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Abstract

We show the feasibility of calculating the decay energy spectrum of neutron emitting
nuclei within the Gamow-state description of resonances by obtaining the decay
energy spectrum of 25O. We model this nucleus as a valence neutron interacting
with an 24O inert core, and we obtain the resulting resonant energies, widths and
decay energy spectra for the ground and first excited states. We also discuss the
similarities and differences between the decay energy spectrum of a Gamow state
and the Breit-Wigner distribution with energy-dependent width.
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1 Introduction

Ever since the discovery of the exotic 11Li nucleus [1], there have been many
experimental [2–4] and theoretical [5–7] studies of nuclei far from the beta
stability line. On the experimental side, new techniques were developed to
produce and study the properties of rare isotopes. On the theoretical side, new
models were developed to guide and explain the experimental findings. The
theoretical and experimental understanding of unstable nuclei will continue to
be one of the main goals of the nuclear physics community [8], as testified by
the construction and updating of a number of facilities around the world [9–12].
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Experimentally, one method of studying unstable nuclei is by means of their
decay energy spectrum, which measures the number of decays per unit of
energy versus energy (see for example Refs. [13, 14]). In particular, by using
techniques such as invariant-mass spectroscopy, it is possible to obtain the
experimental decay energy spectrum of some unstable nuclei that decay by
neutron emission (see for example Refs. [3, 15–17]). Hence, it is important to
be able to calculate such spectra theoretically.

In Refs. [18,19], the resonant (Gamow) state was used to obtain a theoretical
expression for the decay energy spectrum of an unstable system decaying into
the continuum. The purpose of the present paper is to use the formalism of
Refs. [18, 19] to obtain the energy spectrum of the 25O nucleus, which decays
by neutron emission.

Dripline Oxygen isotopes are currently of great interest, both theoretically
and experimentally. From the excited states of 19O [20] to the isotopes well
beyond the neutron drip line [21], there are several Oxygen isotopes whose
energies, widths, and decay energy spectra can be used as a test bench for
different theories. The heavier neutron drip line nucleus that has been observed
experimentally is 24O, which was found to be doubly magic [22]. An excited
state of 24O was found [23] to decay sequentially to 22O. In addition, other
low-lying neutron-unbound excited states of 24O have been measured [24].
The energy and width of the unbound ground state of 25O were investigated
in Refs. [25–28], and strong evidence for the first excited state of 25O was found
in Ref. [28]. The ground state [27,29], excited states and decay modes [17,26]
of 26O have also been studied.

In our analysis, we will use the neutron-unbound 25O because its decay en-
ergy spectrum has been measured experimentally [25–28]. Since 24O is doubly
magic, we will treat 25O as a valence neutron in an 24O core, and we will
describe the valence neutron by a Gamow state. This two-body model is able
to reproduce the experimental ground state of 25O, 3/2+. However, our two-
body model yields 7/2− as the first excited state, instead of the one found
experimentally, 1/2+.

The structure of the paper is as follows. In Sec. 2, we summarize the formal-
ism needed to calculate the theoretical decay energy spectrum. In Sec. 3, we
assess the validity of the code. In Sec. 4, we apply the code to the 25O nucleus.
We will model the interaction between the valence neutron and the 24O core
by the Woods-Saxon and the spin-orbit potentials, and obtain the energies,
widths and decay energy spectra of the ground and first excited states. We will
compare our results with those obtained by the Continuum and the Gamow
Shell Models [6,7]. We will also compare the theoretical decay energy spectrum
with the experimental ones [25–28]. In addition, we will discuss the similar-
ities and differences (both quantitative and phenomenological) between the
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Gamow-state decay energy spectra and the Breit-Wigner distributions with
energy-dependent width. In Sec. 5, we summarize our main results and present
an outlook of future applications.

2 Formalism

In order to be self-contained, in this section we outline the main ingredients
needed to calculate the decay energy spectrum of 25O.

2.1 The decay energy spectrum of a Gamow state

Let H = H0 + V be the Hamiltonian that describes the decaying system,
formed in our model by an inert 24O core and a valence neutron. The free
Hamiltonian H0 is the part of the Hamiltonian that describes the valence
neutron after it has been ejected and is far away from the core, whereas V is the
interaction potential between the core and the valence neutron. Let us describe
the unstable state by a Gamow [31] state |zR〉 such that H|zR〉 = zR|zR〉 and

zR = ER − i ΓR/2. Then, the differential decay width dΓ
dE

, which describes the
strength of the interaction between the resonance and the continuum at each
scattering energy E, is given by [18]

dΓ(E)

dE
= 2πL(E)|〈E|V |zR〉|2 , (1)

where L(E) is the Lorentzian distribution

L(E) =
1

π

ΓR/2

(E −ER)2 + (ΓR/2)2
, (2)

and |E〉 is an eigenstate of the free Hamiltonian with energy E,H0|E〉 = E|E〉.

The normalized, theoretical decay energy spectrum of a resonance decaying
into the continuum is then obtained as [18]

dP (E)

dE
=

1

Γ

dΓ(E)

dE
=

2π

Γ
L(E) |〈E|V |zR〉|2 , (3)

where Γ is the total decay width,

Γ =
∫ ∞

0

(

dΓ

dE

)

dE = 2π
∫ ∞

0
L(E)|〈E|V |zR〉|2dE . (4)

We will identify the theoretical spectrum of Eq. (3) with the experimental
decay energy spectrum.
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It should be noted that Γ is in general different from ΓR, and therefore Γ is
not related to the lifetime of the resonance. Physically, we can interpret Γ as a
measure of the overall strength of the interaction between the resonance and
the continuum. This is why in Sec. 4 we will use Γ to quantify the relative
strength of the spectra of different resonances.

It should also be noted that Eqs. (3) and (4) represent, in a way, an extension
of Fermi’s Golden Rule to the case where the broadening of the decay energy
spectrum is taken into account. Such broadening is provided by the Breit-
Wigner distribution.

2.2 The Schrödinger equation of the valence neutron

Because 24O is a doubly magic nucleus [22], we are going to neglect the many-
body nature of 25O and treat it as an 24O core plus a single neutron that is
subject to a mean-field potential created by the 24O core. As it is customary,
we will model such mean-field potential by the Woods-Saxon potential and a
spin-orbit interaction,

V (r) = VWS(r) + VSO(r) = −V0f(r) + Vso
1

r

df(r)

dr
ξl,j , (5)

where V0 > 0 represents the potential well depth, and Vso > 0 represents the
strength of the spin-orbit interaction. The function f(r) is given by

f(r) =
1

1 + exp
(

r−R
a

) , (6)

where a is the diffuseness parameter (or surface thickness), and R = r0A
1/3 is

the nuclear radius, A being the mass number. The function ξl,j is given by

ξl,j =











l
2

for j = l + 1
2
,

− (l+1)
2

for j = l − 1
2
,

(7)

where l and j are the orbital and the total angular momentum of the valence
neutron, respectively.

Due to the spherical symmetry of the potential, we can work with spherical co-
ordinates, separate the radial and angular dependences, and obtain the radial
Schrödinger equation for each partial wave,

(

−h̄2

2µ

d2

dr2
+

h̄2l(l + 1)

2µr2
+ V (r)

)

ul(r;E) = Eul(r;E) , (8)
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where µ is the reduced mass of the system. By solving Eq. (8) subject to
purely outgoing boundary conditions, we obtain the resonant (Gamow) eigen-
functions ul(r; zR). When zR is real and negative, ul(r; zR) becomes a bound
state. Under the appropriate boundary conditions, Eq. (8) yields the scattering
eigenfunctions when E is positive.

After the neutron is expelled from the nucleus, it behaves like a free parti-
cle, and therefore its radial wave function χl(r;E) satisfies the radial, free
Schrödinger equation,

(

−h̄2

2µ

d2

dr2
+

h̄2l(l + 1)

2µr2

)

χl(r;E) = Eχl(r;E) , (9)

subject to the boundary condition that the eigenfunction is regular at the
origin, χl(0;E) = 0. The delta-normalized solution of Eq. (9) that is regular
at the origin is given by the reduced Riccati-Bessel function ĵl (see for example
Ref. [32]),

χl(r;E) =

√

2µ

h̄2

1√
kπ

ĵl(kr) , (10)

where k =
√

2µ
h̄2E is the wave number. The Riccati-Bessel function can be

written [32] in terms of the spherical Bessel function jl(z) and the ordinary

Bessel function Jλ(z) as ĵl(z) = zjl(z) =
√

πz
2
Jl+1/2(z).

By combining Eq. (3) with the Gamow eigenfunction ul(r; zR) and with the
free, radial eigenfunction χl(r;E), we can obtain the theoretical decay energy
spectrum of 25O.

3 Validation of the numerical procedure

We have used the codeGamow [33] to solve numerically the Schrödinger equa-
tion (8) in order to obtain the resonant energies and the Gamow states. We
have used the code Anti [34,35] to obtain the scattering states. The resulting
energies and eigenfunctions were afterward plugged into Eq. (3) to obtain the
numerical decay energy spectrum. Because the Gamow eigenfunctions diverge
exponentially, and because the resonant energies are usually very sensitive to
small changes in the parameters of the potential, we performed three tests to
validate our numerical procedure.
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3.1 First test: The energy density of the free eigenfunctions

In the first test, we calculated the energy density of the free scattering eigen-
functions,

∫

dr |χl(r;E)|2, using the code Anti [34,35] and Mathematica [36].
We have plotted the results for l = 6 in Fig. 1, where we can see that the
plots are essentially the same. In particular, Anti and Mathematica yield
a maximum of 0.7254 MeV−1 at the energies of 1.677 MeV and 1.65 MeV,
respectively.

0 2 4 6 8 10
0.0

0.5

1.0

1.5

E HMeVL

Fig. 1. (Color online) Comparison of the integral
∫ 50
0 |χl(r;E)|2 dr for l = 6 and

2µ
h̄2 = 0.047892 MeV−1-fm−2 obtained numerically using Mathematica (thin, blue
line) and the code Anti (thick, dashed, black line). The plots are essentially indis-
tinguishable.

3.2 Second test: Location of the resonant energy in the energy density of the
scattering eigenfunctions

In order to test the accuracy of the resonant energies, we compared the real
part of such energies with the peaks in the energy density of the scattering
eigenfunctions. In this second test, we fixed the parameters of the Woods-
Saxon potential so that we can reproduce the lowest energy levels of 133Sn.
For simplicity, in this second test we neglected the spin-orbit interaction. The
values of the parameters we used are V0 = 43.5 MeV and R = 6.466 fm
(r0 = 1.27 fm). For l = 6, we obtained a sharp resonance of complex energy
zR = (4.460 − i 0.014) MeV. We then obtained the scattering eigenfunctions
ul(r;E) of Eq. (8) for l = 6. The resulting energy density,

∫ |ul(r;E)|2 dr,
where r is in fm and E > 0 is in MeV, is plotted in Fig. 2.
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Fig. 2. Plot of the energy density of the scattering eigenfunction,
∫ 50
0 |ul(r;E)|2 dr.

It is clear from Fig. 2 that the radial probability density of the scattering wave
function is sharply peaked around the energy 4.46 MeV. This energy coincides
with the real part of the resonant energy zR = (4.460− i 0.014) MeV.

3.3 Third test: The delta-shell potential

The formalism of Ref. [18] was applied in Ref. [19] to the delta-shell potential
Vδ(r) = g δ(r−R) for l = 0. It was found in Ref. [19] that the s-wave resonant
energies of the delta-shell potential can be expressed in terms of the Lam-
bert W function, and therefore one can calculate the resonant energies, decay
widths and decay energy spectra of Vδ(r) exactly. As a third validation of our
numerical procedure, we have applied it to an almost delta-shell potential 1

and compared the results with those of Ref. [19].

Our almost delta-shell potential is given by

Va(r) = −g
df(r)

dr
=

g

a

e
r−R
a

[

1 + e
r−R
a

]2 , (11)

where a is very small. It should be noted that the choice g > 0 (g < 0)
makes the potential repulsive (attractive). As explained in Appendix A, when
a is very small, Va(r) becomes, for practical purposes, the delta-shell potential
centered at r = R.

Since the potential Va(r) becomes very singular when a is small, care must be

1 In Appendix A, we explain in what sense the potential of Eq. (11) is almost a
delta-shell potential.
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taken in obtaining the resonant energies when a tends to zero. In our case,
we used a two-step process to obtain the resonant energies. In the first step,
we obtained the resonant energies for decreasing values of a; in the second
step, we extrapolated [37] the result to a → 0. In this way, we first calculated
the l = 0 ground (bound) and first excited (unbound) states for the case that
R = 6.466 fm and 2µ

h̄2 = 0.047892 MeV−1-fm−2 (which correspond to 133Sn),
and for decreasing values of a up to a = 0.04 fm. Afterward, we extrapolated
the results using four order algebraic extrapolation [37] up to a = 10−5 fm.

In order to compare our results with those of Ref. [19], we need to recall
that the results of Ref. [19] were given in terms of the dimensionless coupling
constant λ = 2µ

h̄2Rg, Hence, with our choice of R and µ (R = 6.466 fm and
2µ
h̄2 = 0.047892 MeV−1-fm−2), the strength g can be written in terms of λ as
g = 3.229 λ MeV-fm, and the energies and widths of Ref. [19] are given in
units of h̄2/2µR2 = 0.4994 MeV.

In Table 1, we compare the calculated ground state and first-excited state
energies with those of Ref. [19] for λ = −0.5, −10, and −100. As can be seen
in Table 1, our numerical results are in fairly good agreement with the exact
ones.

Table 1
Comparison of the calculated ground state energy Egs and first excited state energy
zR with those of Ref. [19].

Strength Egs (MeV) zR (MeV)

λ g (MeV) Exact Present work Exact Present work

−0.5 −1.6146 −0.19711 −0.20554 5.935 − i 5.180 5.895 − i 5.204

−10 −32.29 −12.484 −12.475 5.897 − i 0.356 5.823 − i 0.335

−100 −322.9 −1248.5 −1139.0 5.029 − i 0.00320 5.030 − i 0.00298

The calculation of the decay width of Eq. (4) involves the resonant states and
the free scattering states, and therefore constitutes a more demanding test.
In Table 2, we compare the calculated decay width with the exact one for the
first excited state when λ = −0.5, −10, and −100.

As can be seen in Table 2, our calculated decay width agrees well with the
exact one for strong couplings (λ = −10, −100) but not for weak couplings
(λ = −0.5). The reason why our calculated Γ is not accurate when λ is small
is that, for weak couplings, the resonance is broad, its decay energy spectrum
is also broad, and hence its tails are not negligible at energies much higher
than the resonant energy. Since our numerical procedure to calculate Γ omits
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Table 2
Comparison of the calculated Γ with that of Ref. [19] for the first excited state.

Strength Γ (MeV)

λ g (MeV) Exact Present work

−0.5 −1.6146 0.22769 0.0688

−10 −32.29 0.9335 0.825

−100 −322.9 0.01283 0.0127

the high-energy tails, our decay constant is much smaller than the exact one
when the coupling is weak.

Overall, our numerical results are accurate for sharp resonances, but not for
broad ones. However, since the resonances of 25O are sharp, we expect that
our numerical results for 25O to be fairly accurate, except for underestimating
the decay widths Γ due to the neglect of the high-energy tails of the decay
energy spectrum.

4 The decay energy spectrum of 25O

In this section, we are going to calculate the decay energy spectrum of the
ground state and of the first excited state of the unbound oxygen isotope 25O
using a simple two-body model, i.e., one valence neutron outside the 24O core
that creates the potential of Eq. (5).

We choose the radius and diffuseness of the mean field potential (the same
for the Woods-Saxon and the spin-orbit parts) as in Ref. [38], a = 0.65 fm
and r0 = 1.06 fm. The Woods-Saxon V0 and spin-orbit Vso strengths are cho-
sen to approximately account for the average 768.5 keV of the experimen-
tal ground state energies of 25O reported in Refs. [25] (770 keV), [26] (725
keV), [27] (749 keV) and [28] (830 keV), and for the experimental gap be-
tween the ground state energy of 25O with that of the first hole state in the
24O core, E0d3/2 −E1s1/2 = 4.857 MeV [25]. Such criteria, and the experimental

neutron separation energy Sn(
25O) = −0.776 MeV [39], lead to the following

parameters: V0 = 57.7 MeV, and Vso = 15.32 MeV-fm2.

For the above parameters, the complex energy of the ground state was found
to be zd3/2 = (0.766 − i 0.034) MeV. Thus, the ground state’s pole width is
ΓR,d3/2 = 68 keV. This pole width is similar to the pole width of the Continuum
Shell Model [6] (63 keV), and slightly higher than that of the Gamow Shell
Model (the average of the two models used in Ref. [21] yields 49.5 keV, whereas
Ref. [28] reports a pole width of 51 keV).
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Fig. 3. (Color online) Decay energy spectrum of the ground state 3/2+ (solid, black
line) and the first excited state 7/2− (red, dashed line) of 25O.

Comparison of ΓR,d3/2 with the experimental pole widths is not so straightfor-
ward, because the experimental pole widths vary wildly (172 keV in Ref. [25],
20 keV in Ref. [26], and 88 keV in Ref. [27]). Their average, 93 keV, is larger
than any theoretical pole widths. In fact, the experimental pole widths are usu-
ally overestimated, because the experimental error is convoluted with the ideal
decay energy spectrum, which makes the experimental decay energy spectrum
broader than the ideal one.

In the four-body model of Ref. [28], the first excited state of 25O was reported
to be a 1/2+ state, and strong experimental evidence for such state was also
found [28]. However, our simple two-body model is unable to produce such
1/2+ as the first excited state. 2 Instead, the first excited state of our two-
body model is f7/2 = 7/2−, whose complex energy is zf7/2 = (5.588− i 0.697)
MeV. The four-body model of Ref. [28] also produces an f7/2 = 7/2− state,
whose complex energy is 5.536− i 0.0075 MeV. Thus, the energy predicted by
our two-body model for the f7/2 = 7/2− state is consistent with that of the
four-body model of Ref. [28], 3 although our pole width is much larger than
that of Ref. [28].

Figure 3 shows the decay energy spectrum of Eq. (3) for the ground state
d3/2 = 3/2+ and for the first exited state f7/2 = 7/2− of our two-body model.
The spectrum of the ground state is a narrow, sharp peak, whereas that of
the first excited state is less pronounced and much wider.

2 The 1/2+ state may be seen as an excitation of the 24O core [40], which in our
model is inert.
3 The energy of the f7/2 = 7/2− state reported in Ref. [28] is 4.77 MeV, and it is
given with respect to the ground state. Thus, in order to make a proper comparison
with the results of Ref. [28], we have added to 4.77 MeV the energy of the ground
state d3/2 = 3/2+, resulting in 4.77 MeV + 0.766 MeV = 5.536 MeV.
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In Ref. [18], it was proposed that the decay widths can account for the overall
strength of the interaction between the resonance and the continuum. In our
case, Γd3/2 = 0.133 MeV, and Γf7/2 = 2.424 MeV. Clearly, the coupling with
the continuum is much stronger for the first excited state, which makes it
less sharp (i.e., less “bound”) than the ground state. It was also proposed

in Ref. [18] that one could use the dimensionless decay constant Γ = Γ
ΓR

as a
measure of the coupling between the resonance and the continuum: The larger
Γ, the more “bound” the resonance is, and hence the weaker the coupling to
the continuum is. In our case, Γd3/2 = 7.824, and Γf7/2 = 6.956. Thus, their
dimensionless decay constants also indicate that the ground state is more
“bound” than the first excited state, as it should be.

The experimental decay energy spectrum of Ref. [28] was consistent with the
inclusion of a first-excited 1/2+ state of 25O. The relative cross section of the
ground and first excited states was determined to be

σ
3/2+

σ
1/2+

= 4, which can be

interpreted by saying that producing the ground state is four times as likely
as producing the first excited state. Using the Gamow-state description of
resonances, it is possible to introduce a different way to quantify the relative
likelihood of production of two resonances. Since the decay width Γ quantifies
the overall strength of the coupling between the resonance and the continuum,
and since resonances with small decay widths would be sharper than those
with larger decay widths, we can use the ratio of the decay widths of two
resonances as a measure of the relative strength of their decay energy spectra,
i.e., as a measure of how likely one can observe the decay energy spectra of a
given resonance compared to that of another one. In our model, d3/2 = 3/2+

is the ground state and f7/2 = 7/2− is the first excited state, and we have that
Γf7/2

Γd3/2

∼ 18. This means that, according to our two-body model, it is much

more likely to produce the ground state d3/2 = 3/2+ than the first-excited
state f7/2 = 7/2−, as is already clear by visually inspecting their spectra in
Fig. 3.

Theoretically, the width of the peaks of decay energy spectra are determined
by the pole widths ΓR rather than by the decay widths Γ, as can be seen in
Fig. 3. However, the theoretical pole widths are usually much smaller than
the widths of the experimental decay energy spectra. The reason is that the
experimental resolution of the detector is usually convoluted with the true
decay energy spectrum, and such convolution tends to broaden the spectrum.
Thus, in order to compare our theoretical formula with experiment, we would
need to deconvolute the experimental resolution from the true decay energy
spectrum.

The resonant peaks in experimental decay energy spectra are usually fitted
with symmetric distributions, although there are examples of asymmetric ones
(see for example Refs. [22,41]). However, as can be seen in Fig. 3, the Gamow-
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state spectra are always slightly asymmetric. Such asymmetry is not part of
any background, but arises from the energy dependence of the matrix element.
Nevertheless, for sharp resonances the asymmetry is small.

Experimental decay energy spectra are often fitted with a Breit-Wigner distri-
bution that has an energy-dependent width, as was done in Refs. [14,22,25,28,
30]. It seems therefore pertinent to discuss the similarities and differences be-
tween Eq. (3) and the Breit-Wigner distribution with energy-dependent width.
First, both approaches yield quasi-Lorentzian peaks. However, in the case of
Eq. (3), the Lorentzian is distorted by the matrix element of the interaction,
whereas in the case of the Breit-Wigner distribution with energy-dependent
width the distortion is produced by the energy dependence of the width. Sec-
ond, a fit of the experimental decay energy spectrum (after deconvolution
of the experimental error) using Eq. (3) would yield quantitatively different
resonant energies and widths than using the Breit-Wigner distribution with
energy-dependent width. Third, and most importantly, an energy-dependent
width Γ(E) implies an energy-dependent lifetime τ(E) = h̄

Γ(E)
. Thus, although

from a data-analysis point of view the Breit-Wigner distributions with energy-
dependent width may not seem very different from Eq. (3), from a theoretical
point of view they imply that resonances have different lifetimes for different
energies. By contrast, when one describes a resonance by a Gamow state and
its decay energy spectrum by Eq. (3), the (mean) lifetime is given by τR = h̄

ΓR
,

and it is an intrinsic property of the resonance that doesn’t depend on its
energy. Four, instead of the pole width ΓR being energy dependent, in the
Gamow-state approach what depends on the energy is the differential decay
width dΓ(E)/dE of Eq. (1), and such dependence takes into account that
the resonance couples to the continuum with different strengths at different
energies, while at the same time ΓR, and therefore τR, are energy independent.

In principle, it is possible to test experimentally whether Eq. (3) or the Breit-
Wigner distribution with energy-dependent width should be used as the true
theoretical decay energy distribution of resonances. One could prepare the res-
onance at different energies, measure the mean lifetime for each energy, and
check whether the lifetime changes with energy (as in Breit-Wigner distribu-
tions with energy-dependent width) or not (as in Eq. (3)).

5 Conclusions

Decay energy spectra of radioactive nuclei are routinely measured, and theoret-
ical nuclear models should be able to predict such spectra. Within the limita-
tions of a simple two-body model of 25O, we have shown that the Gamow-state
description of resonances is able to produce such spectra. We have modeled
the 25O nucleus as a valence neutron interacting with an 24O core, and applied
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the formalism of Ref. [18] to obtain the decay spectra of the ground and first-
excited states. The resulting spectra have a quasi-Lorentzian peak centered
around the resonant energy, and are qualitatively similar to those of simpler
models [19], another example of the universality of resonance phenomena. We
have also seen that the fits of experimental decay energy spectra that use
a Breit-Wigner distribution with energy-dependent width are different, both
quantitatively and phenomenologically, from fits that use the Gamow-state ap-
proach. In particular, the Breit-Wigner distributions with energy-dependent
width imply an energy-dependent lifetime, whereas in the Gamow-state ap-
proach the lifetime is energy independent. We can, in principle, use the en-
ergy (non)dependence of the lifetime τR of a resonance to check whether the
Gamow-state decay spectrum or the Breit-Wigner distribution with an energy-
dependent width should be used as the true theoretical decay energy spectrum.

There are several ways in which the results of the present paper can be ex-
panded. The most obvious one is the calculation of the decay energy spectrum
of an unstable nucleus using the Gamow Shell Model. In particular, for 25O,
most of the ingredients needed to calculate the decay energy spectrum have
already been obtained [21, 28], and it should be possible to obtain theoreti-
cal decay energy spectra that can be compared with experimental ones after
deconvoluting the experimental error. Another way to extend the results of
the present paper is by applying the Gamow-state description of decay energy
spectra to multi-channel problems. There are methods to calculate the partial
decay widths and branching fractions in a multi-channel system [42], but the
calculation of the decay energy spectrum of a multi-channel potential is still
awaiting.
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A Appendix A: An almost delta-shell potential

In this Appendix, we will explain in what sense the potential Va(r) of Eq. (11)
can be considered the delta-shell potential of strength −V0 when a tends to
zero.
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Let us consider the set of functions Kn(r) defined as

Kn(r) = −dfn(r)

dr
= − d

dr

(

1

1 + en(r−R)

)

= n
en(r−R)

(1 + en(r−R))
2 , (A.1)

where n corresponds to 1/a in Eq. (11). Intuitively, −fn(r) tends to a unit-
step function located at r = R when n tends to infinity (i.e., when a tends to
zero), so its derivative Kn(r) should tend to the Dirac delta function δ(r−R).

In order for Kn(r) to tend to the Dirac delta function, two conditions are
usually required:

(i) When n tends to infinity, the functions Kn(r) tend to zero everywhere,
except at r = R, where they diverge.

(ii) The functions Kn(r) are normalized to 1.

Condition (i) is clearly satisfied. In order to check condition (ii), let us calculate
the following integral:

∫ ∞

rmin

Kn(r) dr = − [fn(r)]
∞
rmin

=
1

1 + en(rmin−R)
. (A.2)

If rmin = −∞, then
∫∞
−∞Kn(r) dr = 1, condition (ii) is satisfied, and Kn(r)

tends to δ(r − R) when n tends to infinity. However, in our case rmin = 0,
∫∞
0 Kn(r) dr = 1

1+e−nR 6= 1, and therefore the functions Kn(r) do not sat-

isfy condition (ii). Nevertheless, as n becomes large, e−nR is very small, and
∫∞
0 Kn(r) dr = 1

1+e−nR , although not equal to 1, is very close to 1, and we
have that for the purposes of the present paper the functions Kn(r) become
the delta function as n tends to infinity. This is why the potential Va(r) of
Eq. (11) can be considered an almost delta-shell potential of strength −V0.

We can formalize the above discussion even further by using the theory of
distributions [43].

Definition. A set of functions Kn(x) is a singular kernel that approximates
the delta function at the origin if

lim
n→∞

∫ ∞

−∞
Kn(x)ϕ(x) dx = ϕ(0) (A.3)

for any test function ϕ.

In bra-ket notation Eq. (A.3) can be written as

lim
n→∞

〈Kn|ϕ〉 = 〈δ|ϕ〉 = ϕ(0) . (A.4)

14



Thus, definition (A.3) is the mathematical formalization of calculating the
Dirac delta function as the limit of functions.

Theorem. Let Kn(x) be a sequence of locally integrable functions that satisfy
the following conditions:

(1) There exists a positive s such that Kn(x) ≥ 0 when |x| < s.
(2) Kn converges uniformly to zero in any set 0 < x0 ≤ |x| ≤ 1/x0 for any

x0 > 0.
(3) limn→∞

∫

|x|≤x0
Kn(x) dx = 1 for any x0 > 0.

Then the sequence Kn(x) is a singular kernel that tends to the delta function
at the origin as n → ∞.

Condition (2) means that as n tends to infinity, the tails of Kn(x) become
vanishingly small. Condition (3) means that as n tends to infinity, Kn(x) is
concentrated at the origin.

To apply the theorem to the functions in Eq. (A.1), we need to use x = r−R
and x0 = r0 − R > 0. We will first apply the theorem to the case that r runs
over the whole real line. Condition (1) is clearly satisfied. When x = r−R is
negative, condition (2) is also clearly satisfied. When x = r − R is positive,
we have that

Kn(x) = n
en(r−R)

(1 + en(r−R))
2 < n

1

en(r−R)
< n

1

en(r0−R)

uniformly−−−−−→
n→∞

0 . (A.5)

Hence, condition (2) is also satisfied when x > 0. Condition (3) is satisfied as
well:
∫ x0

−x0

Kn(x) dx = − [fn(x)]
x0

−x0
=

−1

1 + en(r0−R)
+

1

1 + e−n(r0−R)
−−−→
n→∞

1 (A.6)

However, in our case r is positive, x is greater than −R, and therefore the
above theorem does not apply as stated. Nevertheless, when n becomes large,
the tails of Kn(r) are so small when r < 0 that conditions (2) and (3) are
satisfied four our purposes, and we have that the sequence Kn(r) tends to
δ(r −R) when n tends to infinity.
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