some 

structurally related structural compounds and galanthamine were subjected to molecular 

docking studies.  

To carry out the simulations, the geometry of the receptor was taken from the X-ray 

structure of the complex between AChE from Torpedo Californica (TcAChE) and 

Galanthamine (PDB: 1W6R). In addition, for comparative purposes, docking calculations 

over BChE from human (hBChE) were performed (PDB: 1P0I). The geometries of the 

complexes with the inhibitors were obtained using AutoDock4.2.6 program (Gasteiger 

charges were applied). After docking calculations, a minimization of each complex was 

made with Sander program and the binding energy re-scored within the MM-GBSA 

method (Amber16 package).  

The calculated pKa value for compound 1 is 7.24 so at physiological pH, both the 

neutral and protonated species could be found. Furthermore, in solution the compound 1 is 

presented as an epimeric mixture on C-6. Therefore, there are four species that may be 

participating in the interaction with the enzyme. As the protonation state can affect the 

interaction, it must be considered. For this reason, all these species were included in the 

docking calculations. 

The lowest binding energies obtained with MM-GBSA method were used for the 

analysis. The results suggest that the protonated form of the β-epimer (β +), with more 

negative binding energy, is the species that presents a more stable binding mode with the 

protein. Interestingly, this is the major epimer of the isolated mixture (as shown by the 

NMR essays). To estimate the conformers ratio in water (the media in which the IC50 were 

determined) quantum calculations were carried out with the protonated species. The 

estimated ratio obtained by DFT calculations is ~4:1 in accordance with the experimental 

value found in chloroform. In order to know more about the relative stability of the 

epimeric species, the energy difference between the two epimers with two DFT functionals 

was calculated (B3LYP and M06-2X). It was observed that in both cases the -epimer is 

the most stable. In one case an energy difference of 0.73 kcal/mol was obtained with a 

0.77:0.23 molar ratio; in the second case, the energy difference is 0.94 kcal/mol with a 

0.83:0.17 molar ratio. This is another important point to consider since the composition of 

the isolated epimeric mixture is slightly different from those recently reported for this 

alkaloid (slightly larger for the -epimer).[20] As it was obtained from the modeling studies, 

the most active isomer appears in greater proportion. 
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For these reasons, the analysis of docking results and interactions with the protein 

was carried out with the  + species, Figure 2 A. The results suggest three fundamental 

interactions; basically, van der Waals type interactions between skeleton rings A, B, and 

Trp84 belonging to the anionic subsite. Also, this type of interaction was observed between 

rings B-C, and residues Gly117 and Gly118. Besides, a hydrogen bond between the 

hydroxyl of C-3 with Ser200 of the catalytic triad.  In this case, hydroxyl group participates 

as hydrogen bond donor to the oxygen of the side chain of the Ser200. The most important 

interaction is established with Glu199 of the anionic subsite (binding decomposition energy 

of -21.51 kcal/mol). This interaction can be split into two main contributions: firstly, the 

carboxylate of Glu199 establishes a salt bridge interaction with (R3N-H)+ group and 

secondly interacts with the hydroxyl group of C-6. 

The analysis of the obtained complexes with BChE reveals that the -epimer, in its 

protonated form, presents the most stable binding mode (binding energy: -59.27 kcal/mol), 

see Figure S5 in Supporting Information for details. The docking showed that this 

compound binds to the bottom of the active site of the enzyme. From the energy 

decomposition, it is possible to see that the most important interaction is with Glu197. The 

relevance of this interaction is a consequence of the sum of two important interactions. One 

of them is a hydrogen bond between carboxylate of this residue and the hydroxyl group of 

C-6; and the second one, is a salt bridge with (R3N-H)+ group. In addition, van der Waals 

interaction is observed between Trp82 belonging to the anionic subsite and two hydrogen 

bond with Gly116 (oxyanionic subsite) and His438 (catalytic triad).[33]  

On the other hand, galanthamine binds at the base of the active site gorge in both 

enzymes. Particularly, the calculated geometry for AChE was close to the experimental 

with a low RMSD, thus validating the protocol used. In Figure S4 (supplementary material) 

AChE-galanthamine complex geometry is shown as an example. It is possible to 

distinguish hydrogen bond type interactions with Glu199 and the C-3 hydroxyl group (1.58 

Å). The rest of interactions are van der Waals type. Particularly, rings A and D of the 

inhibitor interact with Trp84, the rings A-B-C with Gly117 and Gly118, and C and D with 

Tyr121 and Phe330. The main differences in the poses adopted by both inhibitors 

(galanthamine and compound 1, most stable epimer and protonated state) in the enzyme 

cavity, together with the binding energy decomposition graphical are shown in figure 2 A-

B. 
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If compound 1 and galanthamine are compared, a certain structural similarity can be 

observed. Variable rigidity-flexibility characteristics in rings A-B-C-D are observed, this 

fact based on the different biogenetic approximations of both compounds. These distinctive 

arrangements result from para-para´ (haemanthamine skeleton type) or para-ortho´ 

(galanthamine skeleton type) phenol oxidative coupling.[40] Regarding alkaloidal skeleton 

type, in this compound there is a differential rigidity of rings. This means that the A ring 

has an arrangement almost perpendicular to the plane formed by the other rings. This 

feature generates differential interactions from those observed for compound 1 in a totally 

different geometry. The most notable difference relies on the more favorable interaction 

with Glu199 for compound 1 respect to galanthamine (from -21.51 kcal to -6.62 kcal, 

respectively). Probably since there is no direct relationship between the binding energy and 

the inhibitory activity found for both compounds, as claimed by other authors,  the high 

affinity displayed by galanthamine for AChE appears to come from several moderate to 

weak favorable interactions. [41, 42]  

 

 

A) 

B) 
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Figure 2. Calculated position of compound 1 (A) and galanthamine (B) in the 

binding pocket of the TcAChE and most relevant residue interactions. Per-residue 

contributions to the binding energy calculated with MM-GBSA method. The most stable 

epimer of 1 in its protonated state formed the most stable complex, that is represented in 

this figure. 

Analysis of docking results for compound 1 and structurally related alkaloids, 

allows establishing some structure-activity relationships, as discussed below (see Figures 

S6 to S11 in Supporting Information where calculated complexes in the binding pocket of 

TcAChE and most relevant inhibitor-protein interactions for compounds 2-7 are presented).   

Compound 2 [43, 44] differentiates itself from 1, by an O-methyl group on C-3 instead 

of the hydroxyl. This structural change is responsible for the loss of the stabilizing 

hydrogen bond interaction with Ser200. It establishes a van der Waals type interaction, but 

the stabilizing effect is smaller. In addition, the interaction with Gly117 (van der Waals 

type) is weaker. The depletion in the interactions, in comparison to 1, causes that this 

compound loses the AChE inhibition activity. 
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With respect to 2, compound 3 [43, 44] has the reduced the C-6 position, losing the 

hydrogen bond interaction with Glu199 of the anionic site, but still retaining the salt bridge 

interaction between the group (R3N-H)+ and the carboxylate of this residue. In the binding 

energy decomposition graphic, could be seen that this interaction decreased from -21,5 

(compound 1) to -17.4 kcal/mol. 

Although the inhibitor 4[45] does not possess the hydrogen bond interactions with 

Ser200 and Glu199, demethylation of hydroxyl group in the aromatic ring, allowed the 

formation of a new hydrogen bond interaction with Ser122 belonging to the peripheral 

anionic site. In this case, hydrogen of the aromatic hydroxyl group is the donor to oxygen 

of hydroxyl group of Ser122 side chain. Although in terms of inhibitory activity this change 

is not appreciable, possibly, this new interaction could be responsible for making this 

compound active compared with the compounds 2 and 3.  

In compound 5,[43, 44] as it was in compound 3, hydroxyl group of C-6 is absent. 

According to this, primary interaction with Glu199 is substantially reduced (from -21.5 to -

16.9 kcal/mol) as well as van der Waals type interaction with Gly117. The attenuation of 

the interactions could be the reason whereby this compound does not possess inhibitory 

activity. 

Compared to structure 5, compound 6 [46, 47] has a demethylation of one of O-CH3 

aromatic group (C-8) making possible a hydrogen bond interaction with the carbonyl group 

of Trp84 residue. For this reason, interactions with this residue were reinforced going from 

-9.2 to -11.7 kcal/mol. This new interaction, product of a simple modification of compound 

5, could be the cause why compound 6 becomes an inhibitor of moderate activity. 

On the other hand, if the simple chemical modification of the addition of the 

aromatic OH is taken as a basis to enable hydrogen bridge interaction with Ser 122 (as 

observed when introducing this modification of compound 3 to 4), no substantial inhibitory 

activity improvement is obtained for compound 7 [45] compared with 5. 

In general terms, considering the interactions with AChE described for the analyzed 

compounds, the haemanthamine skeleton could not reach the efficient levels of inhibition 

presented by galanthamine. However, the IC50 value showed by compound 1 is just one 

order less active than that of galanthamine, being the best among the other structurally 

related alkaloids analyzed. Regarding the importance of the substituents of the 

haemanthamine skeleton, it is possible to infer that at least two hydroxyl groups are 
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necessary to establish a good interaction with the enzyme, being C-3 and C-6 the most 

favorable positions. 

Table 3. Summary of in vitro AChE inhibition activity of compound 1 and reported related 

compounds.a Binding energy calculated by rescoring of the geometries obtained with 

molecular docking. 

Compound Structure IC50 (M) Reference 
Binding energy 

(kcal/mol) 

1 
N

OH

O

O

OH

HA
B

C

D

 

10.53 ±1.19 a 

 
 -60.9 

2 

 

> 500 [43, 44] -43.3 

3 

 

> 500 [43, 44] -48.0 

4 

 

104.6 [45] -49.8 

5 

 

> 500 [43, 44] -55.0 

6 

 

57.4 [46, 47] -56.1 

7 

 

> 200 [45] -51.1 
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Galanthamine 
N

O

OH
O

C

B
A

D

 

 

0.76 ±0.01a 

 

 -50.5 

a Results are expressed as IC50 values (M). Each value is the mean of three replications. 

 

Conclusions 

To our knowledge, this is the first phytochemical study of a species from the 

Clinanthus genus, representing a starting point in the exploration of new chemotaxonomic 

markers at a generic level in this family. Indeed, in this study it is shown that the genus 

Clinanthus as well as others of the Amaryllidaceae family possess at least alkaloids of 

lycorine, homolycorine, and haemanthamine types. This reaffirms the fact that these 

metabolites are chemotaxonomic markers of this family. In this respect, the exploration of 

native Peruvian flora is an interesting topic to be addressed because of the variability of 

alkaloidal structures. 

For the classification of plant species, traditional systematic focus mainly on 

morphological and anatomical characteristics; usually chemical content and 

chemotaxonomy play a minor role in the classification. However, secondary metabolites 

can provide valuable information for the characterization of taxa at different levels. Several 

authors have carried out interdisciplinary approaches combining the chemical and botanical 

aspects, and in fact, the chemosystematics has been used in order to solve various 

taxonomic problems or to support the botanical findings. Due to the previously exposed 

reasons, the contribution to the systematic classification of plant species through their 

phytochemical study represents a subject of relevance for natural sciences. 

AChE still represents an attractive target for rational drug design and discovery of 

mechanism-based inhibitors for the treatment of Alzheimer´s disease. Our results 

summarize reports of other groups, tending to improve the structure-activity relationships 

for the finding of increasingly active derivatives and suggest that these alkaloids could be 

potential candidates for further development of new drugs against AD. Indeed, evidence 

suggest that a minimal structural variation (different isomers for example), could impact in 

biological activity in this compound´s family. The results obtained from docking studies are 

in agreement with the experimental biological activity observed for the epimeric mixture 1 
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with the enzymes TcAChE and hBuChE. Structure-activity analysis help to explain the 

differences in the inhibitory activity of alkaloids with galanthamine skeleton type 

(galanthamine) and alkaloids with haemanthamine skeleton, compounds 1 to 7.  

For all these reasons, C. microsthepus is an interesting species to be exhaustively 

addressed from other perspectives of importance due to the presence of active metabolites. 

 

Materials and methods 

General 

Optical rotation was measured on JASCO P-1010 polarimeter. IR spectra were 

obtained in a Nicolet 5-SXC spectrophotometer (each compound was dissolved in a 

minimum amount of solvent and a drop of solution was added to the AgCl IR plates). NMR 

experiments were performed on Bruker AVANCE II 400 MHz instrument. Multiplicity 

determinations (HSQC-DEPT) and 2D spectra (COSY, HSQC and HMBC) were obtained 

using standard Bruker software. Chemical shifts are expressed in ppm () units using 

tetramethylsilane as the standard. HR-ESI-QTOF-MS were measured on a Micro QTOF II 

Bruker Daltonics (MA, USA) mass spectrometer. Chromatographic separations were 

performed by column chromatography on silica gel 60 (0.063–0.200 mm), and preparative 

TLC on silica gel 60 F254 (0.2 mm thick) plates. Presence of alkaloids was revealed by 

Dragendorff’s reagent. Acetylcholinesterase from electric eel (type VI-S), 5,50-dithiobis 

(2-nitrobenzoic acid) (DTNB), acetylthiocholine iodide (ATCI), butyrylthiocholine iodide 

(BTCI) and galanthamine (99%) were purchased from Sigma. BChE (horse serum) was 

purchased from MP Biomedicals.  

Plant material 

C. microstephus was collected in Departamento La Libertad, Otuzco, Salpo region 

and El Tablón-Rayampampa, Perú (8o00’39,9”S y 78o40’04,1” W, 1927 m) in January 

2015 (code: S. Leiva & M. Leiva 5703 (HAO, HUT); North of Rayampampa, 8o00’47,0”S y 

78o40’06,2” W, 1981 m, February 2015 S. Leiva & M. Leiva 5716 (CORD, HAO).[19] A 

voucher specimen of C. microstephus was identified by Professor Segundo Leiva and was 

deposited at the herbarium of Museo de Historia Natural y Cultural, Universidad Privada 

Atenor Orrego, Trujillo, Perú.  
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Extraction and Isolation 

One fresh bulb (109.5 g) was grounded and extracted with MeOH (1 L). The solvent 

was then evaporated under reduced pressure using a rotary evaporator. The total dried 

residue was diluted with aqueous HCl solution (200 mL, 10%). Diatomaceous earth was 

added, and the homogenate was placed at 2°C for 12h. Afterward, the aqueous phase was 

vacuum filtrated. The resulting fraction was partitioned in CH2Cl2 (3 x 100 mL). The pH of 

the aqueous acidic fraction was adjusted to 9 with NH4OH and extracted with CH2Cl2 (5 x 

100 mL). Organic extract was dried over anhydrous Na2SO4, filtered, and evaporated to 

dryness at reduced pressure. The residue was fractionated initially by silica gel 60 G 

chromatography. Elution with CH2Cl2: MeOH (10:0 to 8:2) afforded 7 fractions.  

All these fractions were purified by preparative TLC (CH2Cl2: MeOH, sequentially 

10:0 to 8:2). From the nineteen resulting fractions, only three of them could be analyzed by 

CG-MS (renamed A, B, and C). Despite the low amount of sample and the level of 

complexity, 1 and 2D NMR spectra could be obtained from some of the purified 

compounds (1, III and V). Compound 1 was obtained as an epimeric mixture [4.2 mg, 

83():17(), approximately obtained ratio by 1H-NMR signal integration], from fraction C, 

and completely characterized by 1 and 2D NMR.[20] Analytical and spectral data obtained 

for this alkaloid agree with those reported in the literature for structurally related 

compounds.[48]  

 

Cholinesterase inhibition assay 

Electric eel AChE and horse serum BChE were used as a source of both the 

cholinesterases. AChE and BChE inhibiting activities were measured in vitro by the 

spectrophotometric method developed by Ellman with slight modification.[24] The 

lyophilized enzyme, 500U AChE /300U BChE was prepared in buffer A (8 mM K2HPO4, 

2.3 mM NaH2PO4) to obtain 5/3 U/mL stock solution. Further enzyme dilution was carried 

out with buffer B (8mM K2HPO4, 2.3 mM NaH2PO4, 0.15 M NaCl, 0.05% Tween 20, pH 

7.6) to produce 0.126/0.06 U/mL enzyme solution. Samples were dissolved in buffer B 

with 2.5% of MeOH as cosolvent. Enzyme solution (300 μL) and sample solution (300 μL) 

were mixed in a test tube and incubated for 60/120 min at room temperature. The reaction 

was started by adding 600 μL of the substrate solution (0.5 mM DTNB, 0.6 mM 

ATCI/BTCI, 0.1 M Na2HPO4, pH 7.5). The absorbance was read at 405 nm for 180 s at 
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27ºC. Enzyme activity was calculated by comparing reaction rates for the sample to the 

blank. All the reactions were performed in triplicate. IC50 values were determined with 

GraphPad Prism 5. Galanthamine was used as reference AChE/BChE inhibitor. 

 

GC-MS analysis 

Mass spectra were obtained on a Varian Saturn 2200, a CP3800 GC coupled to an 

ion trap MS Saturn 2000 operating in EI mode, using a HP-5 MS column (30m x 0.25mm x 

0.25um, Agilent). The injector temperature was 280 ºC. The temperature program was as 

follows: 100-180 °C at 15 °C min-1, 1 min hold at 180 °C, 180-300 °C at 5 °C min-1, and 5 

min hold at 300 °C. The flow rate of carrier gas (Helium) was 0.8 ml min-1 and a split ratio 

of 1:20 was followed.  Data obtained were analyzed using AMDIS 2.64 software (NIST). 

The alkaloids were identified by comparing their GC-MS spectra with the information of 

the database of Amaryllidaceae alkaloids from the library developed by Dr. Bastida´s 

research group. The proportion of each individual component in the alkaloid fractions 

analyzed by GC-MS is expressed as a percentage of the total alkaloids in the fraction (TIC-

total ion current) (Table 1).  

Quantum calculations  

Quantum calculations were carried out using Gaussian 09 package.[49] Calculations 

were performed with full geometry optimization including in all cases the effect of the 

solvent (water as polar solvent) through the smd model,[50] B3LYP[51] and M06-2X[52] DFT 

functionals and 6-311+G (d,p) as basis set.[53, 54] We checked that the conformations 

obtained were minima by running frequency calculations. No imaginary vibrational 

frequencies were found. All energy values include zero-point correction. 

Molecular docking studies 

The complexes between ligands and receptors employed were obtained by 

molecular docking. The AChE from Torpedo Californica crystal structure (PDB: 1W6R) 
[41]   and human BChE crystal  (PDB: 1P0I)[55] were used to extract the geometries of the 

receptors, removing the ligand and water molecules.  

The protonation states of residues in the protein were assigned with H++ server.[56, 

57] Before starting the docking simulations, the pKa of compounds were evaluated 

10.1002/cbdv.201800662

A
cc

ep
te

d 
M

an
us

cr
ip

t

Chemistry & Biodiversity

This article is protected by copyright. All rights reserved.



employing MarvinSketch v17.15.0 software package, assuming a pH of 7.4 as physiological 

value. [58] 

The program Autodock 4.2.6 was used for the docking simulations, employed 

Gasteiger charges for the protein and ligands.[59] The search space was defined using 

AutoGrid around the entire catalytic cavity with a size of 78 × 90 × 90 points for TcAChE 

and  68 x 68 x 60 for hBChE and a grid spacing of 0.375 Å. The search was made with 

genetic algorithm with the maximum number of energy evaluations was set to 5 x 106 and 

the maximum number of generations to 5 x 104 on a single population of 200 individuals. 

For each compound, the geometries generated and clustered with a RMSD threshold value 

of 2.0 Å. 

For each complex, a refinement of the binding energy was performed with Amber 

16.[60] The construction of the ligand units to be used was achieved with the antechamber 

module, using GAFF force field and AM1-BCC fitted charges. Input files for the 

simulations were built with the xleap package included in ambertools. For the refinement, 

two minimizations, of 5000 steps of the complexes were performed employing Sander 

software. The first one keeping the protein heavy atoms retrained at their initial positions 

and the second one with the whole system free. After the minimization steps, the binding 

free energies were calculated with molecular mechanics-Generalized Born surface area 

(MM-GBSA) approximations, using MMPBSA.py.[61, 62] The visualization of the docking 

result was performed with and Vmd v1.9 [63] and Maestro.[64] 
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