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Abstract 25 

New detailed structural data from the Fuegian Andes including new ages and cross-26 

cutting relationships with intrusive rocks, as well as an appraisal of published structural 27 

data, support that this orogen evolved as a basement-involved thrust-fold belt after 28 

initial formation in an arc-continent collision scenario. New structural data from a 29 

deformed 84 Ma intrusive indicate that structures from the collisional event in the 30 

Argentine Fuegian Andes are of Campanian age, comprising only the youngest and less 31 

intense deformation of the orogenic wedge. In the internal thrust-fold belt, these 32 

structures are cut by intrusives with new ages of 74 Ma (Ar/Ar on hornblende). The 33 

superposition of thrusts on these early structures indicates a subsequent event in 34 

which a thrust-fold belt formed since the Maastrichtian-Danian. Additional new data 35 

confirm brittle-ductile thrusting in the central belt, with thrusts joining a common 36 

upper detachment in the base of the Lower Cretaceous rocks. These thrusts formed a 37 

first-order duplex system that transferred the shortening accommodated in the 38 

foreland until the Miocene.  39 
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1. Introduction 49 

In the last 10 years a systematic research has been carried out in the Fuegian Andes 50 

attempting to unveil the structural relationships between a poorly known central belt 51 

(between Lago Fagnano and Canal Beagle, Fig. 1a), and the foreland thrust-fold belt 52 

located northwards. The connection between both domains was obscured not only by 53 

limited structural knowledge of the central belt, but also because the geometry of the 54 

foreland structures was only constrained by studies at its external portion, especially at 55 

the best exposed Atlantic coast (Álvarez-Marrón et al., 1993; Ghiglione, 2002; 56 

Ghiglione et al., 2010; Torres Carbonell et al., 2011, 2013a; Zanella et al., 2014). In 57 

addition, the internal part of the thrust-fold belt (Fig. 1a), involving mostly Cretaceous 58 

mudstones and slates with scarce stratigraphic control, was practically not addressed 59 

from a structural geology perspective, with the exception of a limited area in Chile 60 

(Klepeis, 1994; Rojas and Mpodozis, 2006). 61 

Despite a greater amount of structural data from early works in the central belt of 62 

the Fuegian Andes, especially from Cordillera Darwin and surrounding areas (Fig. 1a), 63 

our analysis of that research shows us that the deformation of the foreland has been 64 

implicitly circumvented. Indeed, early investigations focused their attention on the 65 

spectacular deformation of high-grade metamorphic rocks exposed in Cordillera 66 

Darwin. These studies, as well as others along the central belt up to Isla de los Estados 67 

(Fig. 1a), determined that most of the shortening registered in the Fuegian Andes was 68 

of “mid” Cretaceous age (the “main phase” of early works), related to multiple folding 69 

and faulting generations and associated regional metamorphism (Bruhn, 1979; Dalziel 70 

and Palmer, 1979; Nelson et al., 1980; Cunningham, 1994, 1995; Kohn et al., 1995). An 71 

interesting aspect of these studies is that they led to a distinction of the structure of 72 



the Fuegian Andes with respect to the rest of the Andean Cordillera. Accordingly, the 73 

style of deformation was found to be more similar to the Alpine chain (Nelson et al., 74 

1980), and it was clear that a collisional process closing a prior back-arc basin was 75 

responsible for this structural style, in contrast with the geodynamic context of the 76 

rest of the Andes of South America (Dalziel et al., 1974; Dalziel, 1986). 77 

Following, and building on this early research, more recent works revealed that 78 

after the “main phase” of deformation, thrust-related uplift of the central belt 79 

progressed during the Late Cretaceous and the Paleogene (Klepeis, 1994; Kohn et al., 80 

1995; Gombosi et al., 2009; Klepeis et al., 2010; Maloney et al., 2011). It was 81 

recognized that at least part of the exhumation in Cordillera Darwin and its 82 

surroundings was coeval with thrusting in the foreland (e.g. Bruhn, 1979; Dalziel and 83 

Palmer, 1979; Álvarez-Marrón et al., 1993; Barbeau et al., 2009a; Gombosi et al., 84 

2009). However, an implicit separation between deformation in both domains came 85 

out from these works, since most of the central belt thrusting was considered out-of-86 

sequence with the structures in the foreland thrust-fold belt (e.g. Klepeis, 1994). With 87 

the incorporation of new data from the foreland, which led to Eocene-Miocene 88 

shortening estimates of tens of kilometers (Torres Carbonell et al., 2011, 2017a), it 89 

became clear that models explaining the connection between both ends of the 90 

orogenic system were increasingly needed.  91 

One early approach to explain Cenozoic shortening in the foreland with coeval 92 

development of structures in the central belt was proposed by Torres Carbonell and 93 

Dimieri (2013). As a working hypothesis, these authors presented a schematic cross-94 

section of the Fuegian Andes, combining the central belt and the foreland into a 95 

thrust-fold belt with basement involvement, in which a first-order duplex in the central 96 



belt transferred all the shortening recorded in the foreland (Fig. 1b). In this sense, even 97 

if punctuated by successive deformation phases (or superposed generations of 98 

structures) as previously suggested (Bruhn, 1979; Dalziel and Palmer, 1979; Nelson et 99 

al., 1980; Cunningham, 1995; Klepeis et al., 2010), deformation in the Fuegian Andes 100 

comprised a protracted history from the Late Cretaceous to the Miocene. 101 

In this work we analyze previously published structural information from the 102 

Fuegian Andes, and integrate it with new data that fill gaps in knowledge regarding the 103 

age and style of deformation of the Argentine part of the orogen. Our new data 104 

include detailed descriptions and cross-sections of two previously uncharted areas 105 

where the relationships and superposition of the main phases of deformation in the 106 

Fuegian Andes are well-revealed. We also include a detailed description of cross-107 

cutting relationships between two intrusive suites and deformation of their host rocks, 108 

together with three new geochronological analyses of the youngest of these suites (of 109 

previously unknown age), providing key temporal constraints on the timing of these 110 

deformation phases in the Argentine Fuegian Andes. The critical appraisal of the 111 

published information together with our new data, support the proposed scheme of 112 

structural evolution of the orogen (Fig. 1b), with a first event comprising pre-113 

Maastrichtian collision, ductile deformation and metamorphism, and a second event 114 

involving Maastrichtian-Danian to early Neogene faulting and uplift. The present study 115 

validates the interpretation of the Fuegian Andes as a basement-involved regional 116 

thrust-fold belt with a linked evolution between the central belt and the foreland.  117 

 118 

 119 

 120 



2. Regional geologic setting 121 

The origin of the Fuegian Andes involved the closure of a prior back-arc basin called 122 

Rocas Verdes Basin (Fig. 1b). This back-arc basin formed after Middle to Late Jurassic 123 

rifting of the southwestern margin of Gondwana, which preceded Early Cretaceous 124 

generation of oceanic floor between a volcanic arc and the continental margin. The 125 

basin was filled with marine successions during the Early Cretaceous (Dalziel et al., 126 

1974; Dalziel, 1981; Stern and de Wit, 2003). Fragments of the oceanic floor are 127 

exposed as incomplete ophiolitic strips in the Tortuga, Sarmiento, and Capitán Aracena 128 

Complexes (Fig 1a), as well as intensely deformed and metamorphosed amphibolites 129 

at Cordillera Darwin (Cunningham, 1994; Stern and de Wit, 2003; Klepeis et al., 2010; 130 

Calderón et al., 2016). These ophiolitic rocks represent remnants of the Late 131 

Cretaceous collision between the magmatic arc and the continent during closure of the 132 

Rocas Verdes Basin (Nelson et al., 1980; Dalziel, 1986; Cunningham, 1994, 1995; 133 

Klepeis et al., 2010). Near Cordillera Darwin, the ophiolitic rocks are highly strained, 134 

involved in mylonitic zones that have been interpreted either as related to convergent 135 

strike-slip deformation (Cunningham, 1995), or as thrust sheets reflecting north-136 

northeastward obduction of part of the oceanic floor during basin closure (Klepeis et 137 

al., 2010). The Canal Beagle (Fig. 1a) manifests itself as a conspicuous structural 138 

boundary separating strongly deformed and metamorphosed rocks in Cordillera 139 

Darwin from less deformed and mainly magmatic rocks towards the south. 140 

Closure of the Rocas Verdes Basin and further development of the Fuegian Andes 141 

also led to formation of a Late Cretaceous-Neogene foreland basin system in front of 142 

the orogen, called Austral basin (Magallanes in Chile, Biddle et al., 1986, Fig. 1a, b). 143 

Protracted deformation and development of the thrust-fold belt, therefore, affected 144 



syntectonic successions deposited in this basin. The stratigraphy of these successions 145 

as well as their overprinting relationships with the structures of the thrust-fold belt has 146 

been helpful to constrain several stages of uplift, erosion, and orogenic expansion 147 

(Torres Carbonell and Olivero, 2019). A more detailed description of the stratigraphy 148 

and a summary of the tectonic stages of the Fuegian Andes are given in the following 149 

sections. 150 

 151 

2.1. Stratigraphic framework 152 

The stratigraphic framework of the Fuegian thrust-fold belt is synthetically 153 

described, focusing on lithologies and thicknesses involved in deformation, and 154 

chronologic information useful to constrain structural stages (Fig. 2). For the sake of 155 

brevity, we omit further detailed information that can be found in the cited references. 156 

Throughout the text, we use formal names defined in Argentina for units that are also 157 

recognized in Chile, as shown in Fig. 2. For simplicity, we omit in our framework the 158 

back-arc mafic floor, which does not crop out in Argentina, as well as some intrusives 159 

of unknown age. 160 

 161 

2.1.1. Paleozoic basement 162 

The basement is included in the Cordillera Darwin Metamorphic Complex, which 163 

portrays metamorphic grades from greenschist to upper amphibolite facies (Hervé et 164 

al., 2010a, 2010b). Within these metamorphic rocks, a distinction is made amongst the 165 

Mesozoic cover (Jurassic synrift deposits and Cretaceous sedimentites) and the “true 166 

basement” of the Rocas Verdes Basin (Figs. 2 and 3). The latter, composed mainly of 167 

phyllites, schists and metabasites, is characterized by pre-Permian detrital zircon ages 168 



(Hervé et al., 2010b). A single zircon U/Pb crystallization age of 153.12 ± 0.93 Ma from 169 

a granite dike intruding a penetrative foliation in a schist at southern Cordillera Darwin 170 

(Klepeis et al., 2010, see also Hervé et al., 2010b), constrains the pre-Jurassic 171 

deformation of the basement (called DB by Nelson et al., 1980).  172 

 173 

2.1.2. Jurassic synrift and Lower Cretaceous back-arc basin volcanic and 174 

sedimentary rocks 175 

2.1.2.1. Lapataia Formation 176 

The Lapataia Formation (Figs. 2 and 3) includes greenschists facies 177 

metasedimentites and metabasites that are thrust over the Upper Jurassic Lemaire 178 

Formation (Bruhn, 1979; Olivero et al., 1997; Cao et al., 2018). The total thickness of 179 

the Lapataia Formation is undetermined due to its intense deformation, unknown 180 

base, and the tectonic nature of its contact with the Lemaire Formation. Recently 181 

published structural and petrographic data suggest that this unit represents a highly 182 

deformed section of the synrift Jurassic succession, stratigraphically between the 183 

Paleozoic basement and the Lemaire Formation (Cao et al., 2018; see also Olivero et 184 

al., 1997; Acevedo, 2019).  185 

 186 

2.1.2.2. Lemaire Formation  187 

The Lemaire Formation (Figs. 2 and 3), widely exposed in the central belt domain, is 188 

composed of very-low to low grade metasedimentary and metavolcanic-volcaniclastic 189 

rocks deposited during the synrift stage (Bruhn et al., 1978; Hanson and Wilson, 1991; 190 

Olivero and Martinioni, 1996a; González Guillot et al., 2016; González Guillot, 2017; 191 

Cao et al., 2018). This unit is in tectonic contact with the Lapataia Formation, and 192 



covered by the Lower Cretaceous Yahgan and Beauvoir formations, although a 193 

detachment surface usually overprints this contact (Torres Carbonell and Dimieri, 194 

2013; Cao et al., 2018). The total thickness of the Lemaire Formation is unconstrained. 195 

In Argentine Tierra del Fuego, a U/Pb zircon age in rhyolite yielded an age of 164 196 

±3.6 Ma (Palotti et al., 2012). The equivalent Tobífera Formation (Fig. 2), by correlation 197 

with the Darwin suite (see below), has geochronological ages between 178-152 Ma 198 

(Pankhurst et al., 2000; Barbeau et al., 2009a; Hervé et al., 2010b; Klepeis et al., 2010).  199 

 200 

2.1.2.3. Yahgan Formation 201 

The Yahgan Formation (Figs. 2 and 3) comprises very low-grade metasedimentary 202 

rocks, originated from marine epiclastic and volcaniclastic successions of the Rocas 203 

Verdes Basin (Suárez and Pettigrew, 1976; Winn, 1978; Dalziel, 1981; Olivero and 204 

Martinioni, 1996a). The unit rests on the Lemaire Formation, the contact usually 205 

overprinted by a detachment surface (Torres Carbonell and Dimieri, 2013; Cao, 2019). 206 

The top of the formation is unknown. 207 

Estimations of the original thickness of the Yahgan Formation average from 1400 m 208 

near Ushuaia and increasing southwards (Winn, 1978; Caminos et al., 1981; Olivero 209 

and Malumián, 2008). The formation is not younger than the late Albian, according to 210 

its fossils and scarce geochronological data (Olivero and Martinioni, 1996b; Barbeau et 211 

al., 2009b). 212 

 213 

2.1.2.4. Beauvoir Formation 214 

The Beauvoir Formation (Figs. 2 and 3) comprises slates with a marine protolith, 215 

that may interfinger southwards with the Yahgan Formation (Olivero and Malumián, 216 



2008; Martinioni et al., 2013). South of Lago Fagnano, the contact with the underlying 217 

Lemaire Formation is a few meters below a north-northeast-dipping detachment 218 

surface (Torres Carbonell and Dimieri, 2013; González Guillot et al., 2016; Cao, 2019; 219 

this work), whilst at Península Mitre this contact is a south-dipping reverse fault 220 

(Torres Carbonell et al., 2017b). Its top is not well defined due to lack of stratigraphic 221 

definition north of Lago Fagnano. A minimum thickness of 450 m has been estimated 222 

for the formation, which contains Aptian-Albian marine invertebrates, mostly 223 

inoceramids (Olivero et al., 2009; Martinioni et al., 2013).  224 

 225 

2.1.3. Upper Cretaceous-lower Neogene foreland basin sedimentary rocks 226 

2.1.3.1. Upper Cretaceous-Danian succession 227 

An Upper Cretaceous-Danian sedimentary package forms the oldest sedimentary 228 

succession of the Austral foreland basin (Figs. 2 and 3). The older rocks in this 229 

succession include several mudstone-dominated units with Turonian-Campanian 230 

fossils (Fig. 2, Olivero et al., 2009; Martinioni et al., 2013). The middle part of the 231 

succession is formed by coarse-grained deposits interbedded with mudstones, of late 232 

Campanian-?early Maastrichtian age according to ammonites and foraminifera (Bahía 233 

Thetis Formation, Olivero et al., 2003). The youngest rocks in this package are 234 

bioturbated fine sandstone-mudstone intercalations with Maastrichtian-Danian fossils 235 

and detrital zircon ages (Policarpo Formation, Olivero et al., 2002, 2003; Barbeau et al., 236 

2009a; Martinioni et al., 2013).  237 

The base of the Upper Cretaceous-Danian succession is not well-defined, whilst the 238 

top is marked by an unconformity between the Policarpo Formation and coarse 239 



deposits of the Río Claro Group (Fig. 2, Olivero et al., 2003; Martinioni et al., 2013). The 240 

accumulated minimum thickness of the succession exceeds 1000 m. 241 

 242 

2.1.3.2. Paleocene-lower Miocene succession 243 

The Paleocene to lower Miocene sedimentary rocks of the Austral basin comprise a 244 

heterogeneous succession including several units that crop out, or are drilled in 245 

subsurface, from the mountain front to northern Tierra del Fuego (Figs. 2 and 3). 246 

Minimum estimated thicknesses of each unit are given in Fig. 2, from composite 247 

sections. The base of this succession rests on an unconformity with the Policarpo 248 

Formation (Olivero et al., 2003; Martinioni et al., 2013). 249 

The upper part of the succession is formed by uppermost Oligocene-Miocene beds 250 

coeval with the end of contraction in the thrust-fold belt (Torres Carbonell and Olivero, 251 

2019). They include growth strata formed above the youngest folds (Ghiglione, 2002; 252 

Malumián and Olivero, 2006; Ponce et al., 2008; Torres Carbonell et al., 2017a). 253 

 254 

2.1.4. Fuegian batholith and peripheral intrusives north of Canal Beagle  255 

2.1.4.1. Darwin suite 256 

The oldest magmatic rocks north of Canal Beagle comprise orthogneisses mostly 257 

derived from granites intruded in the basement at Cordillera Darwin (Fig. 3, Nelson et 258 

al., 1980; Hervé et al., 1981, 2010b; Klepeis et al., 2010). The rocks are ductilely 259 

deformed and intruded by less deformed granitoids of the Beagle suite (Nelson et al., 260 

1980). The Darwin granites are Late Jurassic, with U/Pb zircon ages of 164-153 Ma 261 

(Mukasa and Dalziel, 1996; Klepeis et al., 2010).  262 

 263 



2.1.4.2. Beagle suite 264 

The Beagle suite is the main unit of the Fuegian batholith (Fig. 3). North of Canal 265 

Beagle, the granitoids that compose this suite have U/Pb zircon ages ranging between 266 

86-74 Ma (Hervé et al., 1984; Klepeis et al., 2010; McAtamney et al., 2011). They 267 

postdate most of the ductile structures related to the arc-continent collision, although 268 

some intrusives overlap with the late stages of that deformation and the associated 269 

peak metamorphism (Maloney et al., 2011). 270 

 271 

2.1.4.3. Rear-arc suites 272 

2.1.4.3.1. Ushuaia Peninsula Andesites  273 

The Ushuaia Peninsula Andesites (Fig. 3) include small ultramafic to silicic plugs 274 

cross-cut by a set of andesitic (the main lithology) and lamprophyre dikes (González 275 

Guillot et al., 2011). This suite intrudes the Yahgan Formation. One andesite dike 276 

yielded a zircon U/Pb age of 84.1 ± 1.6 Ma (González Guillot et al., 2018). The 277 

overprinting relationships between the Ushuaia Peninsula Andesites and the 278 

deformation of the Yahgan Formation are reported in this work as a constraint on 279 

deformation timing (see section 4.1.1). 280 

 281 

2.1.4.3.2. Fuegian Potassic Magmatism  282 

The Fuegian Potassic Magmatism comprises small (< 25 km2), isolated plutons 283 

emplaced in the Yahgan and Beauvoir formations (Fig. 3, González Guillot et al., 2009). 284 

The plutons are composite, ranging from ultramafic to felsic facies, and with a 285 

characteristic mildly alkaline chemistry (González Guillot, 2016). The intrusives are the 286 

Ushuaia, Kranck, Moat and Jeu-Jepén plutons (Fig. 3).  287 



The Kranck pluton has especial interest for this work since it is associated with two 288 

sets of dikes and sills (Cerro Rodríguez dikes) that intrude the Beauvoir Formation 289 

towards the north of the pluton, within the internal thrust-fold belt domain (Torres 290 

Carbonell et al. 2017c). We provide below (section 4.2), and later discuss, the 291 

overprinting relationships of these dikes with the deformation of the host rock, as well 292 

as new geochronological data of the Kranck pluton and Cerro Rodríguez dikes (section 293 

5). Previously reported U/Pb zircon ages are 75 ± 1.0 Ma to 70.9 ± 1.7 Ma for the 294 

Ushuaia pluton (Barbeau et al., 2009b; González Guillot et al., 2018), and 72.01 ± 0.75 295 

Ma for the Jeu-Jepén pluton (Cerredo et al., 2011).  296 

 297 

2.2. Tectonic framework  298 

Contractional deformation in the Fuegian Andes started with the northward 299 

obduction of the Rocas Verdes Basin oceanic floor in Cordillera Darwin, which was also 300 

associated with southward underthrusting of the continental margin of the basin, both 301 

processes comprising a first deformation phase in the region associated with arc-302 

continent collision (Fig. 1b, Klepeis et al. 2010). At mid-crustal depths, underthrusting 303 

and obduction caused high shear strain and peak metamorphism under upper-304 

amphibolite facies conditions, reaching 12 kbar and ~600 °C, and later decompressing 305 

to 9 kbar during peak temperatures of more than 600 °C. This is recorded in Bahía Pía 306 

(all localities shown in Fig. 3), where a high-grade shear zone has been described (Kohn 307 

et al., 1993, 1995; Klepeis et al., 2010; Maloney et al., 2011).  308 

Modelled Ar/Ar ages of hornblende, muscovite, biotite and K-feldspar from 309 

metamorphic rocks of Cordillera Darwin indicate that first-phase deformation was 310 

ongoing by 90 Ma, with a stage of rapid cooling between 90-70 Ma (Fig. 4, Kohn et al., 311 



1995; see also Nelson, 1982). Other evidence of this rapid cooling trend, and 312 

associated uplift and erosion of the orogenic core, is recorded in the Campanian-313 

?lower Maastrichtian Bahía Thetis Formation and equivalent Cerro Matrero Formation 314 

in Chile (Fig. 2). These units contain clasts of eroded metavolcanic and 315 

metasedimentary rocks, and detrital zircons in the Cerro Matrero Formation with the 316 

younger ages in the range of 82-145 Ma, derived from the back-arc basin fill, basaltic 317 

floor and older synrift sequence (Fig. 4, Olivero et al., 2003; McAtamney et al., 2011).  318 

The first-phase structures are intruded by Beagle suite granites without ductile 319 

deformation, which suggests an age older than 86-74 Ma for this phase (Klepeis et al., 320 

2010). However, some contemporaneity between Beagle granite intrusions and first-321 

phase structures is indicated by an age of 72.6 ± 2.2 Ma from U-Th-Pb in-situ dating of 322 

a late first-phase metamorphic monazite from Bahía Pía (Fig. 4, Maloney et al., 2011). 323 

In Argentina, first-phase structures are intruded by the Ushuaia pluton, with a well-324 

developed contact-metamorphism aureole that overprints a previous foliation (Fig. 4, 325 

González Guillot et al., 2018). In Península Mitre, the Bahía Thetis Formation is the 326 

youngest unit affected by first-phase deformation (Fig. 4, Torres Carbonell et al., 327 

2017b). This broadly suggests a late Campanian-?early Maastrichtian age for the end of 328 

this deformation phase. 329 

The Beagle suite granites are affected by a second, more brittle deformation phase 330 

associated with at least three major thrust sheets in the Cordillera Darwin region 331 

(Klepeis et al., 2010). Similar structures from Argentina, and their relationship with the 332 

second phase, are reported in this work. The thrusts in Cordillera Darwin are 333 

responsible for uplift of the high-grade metamorphic rocks simultaneously with 334 

retrograde metamorphism (Kohn et al., 1993) since at least ~70 Ma (Fig. 4, Klepeis et 335 



al., 2010; Maloney et al., 2011). Nonetheless, there are structures in Bahía Pía related 336 

to retrogression of metamorphic assemblages (thus second-phase), which are cut by 337 

the Beagle suite (F3/S3 in Klepeis et al., 2010). Therefore, we notice a possibly 338 

contemporaneous development between early second-phase thrusting and intrusion 339 

of some Beagle granites in that region. This probable contemporaneity between the 340 

Beagle suite and the transition from the first collision-related phase and the second 341 

thrust-related phase highlights the need for additional independent age constraints 342 

from different portions of the Fuegian Andes. This is especially important to document 343 

a possible diachronic progression of deformation in the orogen. 344 

The second thrusting phase has been compared with the 60-40 Ma rapid cooling 345 

trend modelled from Ar/Ar closure temperature ages on K-feldspar, hornblende, 346 

muscovite, and biotite, Rb/Sr closure temperature ages on biotite, and fission track 347 

ages of titanite, zircon and apatite, from metamorphic rocks of Cordillera Darwin (Fig. 348 

4, Kohn et al., 1995; see also Nelson, 1982). More recent zircon and apatite fission 349 

track and (U-Th-Sm)/He ages of samples from southern Cordillera Darwin, Isla Gordon 350 

and the Argentine central belt, suggest the onset of a rapid cooling stage since ~48 Ma, 351 

ending by ~34 Ma (Fig. 4, Gombosi et al., 2009). These cooling trends are consistent 352 

with further uplift, erosion, and a more prominent supply of detritus eroded from the 353 

basement and especially Jurassic components of the orogen to the foreland basin, as 354 

recorded from 150-180 Ma detrital zircons and from the petrography of Paleocene-355 

Eocene sedimentary rocks (Barbeau et al., 2009a; Torres Carbonell and Olivero, 2019). 356 

Additional evidence of thrust-related uplift in the central belt comes from the 357 

documented Oligocene thrusting affecting the Lemaire Formation at Bahía Sloggett 358 

(Fig. 4, Olivero et al., 1998). 359 



Development of the foreland thrust-fold belt is coeval with both phases of 360 

deformation in the central belt of the orogen (Fig. 4). The thrust-fold belt is subdivided 361 

into an internal and an external portion (Figs. 1a and 3), given their different structural 362 

styles (cf. Torres Carbonell et al., 2017a). Both portions and the central belt, however, 363 

are structurally linked, as we will discuss in this work. 364 

The internal thrust-fold belt comprises structures between the central belt and a 365 

major structure called Apen-Malvinera thrust system (Fig. 3) that roughly defines the 366 

mountain front in Tierra del Fuego. Previous structural work in the internal thrust-fold 367 

belt has been published by Klepeis (1994), Zanella et al. (2014) and Torres Carbonell et 368 

al. (2013b, 2017b). The structure of the internal thrust-fold belt will be addressed in 369 

the following sections together with new structural and stratigraphic data from this 370 

region.  371 

The external thrust-fold belt comprises the shallowest structures of the Fuegian 372 

Andes. These structures, as observed in seismic sections, are rooted in two main 373 

detachments localized below Paleocene strata and below the Cretaceous succession, 374 

respectively (Álvarez-Marrón et al., 1993; Zanella et al., 2014; Torres Carbonell et al., 375 

2017a). Below these detachments, some deeper structures appear to be splays 376 

associated with the deep thrusts emplaced in the central belt (Torres Carbonell et al., 377 

2017a). 378 

The structures in the external thrust-fold belt have been interpreted as fault-379 

propagation and fault-bend folds, with both foreland and hinterland vergence. Most of 380 

the thrusts are rarely exposed, except at the Apen-Malvinera thrust system and at the 381 

Atlantic coast, where few of them display cataclastic fabrics (Torres Carbonell et al., 382 



2011). No penetrative fabrics (foliations) have been recognized in the external thrust-383 

fold belt.  384 

Several fracture sets, analyzed for paleostress directions, indicate compression 385 

perpendicular to most of the structures during the Paleogene (Maestro et al., 2019). In 386 

Península Mitre, on the other hand, the curvature of the thrust-fold belt forms a recess 387 

(Península Mitre recess). Based on fracture paleostress directions and strain 388 

measurements, this recess has been interpreted as a progressive arc with 389 

development of superposed deformations related to tangential longitudinal strain 390 

(Torres Carbonell et al., 2019). 391 

In the Atlantic coast, previous work defined several contractional stages (Df2-Df6 in 392 

Fig. 4) based on the overprinting relationships of structures with well-exposed 393 

unconformity-bounded units (Torres Carbonell et al., 2011). The latter units, in turn, 394 

have well-constrained ages based on foraminifers, nanoplancton, dinocysts, and in 395 

some cases detrital zircon ages (Malumián and Olivero, 2006; Olivero and Malumián, 396 

2008; Barbeau et al., 2009a; Torres Carbonell and Olivero, 2019).  397 

These contractional stages, further grouped as D2 phase in Torres Carbonell et al. 398 

(2017a), developed from the early Eocene to the latest Oligocene-earliest Miocene. 399 

During these times, contractional deformation ceased simultaneously with deposition 400 

of growth strata in the deformation front (Df6, Fig. 4, Ghiglione, 2002; Torres Carbonell 401 

et al., 2011, 2013a). 402 

According to balanced cross-sections, accumulated shortening in the Paleogene 403 

sequence vary between 11 and 28 km (16-45%, Torres Carbonell et al. 2017a). Torres 404 

Carbonell and Dimieri (2013), and later Torres Carbonell et al. (2017a), argued that this 405 

shortening must necessarily be generated by transference of major structures in the 406 



hinterland, carried on ramps above the main detachments below the Cretaceous and 407 

Paleocene sequences. According to this model, the second-phase structures of the 408 

central belt are associated with uplift and transference of shortening to the foreland 409 

through formation of an antiformal stack of basement and Upper Jurassic rocks (Fig. 410 

1b, Torres Carbonell and Dimieri, 2013). The upper detachment of this first-order 411 

duplex is located near the contact between the Upper Jurassic synrift sequences and 412 

the Lower Cretaceous fill of the Rocas Verdes Basin (Klepeis, 1994; Kley et al., 1999; 413 

Rojas and Mpodozis, 2006; Torres Carbonell and Dimieri, 2013; this work).  414 

 415 

3. Methods and new data  416 

New data used in this paper come from fieldwork in the Argentine Fuegian Andes. 417 

Field data consist of attitudes and cross-cut relationships between different 418 

generations of structures, and between structures and several igneous bodies. 419 

Oriented samples have been studied under the microscope in order to define 420 

metamorphic assemblages and/or microstructural relationships. In particular we 421 

present here detailed descriptions of two previously unmapped areas of the Fuegian 422 

Andes (located in Fig. 3): Cañadón Bianchi, at Montes Martial, and a cross-section 423 

along a creek in northern Sierra Alvear (Arroyo Velazquito). In these areas we obtained 424 

new supporting evidence for the superposition of younger, brittle-ductile thrust-425 

related structures on older ductile structures. All spherical projections shown were 426 

constructed with the software Stereonet 10.1.6 from R. W. Allmendinger. 427 

In order to constrain the ages of both structural generations, we studied the cross-428 

cutting relationships of selected intrusives that due to their position in the Fuegian 429 

Andes, allow a spatiotemporal control on the progression of deformation. On one 430 



hand, we studied the Ushuaia Peninsula Andesites, which constitute the southernmost 431 

intrusives north of Canal Beagle in Argentine Tierra del Fuego, with an available 432 

crystallization age. On the other hand, we studied the northernmost intrusives in the 433 

thrust-fold belt: the Kranck pluton and related dikes and sills between the pluton and 434 

Cerro Rodríguez (Cerro Rodríguez dikes). We present new structural descriptions, and 435 

three new radiometric ages that constitute key constraints on the chronology of 436 

deformation in the Fuegian thrust-fold belt. 437 

A U/Pb zircon age was obtained from a quartz monzonite of the Kranck pluton at 438 

the Geochronology Laboratory of the University of Brasilia (Brazil), by LA-ICP-MS. 439 

Other two hornblende Ar/Ar ages were obtained from a hornblendite of the Kranck 440 

pluton, and from an undeformed hornblende lamprophyre from the Cerro Rodríguez 441 

dikes, described in this work. Both Ar/Ar ages were obtained at the Earth Sciences 442 

Institute at Orléans (ISTO), INSU-CNRS, University of Orléans (France), by step heating. 443 

The methodological details and the tabulated results are given in the Supplementary 444 

File 1. 445 

A balanced cross-section is presented in section 7.2. This cross-section was 446 

constructed with Move 2018.2 software by sequential restoration of individual 447 

structures, with conservation of shortening transferred from deeper structures to 448 

shallower detachments as a premise. After initial construction, the cross-section was 449 

tested by forward modelling using Move-on-Fault tools in Move. The method selected 450 

was fault-bend folding, except from a few frontal structures modelled with trishear. 451 

 452 

 453 

 454 



4. New structural data  455 

4.1. New structural data of the central belt  456 

Our new structural data from the central belt includes detailed structural 457 

descriptions of, on one hand, the cross-cutting relationships between the Ushuaia 458 

Peninsula Andesites and deformation in their host rock, and on the other hand the 459 

superposition of brittle-ductile thrusts on prior ductile deformation, as well as the 460 

connection between these thrusts and a main upper detachment below the 461 

Cretaceous rocks. These latter brittle-ductile structures are described in two different 462 

areas of the central belt (Cañadón Bianchi and Arroyo Velazquito). Even though some 463 

thrusts and the detachment have been reported without much detail in other areas of 464 

the Fuegian Andes (e.g. Torres Carbonell and Dimieri, 2013; Torres Carbonell et al., 465 

2017b), we provide here the first detailed description of these structures, and their 466 

superposed nature on previous ductile structures, in the area between Lago Fagnano 467 

and Canal Beagle. 468 

 469 

4.1.1. Deformation of the Ushuaia Peninsula Andesites  470 

The Ushuaia Peninsula Andesites were previously thought to postdate ductile 471 

deformation, based on unreported deformation or metamorphism in the intrusive 472 

rocks (González Guillot et al., 2011). Indeed, the host rock (Yahgan Formation), 473 

affected by contact metamorphism, preserves its original well-stratified character, 474 

without recognizable centimeter-scale folds (Fig. 5a-b) such as it is observed elsewhere 475 

surrounding Ushuaia, and along the Canal Beagle only a few kilometers away from 476 

Península Ushuaia (e.g. surrounding the Ushuaia pluton). Only occasionally the Yahgan 477 

Formation shows a spaced rough cleavage away from the main body of the intrusive 478 



suite (Fig. 5c). Farther away (> 1 km), however, at the southeastern tip of the 479 

peninsula, the Yahgan Formation reveals a more intense deformation, with 480 

centimeter-scale folds and a closely spaced cleavage formed by pressure-solution 481 

seams. At this location, an isolated, 1.5 m thick andesite dike, shows spaced pressure-482 

solution cleavage parallel to the foliation in the Yahgan Formation (Fig. 5d-f).  483 

A comparison between the poorly deformed host rock, with only a spaced, 484 

pressure-solution cleavage of stylolitic morphology (Fig. 5e-f), and the stronger 485 

deformation in the Yahgan Formation away from the main intrusive, suggests that the 486 

host rock has been protected from ductile deformation due to the existence of a 487 

coherent, very competent igneous rock. The absence of penetrative structures in the 488 

stronger rheologies, with selective development in the weaker rocks, is typical of this 489 

part of the central belt, and consistent with the temperature conditions suggested by 490 

the low-grade metamorphism (see section 6.1).  491 

 492 

4.1.2. Brittle-ductile thrusts and detachment superposed on ductile structures 493 

At Montes Martial, in the area known as Cañadón Bianchi, we have mapped three 494 

brittle-ductile fault zones that constitute thrusts below a common upper detachment 495 

(Fig. 6a-b). The thrusts cut up-section metavolcaniclastic and metasedimentary rocks 496 

of the Lemaire Formation. These fault zones are composed of cohesive cataclastic 497 

rocks (Fig. 6c-d), with folded and deflected older foliations, forming characteristic s-c 498 

type fabrics with top-to-north shear sense (Fig. 6e). A clear superposition of these 499 

brittle-ductile structures on the prior ductile fabrics is observed in outcrop as well as 500 

under the microscope (Fig. 6f-g).The older foliations are continuous cleavages formed 501 

mostly by white micas and chlorite, as well as deformed quartz and plagioclase. In the 502 



metasedimentary facies this cleavage transposes bedding forming a characteristic 503 

banded fabric (Fig. 6f). 504 

The southernmost thrust joins a detachment located near the base of the Yahgan 505 

Formation, just below a thick basic sill known as Puente Quemado Gabbro (described 506 

in González Guillot et al., 2016, Fig. 6b). The detachment comprises a brittle-ductile 507 

fault zone about 5 meters thick, characterized by cataclastic fabrics similar to the ones 508 

described for the thrusts, but affecting in this case slates of the Yahgan Formation. A 509 

notorious feature is the presence of faulted folds (classes 2 or 1C) in the detachment 510 

zone (Fig. 6h), as well as crenulation of the prior slaty cleavage (Fig. 6i). Kinematic 511 

indicators (deflected foliation in s-c type fabrics) indicate top-to-north movement (Fig. 512 

6j). Both the thrusts and the detachment are folded by first-order structures, and in a 513 

SW-NE cross section they are involved in a large synform that plunges to the SE (Fig. 514 

6a, k). 515 

At the northern face of Sierra Alvear, along Arroyo Velazquito, the same 516 

detachment horizon is observed at the base of the Beauvoir Formation (Fig. 7). At this 517 

location, the detachment surface is folded and exposed in the vertical, frontal limb of 518 

an antiform affecting metavolcaniclastic facies of the Lemaire Formation, covered by 519 

lapillitic mudstones of the Beauvoir Formation (Fig. 7a). Towards the north, the 520 

Beauvoir Formation attains a gentle northward dip, thus the detachment dips below 521 

Lago Fagnano in that direction (see Fig. 3). The detachment itself is characterized by 522 

cataclastic fabrics, faulted folds, and deflected older foliations with s-c type fabrics 523 

showing top-to-north shear sense (Fig. 7b-d, see also Fig. 8b).  524 

 525 

 526 



4.2. New structural data of the internal thrust-fold belt  527 

We report here new detailed descriptions of the structures affecting Cretaceous 528 

rocks in the internal thrust-fold belt (Sierra Beauvoir), and their overprinting 529 

relationships with dikes intruding the Beauvoir Formation nearby Cerro Rodríguez 530 

(Cerro Rodríguez dikes, Fig. 9). The general deformation in this area has been 531 

described for the Upper Cretaceous rocks by Torres Carbonell et al. (2013b). Detailed 532 

descriptions of the deformation in older rocks have not been published so far, except 533 

from brief mentions in Torres Carbonell et al. (2017c). Further descriptions are 534 

included within the new data presented below.  535 

Towards the lower stratigraphic horizons of Sierra Beauvoir (e.g. Beauvoir 536 

Formation), the rocks reveal a continuous cleavage formed mainly by very fine sericite. 537 

Folds across Sierra Beauvoir are involved in at least five orders, and in general they 538 

present NE vergence across the range. Wavelengths are of a few kilometers in the first 539 

order folds, and a few meters in the highest order (Fig. 8a). Competent beds form 540 

parallel folds, however multilayers can be classified as 1C or 2 Ramsay folds, since less-541 

competent layers accommodate deformation forming class 3 folds between class 1B 542 

(parallel) competent folded beds. A wide spectrum in fold style is observed, however, 543 

with both angular and rounded hinges, and tightness varying between tight and open.  544 

At least three thrusts have been recognized at Sierra Beauvoir, involved in the 545 

stacking of the Cretaceous sequence. The thrusts have NE vergence, and occasionally 546 

cut the frontal limb of the first order folds. Thrusts are characterized by shear zones 547 

several tens of meters thick, where a deflection of prior cleavage planes or bedding 548 

(forming folds and s-c fabrics), disrupted stratigraphy, and widespread cataclastic 549 

fabrics are observed (Fig. 8b). Shear sense is always top-to-NE. These characteristics 550 



are similar to those described for thrusts affecting the same sequence in Chile (Klepeis, 551 

1994), and at Península Mitre (e.g. Bahía Thetis thrust in Torres Carbonell et al., 552 

2017b).  553 

Between Cerro Rodríguez and the Kranck pluton (Fig. 9) two distinct sets of dikes 554 

and sills crop out (Cerro Rodríguez dikes, first reported by Martinioni et al., 1999). The 555 

dikes intrude the Beauvoir Formation and have thicknesses of 0.2-2.5 m. The 556 

abundance of intrusions increases towards the Kranck pluton (Fig. 9). As briefly 557 

reported by Torres Carbonell et al. (2017c), we identified two dike generations. One of 558 

these generations is composed of clinopyroxene-biotite or clinopyroxene 559 

lamprophyres, affected by spaced pressure-solution cleavage parallel to the 560 

continuous cleavage in the host rock. These dikes are here called “deformed set” (Figs. 561 

9 and 10). The second generation has no cleavage and is composed of hornblende-562 

clinopyroxene lamprophyres and felsic dikes of andesite and trachy-andesite 563 

(“undeformed set”). The deformed set is concentrated surrounding Cerro Rodríguez, 564 

whereas the undeformed set has a more uniform distribution, but is more abundant 565 

close to the Kranck pluton (Fig. 9). Martinioni et al. (1999) obtained a whole rock K/Ar 566 

age of 104 ±4 Ma for one undeformed, hornblende-phyric dike, which we discuss 567 

below. On the basis of hornblende chemical composition, Acevedo et al. (2007) 568 

correlated the hornblende undeformed dikes with hornblende gabbros from the 569 

Kranck pluton. 570 

 571 

5. Geochronological results 572 

Sample BR47 (Fig. 9) is a quartz monzonite of the Kranck pluton, which lacks 573 

penetrative deformation. Cross-cutting relationships indicate that it represents one of 574 



the youngest facies of the pluton (a thorough description of the facies was presented 575 

by González Guillot et al., 2012). A total of 47 zircon grains were analyzed. The data set 576 

shows a constant 206Pb/238U age between 64 and 72 Ma, with a weighted average at 577 

68.01 ± 0.52 Ma (2σ, MSWD 11.8, Fig. 11a, Supplementary File 1). We interpret this as 578 

the age of emplacement and crystallization of the rock.  579 

Sample BR29 (Fig. 9) is an undeformed hornblendite from the Kranck pluton. It is 580 

intruded by other facies, thus represents one of the earliest pulses of crystallization 581 

(see more details in González Guillot et al., 2012). The sample has a weighted mean 582 

age, integrated over the steps between arrows in Fig. 11b, of 73.4 ± 1.6 Ma (2σ, MSWD 583 

0.81, Supplementary File 1). Sample 104, an undeformed hornblende lamprophyre of 584 

the Cerro Rodríguez dikes, has a weighted mean age, integrated over the steps 585 

between arrows in Fig. 11c, of 74.0 ± 0.8 Ma (2σ, MSWD 0.79, Supplementary File 1). 586 

Both 40Ar/39Ar ages are indistinguishable; therefore the undeformed hornblende 587 

lamprophyres of Cerro Rodríguez were emplaced at the same time than hornblendites 588 

in the Kranck pluton, and before the quartz monzonite.  589 

 590 

6. Integration of previous and new structural data from the Fuegian thrust-fold belt 591 

In the following section we integrate our new structural and geochronological data 592 

with previous work, which allows us to define structural generations and correlate 593 

them across the Fuegian Andes. Based on previous work (Torres Carbonell and Dimieri, 594 

2013), we refer to the Fuegian Andes as a thrust-fold belt that involves basement and 595 

thickens toward the south (hinterland). For convenience, we address separately the 596 

central belt from the internal thrust-fold belt. 597 

 598 



6.1. Central belt 599 

The central belt of the Fuegian Andes reveal multiple generations of structures with 600 

complex correlations between different regions. This is especially so in the highly 601 

metamorphosed and deformed area of Cordillera Darwin, were glacier cover adds 602 

difficulty in connecting structures from different coastal outcrops. However, two major 603 

deformations can be roughly defined in Cordillera Darwin, called D1CD and D2CD, each 604 

of them comprising one or more generations of structures. This distinction follows the 605 

criteria and data of Nelson et al. (1980), Cunningham (1995), Kohn et al. (1995), Klepeis 606 

et al. (2010), and Maloney et al. (2011), and correlates with the first and second 607 

deformation phases mentioned in section 2.2. 608 

D1CD comprises foliations and folds formed during the obduction and 609 

underthrusting of the oceanic floor and continental margin, respectively, with 610 

evidence of a southward-dipping mid-crustal shear zone nearby Bahía Pía (Nelson et 611 

al., 1980; Cunningham, 1995; Klepeis et al., 2010). This process formed an initial S1 612 

metamorphic fabric and superposed S2 crenulation cleavage and F2 folds (Nelson et 613 

al., 1980; Kohn et al., 1993; Klepeis et al., 2010; Maloney et al., 2011), during what we 614 

interpret as a phase of progressive deformation with two generations of structures (S1 615 

+ S2/F2). Away from the zone of higher metamorphic grade at Bahía Pía, D1CD 616 

structures are limited to a single generation of S1 structures associated to top-to-617 

northeast obduction and ductile shear (Nelson et al., 1980; Klepeis et al., 2010).  618 

The second deformation, D2CD, includes crenulation, kink bands, thrusts and folds 619 

that deform the prior D1CD structures. At Bahía Pía and in northern Cordillera Darwin 620 

D2CD structures have NE vergence and are coeval with retrograde metamorphism 621 

(Nelson et al., 1980; Kohn et al., 1993). West of Bahía Pía (at SW Cordillera Darwin) 622 



D2CD structures are associated with backfolds and backthrust shear zones (Klepeis et 623 

al., 2010). D2CD developed during uplift of Cordillera Darwin, caused by at least three 624 

identified major thrusts (Garibaldi -blind-, Parry and Marinelli thrusts, Fig. 3), which 625 

together with the backfolds and backthrusts recognized in SW Cordillera Darwin form a 626 

doubly-vergent wedge (Nelson et al., 1980; Klepeis et al., 2010).  627 

Formation of D1CD structures, as detailed in section 2.2, started before ~90 Ma 628 

(Kohn et al., 1995) and acted at least until ~73 Ma, coeval with the last intrusions of 629 

the Beagle suite (Fig. 4, Klepeis et al., 2010; Maloney et al.,2011; McAtamney et al., 630 

2011). Thus, mid-crustal shearing during D1CD may be transitional with the beginning of 631 

thrusting during the following deformation (D2CD), which has ambiguous overprinting 632 

relationships with the Beagle suite (Klepeis et al., 2010).  633 

The thrusting stage related to D2CD progressed through the Paleogene, as evidenced 634 

by thermochronology results detailed in section 2.2 (Fig. 4, Kohn et al., 1995; Gombosi 635 

et al., 2009). An appraisal of previous work, however, shows no clear connection with 636 

the structures towards the foreland, which have been interpreted as structures formed 637 

prior to out-of-sequence uplift of Cordillera Darwin (Klepeis, 1994; Kley et al., 1999; 638 

Klepeis et al., 2010).  639 

In Argentine Tierra del Fuego, overprinting structural relationships from the central 640 

belt also allowed to define two main structural styles. An older, ductile deformation, 641 

which we will call D1CB (first deformation -D1- recorded in the central belt -CB-642 

excluding Cordillera Darwin), and a younger, brittle-ductile deformation that we call 643 

D2CB. D1CB is characterized by ductile NE-vergent folds and axial-plane foliations 644 

associated with low-grade regional metamorphism, and with the development of shear 645 

zones with mylonitic foliations in sectors of localized higher strains (Fig. 8a, Kranck, 646 



1932; Bruhn, 1979; Dalziel and Palmer, 1979; Torres Carbonell and Dimieri, 2013; 647 

Torres Carbonell et al., 2017b; Cao et al., 2018; Cao, 2019). Between Canal Beagle and 648 

Lago Fagnano, D1CB folds range from tight or isoclinal in the Lapataia and Lemaire 649 

formations, to tight or very tight folds with NE vergence, usually classes 1C to 2, in the 650 

Yahgan and Beauvoir formations. The axial-plane foliation is defined by low-grade 651 

metamorphic minerals, and occasionally transposes bedding (Fig. 8a). An exception 652 

occurs in the more competent coherent volcanic-subvolcanic bodies of all the 653 

formations of this region of the central belt, in which the folds and cleavage are not 654 

uniformly developed; some of these bodies show poor cleavage or none at all. The 655 

metamorphic grade in this part of the central belt is within prehnite-pumpellyite to 656 

greenschist facies (Bruhn, 1979; Cao et al., 2018; Cao, 2019). 657 

In the zones of higher strain, especially localized in quartz-rich lithologies, the main 658 

structures are mylonitic fabrics with top-to-north or northeast shear sense (Fig. 8a). 659 

These mylonites, first recognized by Kranck (1932) and Bruhn (1979), led the latter 660 

author to interpret formation of the central belt between Canal Beagle and Lago 661 

Fagnano as a result of progressive simple shear. An alternative interpretation based on 662 

scattered and undetailed data suggested that these mylonites formed part of the D2CD 663 

thrusting of Cordillera Darwin (Torres Carbonell and Dimieri, 2013). However, as will be 664 

addressed below, the correlation of the D2CD brittle-ductile structures with the brittle-665 

ductile thrusts reported in section 4.1.2, suggests that these mylonites are older. 666 

Therefore, they can be interpreted as zones of concentrated D1CB deformation in the 667 

simple shear scheme proposed by Bruhn (1979, cf. Torres Carbonell et al., 2017b; Cao 668 

et al., 2018).  669 



In southern Península Mitre, the D1CB structures and metamorphic grades in the 670 

Lemaire and Beauvoir formations are similar to those between Lago Fagnano and 671 

Canal Beagle, with a NW-SE structural trend (Torres Carbonell et al., 2017b). Moreover, 672 

in this region it is clear how the intensity of the D1CB structures decrease from 673 

mylonitic foliations and transposition cleavage to spaced pressure-solution cleavage 674 

towards upper structural levels, affecting rocks as young as late Campanian-?early 675 

Maastrichtian (Bahía Thetis Formation, Figs. 2 and 8a, Torres Carbonell et al., 2013b, 676 

2017b). These NW-SE structures are included in the first deformation phase of Torres 677 

Carbonell et al. (2017b).  678 

Previous constraints on the age of the D1CB structures were limited to their 679 

inclusion in the “main phase of deformation” (“mid” Cretaceous in Bruhn, 1979; Dalziel 680 

and Palmer, 1979), and the statement that they affected rocks not younger than the 681 

Campanian-?Maastrichtian Bahía Thetis Formation (Torres Carbonell et al., 2017b). 682 

González Guillot et al. (2018) established that these structures are older than the 683 

Ushuaia pluton (75-71 Ma), giving a stronger constraint for the southern portion of the 684 

central belt (Fig. 4). The same overprinting relationship is observed in other pluton of 685 

the Fuegian Potassic Magmatism, the Jeu-Jepén pluton, which has a contact 686 

metamorphism aureole that overprints cleavage in the host rocks (Fig. 5g).   687 

The deformed dike depicted in Fig. 5d-f confirms that ductile structures (D1CB) 688 

affected the Ushuaia Peninsula Andesites. From correlation of that dike with the dated 689 

andesite at the main body of the intrusion (84.1 ± 1.6 Ma, González Guillot et al., 690 

2018), we can establish an oldest time constraint on the age of these structures (Fig. 691 

4).  692 



The younger deformation, D2CB, includes large folds (up to tens of kilometers of 693 

wavelength) and crenulation cleavages that grade from a pervasive development in 694 

the lower structural levels (Lapataia Formation), to spaced crenulation cleavages 695 

localized in high-strain zones in the upper structural levels (Bruhn, 1979; Cao et al., 696 

2018). These high-strain zones comprise thrusts and detachments (Fig. 8b), the former 697 

include the thrust zones of Cañadón Bianchi (section 4.1.2), as well as thrusts 698 

previously reported at the contact between the Lapataia and Lemaire formations 699 

(Beatriz thrust, Fig. 3, Cao et al., 2018; Cao, 2019), within the Lemaire Formation at 700 

Sierra Sorondo and Sierra Alvear (Cao, 2019), and between the Lemaire and Beauvoir 701 

formations at Montes Negros (Torres Carbonell et al., 2017b). The detachments are 702 

consistently located in the surroundings of the contact between the Lemaire and 703 

Yahgan or Beauvoir formations, as stated in section 4.1.2 (cf. Torres Carbonell and 704 

Dimieri, 2013; Cao, 2019). In Chile, the same detachment level was identified between 705 

the Tobífera and Río Jackson formations and has been called Río Jackson detachment 706 

by Klepeis (1994).  707 

The D2CB thrusts form characteristic zones of protracted deformation during 708 

decreasing temperature conditions. Accordingly, while crenulation cleavages and 709 

deflected foliations formed in the lower structural levels, these structures were 710 

overprinted by cataclastic fabrics in shallower levels. For example, as shown in Fig. 6f, 711 

ductile D2CB folds affecting the older D1CB transposition foliation are faulted and 712 

incorporated in a brittle D2CB cataclasite. In the more brittle settings and especially 713 

near detachment horizons, the crenulations affecting previous D1CB foliations are 714 

localized within a few meters from the detachment surfaces or shear zones, and 715 

dissipate away from the fault surfaces (Fig. 8b). Our data from Cañadón Bianchi and 716 



Arroyo Velazquito (Figs. 6 and 7) confirm the superposition of these thrusts and 717 

detachment on the prior ductile D1CB deformation, thus constraining D2CB to a post-718 

Campanian age (Fig. 4). 719 

A third generation of structures in the Argentine central belt has been described by 720 

Cao (2019) and Cao et al. (2018), characterized by small (cm-scale) folds, kink bands 721 

and shear zones of deflected D1CB cleavage. These structures consistently have a N-S 722 

orientation, which is almost perpendicular to the regional structural trend. They have 723 

been interpreted as a distinct phase by the cited authors, but it is also possible that 724 

they are cross-folds or similar structures (see for example Butler, 1982) formed during 725 

the same D2CB deformation. 726 

 727 

6.2. Internal thrust-fold belt 728 

The connection between the central belt and the internal thrust-fold belt has been 729 

described north of Seno Almirantazgo and Lago Fagnano, in Chile (Klepeis, 1994; Kley 730 

et al., 1999; Rojas and Mpodozis, 2006). This connection, as mentioned in the previous 731 

section, involves a detachment at the base of the Lower Cretaceous shaly sequence, 732 

mapped as the Río Jackson detachment by Klepeis (1994) and reported in Argentina in 733 

this work (Fig. 7). Previous work by Klepeis (1994) and Torres Carbonell and Dimieri 734 

(2013), defined this detachment as the base of the cover sequence deformed in the 735 

foreland thrust-fold belt (Fig. 8b).  736 

Between Lago Blanco and Lago Fagnano, the deformation sequence comprises 737 

folding and axial plane, pressure-solution cleavage development (S1 in Klepeis, 1994) 738 

and refolding of these structures by open folds (F2). Both generations developed, 739 

according to Klepeis (1994), during progressive shortening associated with thrust 740 



emplacement in the Cretaceous succession. Thrusts in this region are recognized as 741 

brittle-ductile structures such as s-c type, and brittle cataclastic fabrics. Klepeis (1994) 742 

also interpreted two backthrusts, associated with deformation just above the Río 743 

Jackson detachment. 744 

At Sierra Beauvoir, the Upper Cretaceous rocks are deformed by folds and an axial-745 

plane foliation, both with variable degrees of development (Torres Carbonell et al., 746 

2013b). The foliation varies from smooth disjunctive cleavage in the lower structural 747 

levels or high-strain zones, to a more spaced cleavage (> 0,05 mm) formed by 748 

pressure-solution in the uppermost part of the succession. In the Policarpo Formation, 749 

for example, the cleavage is absent or very roughly developed and usually it is only a 750 

pencil structure (Torres Carbonell et al., 2013b). Our new data from the internal thrust-751 

fold belt (section 4.2) complements these previous descriptions from Sierra Beauvoir, 752 

and show the change to more pronounced cleavages and very low-grade 753 

metamorphism in the older units. We recognized no backfolds or backthrusts, 754 

however, which could have been correlated with similar structures described in Chile, 755 

just tens of kilometers west of our study area (cf. Klepeis, 1994). 756 

At Península Mitre (Bahía Thetis), structures similar to those described at Sierra 757 

Beauvoir are included in the second deformation phase described by Torres Carbonell 758 

et al. (2017b). These structures comprise NE-SW oriented folds, brittle-ductile shear 759 

zones (e.g. Bahía Thetis thrust and Buen Suceso backthrust) and SE-dipping pressure-760 

solution cleavages in the Policarpo Formation and older Upper Cretaceous rocks, which 761 

grade to crenulation cleavages in the Beauvoir and Lemaire formations further south. 762 

No significant growth of metamorphic minerals is associated with the formation of this 763 

crenulation. The thrusts are characterized by zones several hundred meters thick, 764 



integrated by shear fabrics superposed on the prior D1CB foliation. These include s-c 765 

type fabrics and disrupted strata, evidencing deformation in brittle-ductile conditions 766 

(Torres Carbonell et al., 2017b).  767 

Both at Península Mitre and Sierra Beauvoir, the youngest spaced cleavages affect 768 

the Policarpo Formation. The Paleocene Río Claro Group, resting on an unconformity 769 

above the Policarpo Formation, lacks penetrative deformation (Torres Carbonell et al., 770 

2013b). This led to define a deformation phase of approximately Danian age (D1 in 771 

Torres Carbonell et al., 2017a), which in Península Mitre cross-cuts the prior D1CB 772 

structures with a highly oblique trend (NE-SW against NW-SE). Here we call this 773 

deformation D1FB, namely the first deformation distinct to the foreland thrust-fold belt 774 

(FB, Fig. 4).  775 

At Sierra Beauvoir, where both D1CB and D1FB are coaxial (NW-SE trend), their 776 

distinction is aided with our new geochronological data (section 5). The age of sample 777 

104 is significantly younger than the age obtained for a similar undeformed dike by 778 

Martinioni et al. (1999) using K/Ar in whole rock. We consider our age better 779 

constrained, whereas previous work in the Fuegian Andes has shown the significant 780 

errors associated with K/Ar dating (González Guillot et al., 2018). Therefore, our new 781 

age allows us to place the formation of foliations in the deformed set of the Cerro 782 

Rodriguez dikes and host rock before ~74 Ma, placing these structures in the D1CB 783 

deformation. In this manner, younger spaced cleavages affecting rocks as young as the 784 

Policarpo Formation, mentioned before, can be attributed to D1FB consistently with 785 

the assignment made in Península Mitre (cf. Torres Carbonell et al., 2017b). Younger 786 

deformations in the foreland (Df2-Df6, mentioned in section 2.2), which are not 787 

discussed in this work, are grouped within a single deformation D2FB (Fig. 4).  788 



7. Protracted deformation history of the Fuegian thrust-fold belt 789 

The combination of published and new data just presented allows us to integrate 790 

the central belt and the foreland thrust-fold belt of the Fuegian Andes in a protracted 791 

deformation history, from the Late Cretaceous to the early Neogene. The evidence for 792 

structural connections between the central belt and the internal thrust-fold belt, in 793 

turn linked with the external thrust-fold belt, permits to analyze these portions of the 794 

orogenic front in a coherent manner, using as an example the restored cross-section 795 

presented below.  796 

We propose a simplified, regional deformation sequence in which distinct structural 797 

styles develop simultaneously at different portions of the orogenic belt. Accordingly, 798 

the phases and stages of deformation mentioned throughout this text, which group 799 

generations of structures in different sectors of the thrust-belt, are here included in 800 

two major events forming this protracted history. The first event (red double-arrows in 801 

Fig. 4) involved the closure of the back-arc basin leading to obduction, underthrusting, 802 

and arc-continent collision (cf. Nelson et al., 1980; Dalziel, 1986; Cunningham, 1995; 803 

Klepeis et al., 2010), during which the orogeny was initiated. The second event (black 804 

double-arrows in Fig. 4) involved major uplift of the orogenic core (central belt) leading 805 

to formation of a first-order thrust system (antiformal stack) that transferred 806 

shortening towards the foreland, expanding the thrust-fold belt into the coeval 807 

foreland basin system (cf. Torres Carbonell and Dimieri, 2013). 808 

 809 

7.1. First event: Arc-continent collision 810 

Our new data on the overprinting relationships between the Ushuaia Peninsula 811 

Andesites and the D1CB deformation (Fig. 5d-f) indicates an age not older than ~84 Ma 812 



for the first event in the southern central belt in Argentina (Fig. 4). The youngest age of 813 

D1CB in the same area has already been established by the intrusion of the Ushuaia 814 

pluton by 75-71 Ma (González Guillot et al., 2018), which is consistent with the 815 

Campanian age determined in Península Mitre (first phase in Torres Carbonell et al., 816 

2017b). At the northern border of the central belt, the ~72 Ma Jeu-Jepén pluton 817 

(Cerredo et al., 2011) also overprints the D1CB foliation (Fig. 5g).  818 

Even if these temporal constraints are consistent with the correlation of D1CB and 819 

D1CD, the beginning of ductile deformation in the Argentine part seems to have been 820 

delayed in comparison with the development of deep-seated structures in Cordillera 821 

Darwin, which started before 90 Ma (Fig. 4). In addition, during the end of the 822 

collisional event (by ~73 Ma), deformation in Cordillera Darwin occurred under high-823 

temperature conditions, coincident with decompression from 12 to 9 kbar and 824 

initiation of thrust-related uplift (Maloney et al., 2011). Conversely, the coeval 825 

deformation between Canal Beagle and Lago Fagnano was milder, especially in the 826 

upper stratigraphic levels (Yahgan-Beauvoir formations). This is notorious within and 827 

around some competent rock bodies that developed poor cleavage or were almost 828 

undeformed (Fig. 5a-d). The more deformed rocks in this region, indeed, are 829 

represented by low-grade mylonitic zones in the Lapataia and Lemaire formations (Fig. 830 

8a). This is consistent with a change from high- to low-grade deformation across the 831 

orogen, i.e. from the internal and lower structural levels now exposed at Cordillera 832 

Darwin to the external, upper structural levels exposed between Lago Fagnano and 833 

Canal Beagle. Farther towards the Campanian deformation front, in the internal thrust-834 

fold belt, only very low-grade deformation affects the Beauvoir Formation. 835 



The data presented here in section 4.2 also contribute to constrain the age of the 836 

collisional event in the internal thrust-fold belt. Accordingly, the age of the 837 

undeformed set of the Cerro Rodríguez dikes constrains the age of collisional 838 

deformation in that region to before ~74 Ma (Fig. 11), which is consistent with the ages 839 

in the central belt.  840 

In summary, the progression of deformation during the arc-continent collision event 841 

can be described as foreland directed, ductile simple shear deformation above the 842 

underthrusting continental plate, concurring with Bruhn (1979, see also Tanner and 843 

Macdonald, 1982; Storey, 1983, Fig. 8a). Whilst high-grade deformation started prior 844 

to 90 Ma in Cordillera Darwin (D1CD), in the Argentine Fuegian Andes only the last, 845 

Campanian part of this deformation is recorded in the rock structures, comprising low-846 

grade deformation (D1CB).  847 

 848 

7.2. Second event: Major thrusting and expansion of the orogenic wedge 849 

Our new data from the central belt contributes to the definition of the second event 850 

during the orogenic history, which involved thrust-related deformation throughout the 851 

orogen. We presented evidence from Cañadón Bianchi (Fig. 6) which confirms part of 852 

the thrust faults forming the duplex proposed by Torres Carbonell and Dimieri (2013). 853 

This new evidence adds to previous data reported by Torres Carbonell et al. (2017b) 854 

and Cao et al. (2018). These thrusts, ramping from an unexposed lower detachment 855 

(possibly located in the basement unit), cut through Jurassic syn-rift deposits and join 856 

an upper detachment in the vicinity of the contact between the Lemaire and Yahgan or 857 

Beauvoir formations (Figs. 6 and 7). The brittle-ductile thrusts and detachment are 858 



superposed on previous ductile D1CB structures; therefore they post-date the 859 

Campanian (Fig. 4).  860 

In a similar way, the D1CD structures are overprinted by D2CD structures in Cordillera 861 

Darwin, which are related to ductile-brittle thrusts emplaced in that region. The 862 

northernmost of these thrusts, called Marinelli thrust (Klepeis, 1994), can be laterally 863 

traced to join the Beatriz thrust in our map (Fig. 3). Klepeis (1994) suggested that the 864 

Marinelli thrust exhumed and placed basement rocks on top of back-arc basin cover 865 

rocks, proposing that the thrust timing was out-of-sequence with deformation in the 866 

internal thrust-fold belt. Building on that interpretation, it has been proposed that all 867 

the D2CD thrusts (Garibaldi, Parry and Marinelli) formed out-of-sequence with the 868 

internal thrust-fold belt (Kraemer, 2003; Rojas and Mpodozis, 2006; Klepeis et al., 869 

2010). This has important implications for the transference of shortening (or lack of it) 870 

that built the foreland portion of the thrust-fold belt.  871 

An alternative view has been proposed by Torres Carbonell and Dimieri (2013), 872 

interpreting the Marinelli thrust as a ramp which, after being actively involved in the 873 

duplex, broke up-section as a breaching thrust (cf. Butler et al., 2007), cutting the 874 

duplex roof detachment. This interpretation is more adequate to allow additional 875 

structures in the hinterland to transfer shortening to the foreland, before being 876 

effectively uplifted above the roof thrust (see also Torres Carbonell et al., 2017a). 877 

Our interpretation for the progression of D2CB structures is shown in a balanced 878 

cross-section constrained by field and seismic data (Fig. 12). This cross-section uses a 879 

depth to the basal detachment controlled by depth-migrated seismic data and wells in 880 

the foreland, and with an arbitrary uniform dip towards the hinterland. Notice that the 881 



basement-Upper Jurassic contact in the cross-section is speculative. Further details on 882 

the balancing method are given in section 3.  883 

The cross-section assumes that all the deformation during D2CB was accommodated 884 

by movement on single thrusts. This clearly is an oversimplification, but allows creating 885 

a geologically reasonable and viable cross-section that explains the first-order central 886 

belt structure and coeval foreland deformation. It also implies amounts of shortening 887 

transferred to the foreland that are consistent with balanced cross-sections in the 888 

external thrust-fold belt (Torres Carbonell et al., 2017a).  889 

In summary, this regional, balanced cross-section shows that emplacement of 890 

brittle-ductile thrusts in the central belt during D2CD and D2CB progressed 891 

simultaneously with accommodation of transferred shortening in shallower structures 892 

in the thrust-fold belt (D1FB and D2FB, Fig. 8b). The latter argument is consistent with 893 

the cooling history of the central belt, as reported in section 2.2, which indicates 894 

coeval uplift of the central belt and deformation in the foreland at least during the Late 895 

Cretaceous and Paleogene (Fig. 4, Kohn et al., 1995; Gombosi et al., 2009). 896 

The interpretation shown in Fig. 12, with a crustal duplex responsible for uplift of 897 

the central belt after the initial closure of the Rocas Verdes Basin, also implies the 898 

existence of basement thrust wedges below the central belt as a requisite to explain 899 

the structural level at which the Lemaire Formation is uplifted, in comparison with the 900 

same horizons in the foreland (Fig. 12). This interpretation has the advantage of 901 

explaining the occurrence of rocks uplifted from depths of more than 20 km (12 kbar 902 

and ~600 °C according to Kohn et al. 1995) at the current surface (at Bahía Pía), using a 903 

reasonable geometric model for this amount of uplift.  904 



Conditions of deformation during the thrusting event varied also with structural 905 

position. In the central belt the metamorphic grade was low in Cordillera Darwin (Kohn 906 

et al., 1993), to very low or even absent in Argentina, and penetrative deformation was 907 

restricted to crenulation cleavages with minor growth of retrograde metamorphic 908 

minerals associated with the formation of major brittle-ductile thrusts (Fig. 8b). 909 

Towards the foreland, shortening transferred from the duplex to the Cretaceous cover 910 

was accommodated by pressure-solution and spaced cleavage development, followed 911 

by folding and brittle-ductile thrusting (Fig. 8b). This deformation comprises, in the 912 

scheme presented here, the D1FB structures now exposed in the internal thrust-fold 913 

belt. 914 

Simultaneous sedimentation and deformation in the Austral basin characterized the 915 

following deformation in the external part of the thrust-fold belt, called D2FB in this 916 

work. This deformation is mostly related to the development of major thrust systems 917 

in the foreland until the early Miocene (Fig. 12, see Torres Carbonell et al., 2017a). 918 

 919 

8. Conclusions 920 

An integration of new structural and geochronological data with an analysis of 921 

previously published data from the Fuegian Andes, allows us to document the 922 

sequence of deformation within a tectonic model of the orogen formed in the 923 

southernmost Andes. Accordingly, we constrain the timing of the two main events 924 

involved in deformation in the Argentine portion of the orogen. The first event was 925 

caused by closure of the Rocas Verdes Basin, with obduction, underthrusting, and arc-926 

continent collision. As previously documented from Cordillera Darwin, this event 927 

spanned from ca. 100-90 Ma to ca. 73 Ma ago, causing high-grade deformation (e.g. 928 



Kohn et al., 1995; Maloney et al., 2011). However, in the central belt in Argentina, our 929 

new data reveal that only Campanian (post-84 Ma), low-grade structures were 930 

developed in the uppermost structural levels of the collision-related deformation. This 931 

deformation is also recorded in the internal thrust-fold belt, and we provide a new age 932 

constraint for the structures in that region, which are post-dated by intrusives with 933 

Ar/Ar hornblende ages of 74 Ma.  934 

The second event was characterized by the formation of a first-order thrust system 935 

since the Maastrichtian-Danian. This led to the definitive formation and expansion of 936 

the thrust-fold belt until the early Miocene, with major uplift episodes recorded in the 937 

hinterland associated with the emplacement of major basement-involved thrust 938 

sheets. Our new structural data confirms the occurrence of these thrusts, and their 939 

connection with a common upper detachment placed at the base of the Lower 940 

Cretaceous rocks, which forms the roof thrust of a major duplex in the central belt. 941 

This scheme explains the different styles of deformation across the Fuegian Andes 942 

in the context of a progressive evolution from collisional-style orogenesis to thrust-943 

related deformation. This model also allows explaining the shortening in the deformed 944 

Austral-Magallanes foreland basin as a consequence of major thrust emplacement in 945 

the central belt. Our new structural and geochronological data, in addition, give key 946 

constraints to correlate structure generations across and along the strike of the 947 

orogen. 948 
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 1242 

Figure captions 1243 

Figure 1: a. Geologic map of southernmost Patagonia and Tierra del Fuego with 1244 

regional structural elements discussed in this work. S: Sarmiento Complex, CA: Capitán 1245 

Aracena Complex. T: Tortuga Complex, LF: Lago Fagnano, CB: Canal Beagle. Based on 1246 

works cited in the text. b. Cartoon showing closure of the back-arc basin and 1247 

development of the Fuegian Andes during two main tectonic events, involving collision 1248 

and later thrust-fold belt (TFB) expansion. Known intrusive pulses during both events 1249 

are schematically depicted (modified from Torres Carbonell et al., 2014). 1250 

 1251 

Figure 2: Stratigraphic framework of the Fuegian thrust-fold belt north of Canal Beagle, 1252 

with nomenclature used in Argentina and Chile. For a more complete regional 1253 

correlation see Torres Carbonell and Olivero (2019). References are 1: Biddle et al. 1254 

(1986), Cañón (2000), Sánchez et al. (2010), McAtamney et al. (2011), Malumián et al. 1255 



(2013), 2: Malumián and Olivero (2006), Olivero and Malumián (2008), Martinioni et al. 1256 

(2013), Cao et al. (2018), 3: Klepeis et al. (2010), McAtamney et al. (2011), Cerredo et 1257 

al. (2011), González Guillot et al. (2018). An idealized lithologic column is shown, 1258 

although lateral facies variations exist. Minimum thicknesses reported for reference 1259 

are from the thicker composite sections and in some cases highly variable. 1260 

 1261 

Figure 3: Geologic map of the Fuegian thrust-fold belt with main structural features 1262 

and stratigraphic units mentioned in the text. See location in Fig. 1a, and text for 1263 

details of stratigraphic units. Compiled from Klepeis (1994), SERNAGEOMIN (2003), 1264 

Olivero and Malumián (2008), Hervé et al. (2010b), Klepeis et al. (2010), González 1265 

Guillot (2016), Cao (2019), Torres Carbonell and Olivero (2019), and authors’ data. 1266 

Cross-sections x-y and y-z indicate location of Fig. 12a. Pt: Parry thrust, MM: Montes 1267 

Martial, UP: Ushuaia pluton, UPA: Ushuaia Peninsula Andesites, JP: Jeu-Jepén pluton, 1268 

MP: Moat pluton, BP: Bahía Pía, BT: Bahía Thetis. 1269 

 1270 

Figure 4: Time constraints for the deformations recorded in the Fuegian thrust-fold 1271 

belt, north of Canal Beagle, as addressed in this work. Modified from Torres Carbonell 1272 

and Dimieri (2013). Bold bars indicate 2σ uncertainties. UPA: Ushuaia Peninsula 1273 

Andesites, FPM: Fuegian Potassic Magmatism. References: 1: Nelson (1982), 2: Kohn et 1274 

al. (1995), 3: Gombosi et al. (2009), 4: Klepeis et al. (2010), 5: Olivero and Martinioni 1275 

(1996b), 6: Nelson et al. (1980), 7: Olivero et al. (2003), 8: McAtamney et al. (2011), 9: 1276 

Torres Carbonell et al. (2011), 10: Maloney et al. (2011), 11: Cerredo et al. (2011), 12: 1277 

Barbeau et al. (2009b), 13: González Guillot et al. (2018), 14: Torres Carbonell et al. 1278 



(2017b), 15: Olivero et al. (1998), 16: this work. Red and black double arrows labeled 1279 

“D” are discussed in sections 6 and 7. 1280 

 1281 

Figure 5: a-d. Outcrop photographs of the Ushuaia Peninsula Andesites (UPA) and host 1282 

rock (Yahgan Formation, YG). Notice the lack of intense deformation in pictures a 1283 

(person for scale) and b, from the main body of the intrusion. In picture c the Yahgan 1284 

Formation shows slight folding and cleavage away from the main body of the intrusion 1285 

(scale is 6 cm long). Picture d shows a dike and its host rock affected by pressure-1286 

solution cleavage (parallel to compass), farther away from the main intrusion. e-f. 1287 

Photomicrographs of cleavage in the dike of picture d, plane-polarized light. Note 1288 

horizontal pressure-solution seams with wriggly morphology defined by opaque 1289 

insoluble residue. Pl: plagioclase, Hbl: hornblende (chloritized), Aln: allanite. g. 1290 

Hornfels from the Jeu-Jepén pluton (Beauvoir Formation) with scarce pressure-solution 1291 

seams (from upper-right to lower-left) reflecting the prior cleavage, which is 1292 

obliterated by recrystallization of the plagioclase + quartz (Qz) groundmass, 1293 

dissemination of insoluble residue inherited from the pressure-solution seams, and 1294 

growth of biotite (Bt) parallel to the preexisting cleavage planes. 1295 

 1296 

Figure 6: a. Geologic map of the Cañadón Bianchi area (location in Fig. 3). Equal area, 1297 

lower hemisphere projection shows orientation of crenulation folds in the area. Brittle-1298 

ductile shear zones (BDZS) are numbered for reference to picture b. Location of 1299 

photographs c-j is shown. b. Panoramic photograph with depiction of major structures 1300 

as shown in a. Acronyms are for stratigraphic units in the map. c-d. Outcrop (backpack 1301 

for scale) and close-up view of cataclastic fabrics in thrust zones. e. S-C type fabric 1302 



showing top-to-north component of movement. f. Cataclasite block revealing faulted 1303 

folds (horizontal trace) affecting an older transposition foliation (alternating lighter 1304 

and darker bands). Encircled 23-mm coin for scale. g. Photomicrograph of a cataclasite 1305 

from a thrust zone affecting older quartz-mica schist, cross-polarized light. h. Faulted 1306 

folds in the detachment at the base of the Yahgan Formation. Notice the style of 1307 

folding with thickened hinge and thinned limbs in the lower left of the photograph. i. 1308 

Crenulation of a previous foliation in the upper flat of the BDSZ 1. Scale is 6 cm long. j. 1309 

S-C type fabric showing northeastward component of displacement in the detachment 1310 

zone. k. Cross-section (located in a) showing the first-order synform affecting the 1311 

detachment. 1312 

 1313 

Figure 7: a. Panoramic photograph of the structure at Arroyo Velazquito. The 1314 

detachment near the base of the Beauvoir Formation is folded by a large antiform. 1315 

Towards the north, the beds dip northwards with progressively shallower angles 1316 

(values given in dip direction/dip). b-d. Details of brittle-ductile fault fabrics in the 1317 

detachment zone (located in a), superposed on older foliations and folds. In b, s-c type 1318 

fabrics show a component of northward displacement (notice that north points to the 1319 

lower left). 6-cm scale highlighted. Brecciated folds (arrows) and cataclastic fabric are 1320 

shown in c and d. 1321 

 1322 

Figure 8: Schematic description and examples of D1CB structures (a) and D2CB-D1FB 1323 

structures (b), further explained in section 6. S0: bedding, J: Jurassic and older, Kl: 1324 

Lower Cretaceous, Ku: Upper Cretaceous. Cross-sections are idealized and not to scale. 1325 

 1326 



Figure 9: Map of the Kranck pluton and Cerro Rodríguez dikes, with distribution of 1327 

deformed and undeformed dike sets mentioned in the text. Location of dated samples 1328 

is shown. Equal area projection shows poles to cleavage in the Beauvoir Formation 1329 

(black) and the deformed dike set (red), with n number of measurements. 1330 

 1331 

Figure 10: a-c. Outcrop examples of deformed Cerro Rodríguez dikes. Notice the good 1332 

development of pressure-solution cleavages parallel to the cleavage in the host rock. 1333 

d-f. Photomicrographs (plane-polarized light) showing the stylolitic or wriggly pressure-1334 

solution seams defining the spaced cleavage. Phenocrysts are very altered 1335 

pseudomorphs of plagioclase, clinopyroxene or hornblende. In picture f a detail of 1336 

bended biotite is shown, with the axial planes of the microfolds subparallel to cleavage 1337 

(subvertical). 1338 

 1339 

Figure 11: a. Wetherill concordia plot for zircon age determination from a quartz 1340 

monzonite of the Kranck pluton (sample BR47). b-c. Hornblende (Hbl) Ar/Ar plateau 1341 

ages for (b) sample BR29 (hornblendite, Kranck pluton) and (c) sample 104 (Hbl 1342 

lamprophyre, Cerro Rodríguez dikes). The weighted mean age was integrated over the 1343 

steps between the arrows. 1344 

 1345 

Figure 12: a. Balanced cross-section of the Fuegian thrust-fold belt. The cross-section 1346 

was constructed along an assumed continuous trace x-z (see location in Fig. 3), 1347 

considering that the segment y-z was located behind x-y before the c. 50 km left-1348 

lateral strike offset produced by the Neogene Fagnano transform fault system (cf. 1349 

Torres Carbonell et al., 2014). AMTS: Apen-Malvinera thrust system. b. Sequential 1350 



forward modelling of the interpreted structures shown in a, using Move-on-Fault 1351 

algorithms in MOVE software. Eroded spaces are left blank for simplicity. 1352 



Arc-continent collision related orogenesis caused high-grade to mild deformation 

New structural data and Ar/Ar - U/Pb ages of intrusives is reported 

First deformation in the central belt of Argentina occurred from 84 to 74 Ma 

Subsequent deformation involved a brittle-ductile to brittle thrust system 

These thrusts join a common upper detachment transferring shortening to foreland 
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