HOCHSCHILD (CO)HOMOLOGY
OF HOPF CROSSED PRODUCTS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

ABSTRACT. For a general crossed product £ = A# ;H, of an algebra A by a Hopf al-
gebra H, we obtain complexes smaller than the canonical ones, giving the Hochschild
homology and cohomology of E. These complexes are equipped with natural filtra-
tions. The spectral sequences associated to them coincide with the ones obtained
using a natural generalization of the of the direct method introduced in [H-S]. We
also get that if the 2-cocycle f takes its values in a separable subalgebra of A, then
the Hochschild (co)homology of E with coefficients in M is the (co)homology of H
with coefficients in a (co)chain complex.

INTRODUCTION

Let G be a group, S = @ S, a strongly G-graded algebra and V' an S-bimodule.
In [L] was shown that there is a convergent spectral sequence

E}y = Ho(G H(Se, V) = Hyps(S,V),

where e denotes the identity of G. In [S] was shown that this result remains valid
for H-Galois extensions (in his paper the author deals with both the homology and
the cohomology of these algebras). An important particular type of H-Galois ex-
tensions are the crossed products with convolution invertible cocycle F = A#;H,
of an algebra A by a Hopf algebra H (for the definition see Section 1). The pur-
pose of our paper is to construct complexes smaller than the canonical ones, given
the Hochschild (co)homology of E with coefficients in an arbitrary FE-bimodule.
These complexes are equipped with canonical filtrations. We show that the spec-
tral sequences associated to them coincide with the ones obtained using a natural
generalization of the direct method introduced in [H-S|, and with the ones con-
structed in [S] (when these are specialize to crossed products). In the case of group
extensions these results were proved in [E| and [B].

This paper is organized as follows: in Section 1 a resolution (X, d,) of a crossed
product E = A4 ¢ H is given. To accomplish this construction we do not use the fact
that the cocycle is convolution invertible. Moreover, we give a recursive construction
of morphisms ¢,: (X,,ds) — (B«(E),b.) and ¥, : (B.(E),b.) — (X.,d,), where
(B«(E),b.,) is the normalized Hochschild resolution of E, such that 1. ¢, = id and
we show that ¢, 1, is homotopically equivalent to the identity map. Consequently
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our resolution is a direct sum of the normalized Hochschild resolution. We also
recursively construct a homotopy ¢, . =%, id,. Both the canonical normalized
resolution and (X, d,) are equipped with natural filtrations, which are preserved
by the maps ¢, ¥, and wy1.

In Section 2, for an E-bimodule M, we get complexes ()?*,c?*) and ()? *,c?*),
giving the Hochschild homology and cohomology of E with coefficients in M, re-
spectively. The filtration of (X,,d,) induces filtrations on (X,,d,) and (X*,d*).

So, we obtain converging spectral sequences E!, = H,.(A, MeH® )= H,1s(E, M)

and E7® = H"(A, Homy, (ﬁ® ,M)) = H""*(E, M). Using the results of Section 1,
we get that these spectral sequences are the ones associated to suitable filtra-

tions of the Hochschild normalized chain and cochain complexes (M ® E® ,by)

and (Homy (E® , M), b*), respectively. This allows us to give very simple proofs of
the main results of [H-S] and [G].

In Section 3, we show that, if the cocycle is convolution invertible, then the
complexes ()?*, 3*) and ()? *, d* ) are isomorphic to simpler complexes (X, d,) and
(7*,3*), respectively. Then, we compute the term E?, and E5* of the spectral
sequences obtained in Section 2. Moreover, using the above mentioned filtrations,
we prove that if the 2-cocycle f takes its values in a separable subalgebra of A,
then the Hochschild (co)homology of E with coefficients in M is the (co)homology
of H with coefficients in a (co)chain complex.

In addition to the direct method developed in [H-S], there are another two clas-
sical methods to obtain spectral sequences converging to H.(F, M) and with E*-
term H,(H,H.(A, M)). Namely the Cartan-Leray and the Grothendieck spectral
sequences of a crossed product. In Section 4, we recall these constructions and
we prove that these spectral sequences are isomorphic to the one obtained in Sec-
tion 2. This generalizes the main results of [B]. Similar results are valid in the
cohomological setting.

In a first appendix we give a method to construct (under suitable hypothesis)
a projective resolution of the k-algebra F as E¢ = E ® E°P-bimodule, smaller
than the canonical one of Hochschild. This method, which can be considered as a
variant of the perturbation lemma, is used to prove the main result of Section 1.
The boundary maps of the resolution (X, d,) are recursively defined in Section 1.
In a second appendix we give closed formulas for these maps.

Remark. Let A be an algebra and let H be a k-module provided of a base point 15 €
H. The results of Section 1 and 2 are valid for algebras A# H, whose underlying
k-module is A® H and whose multiplication map verifies (a®1p)(b®h) = (ab®h).
We only must modify in an evident way the formulas in Theorem 1.1.3. These type
of algebras were introduced in [Br].

Throughout this paper k£ denotes an arbitrary commutative base ring, all the
algebras are over k, the unadorned tensor product is the tensor product over k
and T denotes the family of all epimorphisms of E-bimodules which split as left
E-module maps.

1. A RESOLUTION FOR A CROSSED PRODUCT

Let A be an algebra and H a Hopf algebra. We will use the Sweedler notation
A(h) = k™M @ h(? | with the summation understood and superindices instead of
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subindices. Recall some definitions of [B-C-M] and [D-T]. A weak action of H on
A is a bilinear map (h,a) — a” from H x A to A such that, for h € H, a,b € A

1) (ab)* =a
2) 1" = e(h)1,
3) al =a.
Let A be an algebra and H a Hopf algebra with a weak action on A. Given a

k-linear map f: H ® H — A, let A#¢H be the algebra (in general non-associative
and without 1) with underlying k-module A ® H and multiplication map

h(l)bh(Q)

(a ® h)(b ® l) _ abh(l)f(h(2)7 l(l)) ® h(3)l(2)7

for all a,b € A, h,l € H. The element a ® h of A#;H will usually be written
a#h to remind us H is weakly acting on A. The algebra A# ;H is called a crossed
product if it is associative with 1#1 as identity element. It is easy to check that
this happens if and only if f and the weak action satisfy the following conditions:

i) (Normality of f) for all h € H, we have f(h,1) = f(1,h) = e(h)14,
ii) (Cocycle condition) for all h,l,m € H, we have

f(l(l),m(l))h<l)f(h(2),l(2)m(2)) = LRV, 1D (R ),
iii) (Twisted module condition) for all h,l € H, a € A we have

(@Y F (RO 1@ = (RO, D)1

In this section we obtain a resolution (X,,d,) of a crossed product £ = A# ;H
as an F-bimodule, which is simpler than the canonical one of Hochschild. To begin,
we fix some notations:

1) For each algebra B, we put B = B/k. Moreover, given b € B we also let b denote
the class of b in B.

2) For each k-module V' we write V' =Vg---@V (I times), and for each algebra
B we write By(B) = B B® @ B.

3) Given ap ® -+ ® a, cA® T and0<i<j<r, we write a;; = a; @ - ® a;.

4) Given hg ® -+ ® hy c g and 0 <1i < j <s, we write h;; =h; ® --- ® h,.

1.1. The resolution (X,,d.)

Let Yy = E®a (EJA) @) @4 E and X,s = E®4 (E/A)®) @ 4% @ E, for all
r,s > 0. Consider the diagram of F-bimodules and E-bimodule maps
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where (Y, 0.) is the normalized Hochschild resolution of the algebra inclusion A C
E, in the relative sense, introduced in [G-S]; for each s > 0, the complex (X, d?,)
is the normalized bar resolution of A, tensored on the left over A with F ®4
(E/A)®4)" and on the right over A with E; and for each s > 0, the map y, is the
canonical projection.

Note that X,s ~ F® ﬁ®s ® Z®T ® E. Moreover, each one of the rows of
this diagram is contractible as a left E-module complex. A contracting homotopy
00s: Yo = Xos and o)), ;2 Xpg — Xy q1 ¢ of the s-th row, is given by

o&(x @4 afth) = Xo,s-1 ®a .0 @ 14,
oy s(X®a®a#h) = (-1)"'x®a®a® 1#h,
where x = 20 ®4 - a2 € F®y (E/A)(®A)S and a=a1® ---®a, € a°

So, we are in the situation considered in Appendix A. We define E-bimodule maps
dly: Xps — Xopi—1.5—1 (r>0and 1 <[ < s) recursively, by:

—00 1 Os (%) ifr=0and!=1,
dy(x) = _22_110?18 ldi 15— gd%s( X) ifr=0and 1 <I<s,
_Zé }) S—H 1,5— ldr—|—] 1,5— gdj (x) ifr>0,
for x € A®a (E/A)(®4) A% ®k.

Theorem 1.1.1. Let pu: Xoo — FE be the multiplication map. There is a Y-
projective resolution of E

(1) B X, Bx, 2ox, B ox, Mox, B oxy B
where X, = @ Xps and d = dj, +ZZdM .
r+s=n =1 r=11=0

Proof. Let pi: Yy — E be multiplication map. The complex of E-bimodules
ELy, 2y &y, &y 2oy, &y Loy 2

is contractible as a complex of left F-modules. A chain contracting homotopy
o5t E — Yy and o} : Yy — Y4, is given by o, ! (x) = (—1)*x ® 1p. Hence,
the theorem follows from Corollary A.2 of Appendix A. [

Remark 1.1.2. Let Uz sy Ye — Xj oy and ol : Xps — Xrqi4+1,5—1 be the
maps recursively defined by

r+l+1,s—1°

-1

5l
T+l+1 s—1 = E :0r+l+1 s— ldr—i—z—i—l s—i Ortitl,s—i (0<i<sandr>—1).
=0

We will prove, in Corollary A.2, that the family 59: F — Xo, Gpnt1: Xn — Xnt1,
defined by @y = 03, 0, ! and

n+1 n n—r
Un+1 - Z 9] n—Il+1 Un—l—l 225 + Z Z ar—l—l—i—l n—r—I1 (n > O)?
r=0 (=0

is a contracting homotopy of the resolution (1) introduced in Theorem 1.1.1.
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Theorem 1.1.3. The following assertions hold:

1) Let x =290 Q4 - Qazs € E®n (E/A)(®A)S with xs = as#hs, and b € Z®T
We hawve
s—1
dr(x®b®1p) = Z(—1)1+Txo,i—1 QA TiTit1 ®AXit2,s bR 1g
i=0
+ (=1 X0 52 @4 Ts105 @ b @ 1413,

2) For each l > 2, the image of leS is contained in the k-submodule of X, 1-1 .51
generated by all the elementary tensors to® 4+ @A Ts—1 Qa1 Q-+ @ Apy1—1 With
Il —1 of the a;’s in the image of the cocycle f.

Proof. The computation of d!, can be obtained easily by induction on r, using that
djs = —0875_1 Os 12 and dl, = a?s | d} dO,, for r > 1. The assertion for d!

r—1,s “rs» rs)
with [ > 2, follows by induction on [ and r, using the recursive definition of d.,. O

In Appendix B we will give precise formulas for the maps d’’s.

1.2. Comparison with the canonical resolution

Let (B.(E),b.) be the normalized Hochschild resolution of E. As is well known,
the complex

E & By(E) && By (E) & By(E) & By(E) & ..

is contractible as a complex of left E-modules, with contracting homotopy &,,(x) =
(—1)"x®1. Let 7, be the contracting homotopy of (1) introduced in Remark 1.1.2.
Let ¢y : (Xs,de) — (BL(E),b.) and ¥, : (BL(E),b.) — (X4, d.) be the morphisms
of E-bimodule complexes, recursively defined by ¢¢ = id, g = id, ¢pp11(x®@ 1) =
$ni1 Pndp1(x @ 1) and Y1 (Y ® 1) = Tpp1 Yn by (y @ 1).

Proposition 1.2.1. ¥, ¢, = id, and O« Vs 1S homotopically equivalent to the
identity map. A homotopy ¢ . 2t id, s recurswely defined by w1 = 0 and

Wn+1(X) = &ng1 (On ¥ — id — wy, b)) (%), forxGE@E ® k.

Proof. We prove both assertions by induction. Let U, = ¢, ¢, — id,, and Tn =
U, —wy, bl,. Assuming that b/, w, +w,_1b,,_; = U,_1, we get that, on E®E Rk,

b;z+1 Wnt1 + wn b, = b;z+1 n1 Tn +wi by,
=T, —Enb' T, + wn b,
— & U1 U, + &0 wy
= Un — & Upn b, + &, Ty 1 b, = U,.

Hence, 0}, wpt1 +wp b, = U, on B, (E). Next, we prove that 1, ¢, = id,. It is
clear that g ¢g = idy. Assume that 1, ¢, = id,. Since

n+l—s _®n+1

oni1(E®a (E/A)®) @ A% ek CE®E" ok
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s  —@ntl-s
we have that, on A ®4 (E/A)(®4)" @ A ® k,
Vnt1 Pyl = Ont1 Yo bpyyy Py
= On+1 wn b;H—l én-&-l Cbn dn-i-l
= On+1 Q/Jn Cbn dn—H — On+1 @bn fn b;;, ¢n dn+1

= 0nt1dnt1 = iyt — dpg2 Onya.

n+l—s

So, to end the proof it suffices to see that @, yo(A® 4 (F/A)(®4)° RA° ®k) =0,
which follows easily from the definition of 7,. [

Let F(X,) = @ye.c; E®a (B/A)®) @ A” @k and let Fi(B,(E)) be the
subbimodule of Bn(Ej g_enerated by the tensors 1®x1®- - -®x, ®1 such that at least
n—1 of the x;’s belong to A. The normalized Hochschild resolution (B.(E),b,) and
the resolution (X, d,) are filtered by F°(B,(E)) C F1(B.(F)) C F%(B.(E)) C ...
and FY(X,) C FY(X,) C F?(X,) C ..., respectively

Proposition 1.2.2. The maps ¢, V. and w.y1 preserve filtrations.
Proof. Let Q5 = E®4 (E/A) @) g 1" ® k. We claim that
a) Tpi1(F(X,)) C Fi{(X,.1) forall 0 <i < n,
b) T (E®a (B/A) @) @ A% @A) C Qi + Fi~'(Xpy1) for all 0 < i <n,
¢) Tnpit(E®4 (E/A)®D" @ B)Y C E®y (E/A) @)™ @k + FY(X,41),
d) Yu(F (Bu(E)NEQEY ©k)C Qi+ F~'(X,) forall 0 <i < n.
In fact a), b) and c) follow immediately from the definition of &, 1. Suppose d)

. __on+1
is valid for n. Let X =20 @ -+ @ 21 ® 1 € FI(Buy1(E) NE®E°  ®k, with
0 <i<n+1. Using a) and b), we get that for 1 < j < n,

Tnt1(Yn(X0,j-1 @ 2241 @ Xjy2n41 ® 1)) € Trp1(QF + F' (X))
- Qéfl + Fi_l(Xn-i-l)-

Since n41(X) = GTpy1 P by, 1(x), to prove d) for n 4+ 1 we only must check that
Tnt1(Vn(Xont1)) C Q_y + F"1(Xy41). If 2,41 € A, then using a), b) and the
inductive hypothesis, we get
En—i—l(wn(xo,n—&—l)) = En—l—l(djn(XOn ® 1E)xn+1)
CTn(Ea (B/A)®) 0% © A+ FY(X,)
C Qi+ F' (Xnt),

and if x,11 ¢ A, then xg,41 € F'"}(B,,(E)), which together with a), ¢) and the
inductive hypothesis, implies that

En—l—l(wn(xo,n—kl)) g En—kl(Fi_l(Xn)) g Q§_1 + Fi_l(Xn—l—l)-

From d) it follows immediately that i, preserves filtrations. Next, assuming that
¢n preserves filtrations, we prove that ¢,411 does. Let y = x ® a ® 1, where
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n+1 [3

X =20®4 - @az; € EQA(E/A)®)" and a®l = a1®- - -@an1_;®1 € 4% ®k.
Since ¢n11(y) = &nt1 én dn(y) and

Ent1(Pn(dly(y))) C &ns1(dn(FTHX0)))
C &1 (F7H(BR(E))) € F"7 T (Bhyi(B)),

it suffices to see that &,41(¢n(d%(y))) € F(B,.1(E)). But

En+1 Pn dgs (y) = (1)1 on(x®a)
= (=1)"&nt1(dn(%0i ® @1 p—i ® 1)ant1-i)
C et (FIBLENNEQE” ©A)
C F'(Bn1a1(E)),

since ¢,(QY) C E ®E® ® k. Next, we prove that w, preserves filtrations. Assume

that w, does. Let x =10 ® - Qx,®1 € F'(B,(E))NE 9E @k. It is evident
that wy11(X) = g1 On Un(X) — Epp1 win b, (x). From d) we get

Ent1 On Y (X) € En1 60 (Q + F'71 (X)) C &nan (F'™H (Bn(E))) C F'(Bu(E)),

since &n11(0n(QY)) C &1 (E ® B % k) = 0. To finish, it remams to check that

C FY(B,(E)). Since w,(F ® E® @ k) CE® E® ® k, we have

1 wn by, (%)
) (_ ) 1fn+1 wn(Xon) Hence, if x,, € A, then

fn—i—l wn (X
En1wn by (x) = (_1>n_1£n+1<wn(X0,n—1 ® 1)zn)
C i (FI(BUE)NE®E” ©4)
C F'(Bp11(E)),

and if z,, ¢ A, then xo,, € F""}(B,,_1(F)), and so

En+1Wwn b;z(X) = (_1)n_15n+1 wn (Xon) C fn—H(Fi_l(Bn(E))) C Fi(Bn—H E). O

2. THE HOCHSCHILD (CO)HOMOLOGY OF A CROSSED PRODUCT

Let £ = A#;H and let M be an E-bimodule. In this section we use Theo-
rem 1.1.1 in order to construct complexes, smaller than the canonical ones, giving
the Hochschild homology and cohomology of A with coefficients in M, respectively.
These complexes have natural filtrations that allow us to obtain spectral sequences
converging to H,(E, M) and H*(E, M), respectively. We compare these spectral se-
quences with the ones obtained from a generalization of the Hochschild-Serre direct
method.

Theorem 2.1. The Hochschild homology of E with coefficients in M is the homol-
09y of M @pe (X, dy).

Proof. 1t is immediate. [
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Let Xy = M ©4 (E/A)®)" © A7 . 1t is well known that X, ~ M ®pe X,
Let d X,,S — )?frurl—l,s—l be the map induced by idys QR pge dis. It is easy to see
that drs is the boundary map of the normalized chain Hochschild complex of A
with coefficients in M ® 4 (E/A)(®4)", With the above identifications the complex
M ®@pe (X4, d,) becomes ()A(*,(;l\*), where

X,= P X, and Zd0n+ig d
rds=n r=1 1=0

Let Fi(X,) = @O<s<z n—s,s- Clearly FO(X,) C FY(X,) C ... is a filtration of
(X*, d*). Using this fact we obtain:

Corollary 2.2. There is a convergent spectral sequence

Bl =H,.(A,M @4 (E/A)®)) = H,,,(E, M).

The normalized Hochschild complex (M ® E®*, b.) is filtered by
FOMeE )CF{(MeE® )CF2(MeE® )C...,

where F'(M ® EY ) is the k-submodule of M ® EY generated by the tensors
m® x; ® -+ ® zy, such that at least n — ¢ of the x;’s belong to A. The spectral
sequence associated to this filtration is called the homological Hochschild-Serre
spectral sequence. Since, for each extension of groups N C G, with N a normal
subgroup, k[G] is a crossed product of k[G/N] on k[N], the following theorem (joint
with Corollary 3.1.3 below) gives, as a particular case, the homological version of
the main results of [H-S].

Theorem 2.3. The homological Hochschild-Serre spectral sequence is isomorphic
to the one obtained in Corollary 2.2.

Proof. 1t is immediate that the filtrations of ()/f*,c/l\*) and (M ® F@)*,b*) are the
ones induced by the filtrations of (X, d,) and (B.(FE),b,), introduced above Propo-

sition 1.1.2, respectively. Hence, the result follows from Propositions 1.2.1 and
1.2.2. O

Theorem 2.4. The Hochschild cohomology of E with coefficients in M is the co-
homology of Hompge (X, d.), M).
Proof. Tt is immediate. [

Let X7* = Hom((E/A)®)" © A% , M) ~ Homy (A", Hom((E/A)®)", M)).
Clearly X" ~ Hompge(X,s, M). Let d” XrH=Ls—l _, X7s be the map induced
by Hompge (d.,, M). It is easy to see that d is the boundary map of the normalized

r8?

cochain Hochschild complex of A with coefﬁments in Hom A((E JA)(®4)" M. With
the above identifications Homge (X, d,), M) becomes (X*,d*), where

n n—r

X"= P X and Zdl“+22dm r

r+s=n r=1 [=0

Let F;(X") = @,-, X", Clearly Fy(X*) 2 Fi(X*) 2 F(X*) 2 ... is a
filtration of (X*, c?*) Using this fact we obtain:
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Corollary 2.5. There is a convergent spectral sequence

E}® = H" (A, Homu (E/A)®4)° M) = H'"(E, M).

Let Fi(Homk(E®n,M )) be the k-submodule of Homk(F®n,M ) consisting of
maps ¢ € Homk(E® , M), for which ¢p(z; ® --- ® x,) = 0 whenever n — i of

the x;’s belong to A. The normalized Hochschild complex (Homy, (E@)* , M), b%) is
filtered by

Fy(Homy(E", M)) D Fy(Homy(E", M)) D Fy(Homy(E",M)) D ....

The spectral sequence associated to this filtration is called the cohomological Hochs-
child-Serre spectral sequence. The following theorem, joint with Corollary 3.2.3
below, gives, as a particular case, the main results of [H-S].

Theorem 2.6. The cohomological Hochschild-Serre spectral sequence is isomorphic
to the one obtained in Corollary 2.5.

Proof. Tt is immediate that the filtrations of (X*, c?*) and (Homy (E® , M), b*) are
the ones induced by the filtrations of (X, d,) and (B.(F),b.), introduced above
Proposition 1.1.2, respectively. Hence, the result follows from Propositions 1.2.1
and 1.2.2. [

3. THE HOCHSCHILD (CO)HOMOLOGY OF A
CROSSED PRODUCT WITH INVERTIBLE COCYCLE

Let £ = A#;H and let M be an E-bimodule. Assume that the cocycle f is
invertible. Then, the map h — 1#h is convolution invertible and its inverse is
the map h — (1#h)™' = f~1(S(R®), AGN#S(RM). Under this hypothesis, we
prove that the complexes )/f*(E7 M) and X *(E, M) of Section 2 are isomorphic to
simpler complexes. We use these new complexes in order to compute the term
E? of the spectral sequences obtained in Section 2. Moreover, using a theorem of
Gerstenhaber and Schack, we prove that if the 2-cocycle f takes its values in a
separable subalgebra of A, then the Hochschild (co)homology of E with coefficients
in M is the (co)homology of H with coefficients in a (co)chain complex.

3.1. Hochschild homology

Let X, = M ® Z®T ® F@)S. The map 6,.: )/frs — X, defined by
Ors(M@A(14#h1)@ 4+ - @ 4 (1#hs)@a) = m(1#h1) - (1# ) 2ach P - - -@h?),
where a = a1 ® - - - ® a,, is an isomorphism. The inverse map of 0,4 is the map
m@a@h;®---®@hy = m(1#h0) 7 - (1#A) @ (1#R )@ - -0 4 (1412 2a.

S — —
Let d,g: Xps — Xyq1-1,5—1 be the map d,., := 0,111 5 d.. o=,

rs 'rs
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Theorem 3.1.1. The Hochschild homology of E with coefficients in M is the ho-
mology of (X «,ds), where

X, = EB X,s and Zdén—kinzrdin .
1=0

r4+s=n r=1

Proof. This is an immediate consequence of Theorem 2.1 and the fact that the map
0. (X, dy) — (Y*,E*), given by 6,, = ZT+S:R 0,5, is an isomorphism. [

Note that when f takes its values in k then (7*,3*) is the total complex of the
double complex (M ®Z® ® "® d**,d )

It is easy to see that 328 is the the boundary map of the normalized chain
Hochschild complex of A with coefficients in M, tensored on the right over k with
zd— , and

dry(x) = (1) (1#RE)m(1#RD) " @ a"” @ hy . 4

-+ Z(—l)r+im Xa hl,ifl X hihi+1 X hi+2,s —+ (—1)Tme(h1) Xa hgs,

where x =m®a®h,witha=a¢; ® ---®a, and h=h; ® --- ® hg.

For each h € H, we have the morphism 97 : (M ®Z®*,b*) — (M ®Z®*,b*),
defined by 9" (m ® a) = (1#h§3))m(1#hgl))—1 ® aht?.

Proposition 3.1.2. For each h,l € H, the endomorphisms of H,(A, M) induced
by 9" V9L and by 9 coincide. Consequently H, (A, M) is a left H-module.

Proof. By a standard argument it is sufficient to prove it for Hyo(A, M), and in this
case the result is immediate. [

Let FO(X,) C F1(X,) C ... be the filtration of (Y*,E*) obtained transporting
the one of (X, d.), given above Corollary 2.2, through .. It is immediate that
Fi(X,)= @Do<s<i Xn—s,s- Then, we have the following;

Corollary 3.1.3. if H is flat over k, then the spectral sequence of Corollary 2.2
satisfies B, = H(A,M)® H® and E2, = Hy(H,H,(A, M)).

Let S be a separable subalgebra of A. Next we prove that if the 2-cocycle f
takes its values in S, then the Hochschild homology of E with coefficients in M is
the homology of H with coefficients in a chain complex. Assume that f(h,l) € S
forall h,l € H. Let A= A/S, A®)° = §and A®)" = Agg---®g A (r-times) for
r>0,andlet M @5 A®) Qg =M@ (AR, A®) @, A) = Mg A®) @4 S be
the cyclic tensor product over S of M and A(®)" (see [G-S] or [Q]). Using the fact
that f takes its values in S, it is easy to see that H acts on (M ®g A®) @g. b, )
via

h - (m Rg ’5) = (1#h(3))m(1#h(1))—1 g 5;1(2),

~ () () (r+1)
where m @sa=m ®g a1 Qg - Qg a,Qg and a’ a’f Rs - g aff
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Theorem 3.1.4. The Hochschild homology H.(E, M), of E with coefficients in
M, is the homology of H with coefficients in (M ®g A®) 4. b,).

Proof. Let (M ®g Z(®S)*®s) ® H®*, NQ*,CE*) be the double complex with hori-
zontal differentials

jgs(x) =ma; ®saz ®h+(-1)"a,m®sa;,—1 @h
r—1

+ Z(—l)im ®s a1,i-1 ®s ;a1 s A2, @ h,
i=1

and vertical differentials

dL,(x) = (—=1)"m ®; @ @ hgy + (—1)" T (14 ) mA#RD) ! 058" @ hy,

s—1
+3 (D Fmesaeh? @ o b @ hPhE) @ hs .,
=1

where x = m®a®h, with a = a1 ®g -+ ®g5a,05 and h = h; ® --- ® hs. Let
(Yf,&f) be the total complex of (M ®gA®) @) oH ,d°, . dL,). We must prove
that H.(E, M) is the homology of (Yf,Ef) Let m,: (X, dy) — (Yf,c_if) be the
map m®a® h+— m ®ga®h. Using item b) of Theorem 1.1.3 it is easy to check
that 7, is a map of complexes. Consider the filtration F9° < Fl9 C F?5 C ...

of (Yf,af), where F}% = @y ,;(M ®g A" @) ® H® . From Theorem 1.2
of [G-S], it follows that 7, is a morphism of filtered complexes inducing an quasi-

isomorphism between the graded complexes associated to the filtrations of (X, d,)

—S =S
and (X 5 ). Consequently 7, is a quasi-isomorphism. The proof can be finished

* ) *

by applying Theorem 3.1.1. [J

3.2. Hochschild cohomology

Let X~ = Homy, (Z®T ® ﬁ@)s, M). The map 0"5: X = — X"¢, defined by

07 (0)(1#h1) @4 - --© 4 (1#h) @a) = (1#R)) - (1% )p(ahP @ - - @ h?),

. . . —rs —r+l—1,s—1 — —rs
is an isomorphism. Let d; : X L X be the map defined by d; :=

(97"3)—1 C/Z\;s ‘9T+l—l,s—l.

Theorem 3.2.1. The Hochschild cohomology of E with coefficients in M is the
cohomology of (Y*,E*), where

X'=@P X" awd T ;:iaﬁ’uiga?""i
r+s=n =1 r=1 1=0

Proof. This is an imrriediate consequence of Theorem 2.4 and the fact that the map
0*: (Y*,E*) — (X*,d*), given by 0" =3 . _ 0% is an isomorphism. [J

Note that when f takes its values in k, then (7*,3*) is the total complex of the
double complex (Homy, (A" o H, M),c_l;*,ai*).
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It is easy to see that

dy’ (0)(x) = a1p(ag, © h) + (—1)"p(ar,,—1 @ h)a,
r—1
+ Z(_l)i¢(al,i—1 ® a;ai11 ®aj19,r @ h),
=1

TS

3 T r4+s — (2)

dy () (x) = (=1)"e(h1)p(a @ hay) + (1) (1#h)) Tp(a"” @ hy 1) (1#A)
s—1

+ Z(—l)TJFiSO(a ®@hy i1 ®@hihiy1 ®@higa ),
i1

where x =a®h,witha=a¢;®---®a, andh=h1 ® --- ® hg.
For each h € H we have the map v : (Homy (A", M), b*) — (Homy (A", M), b*),
defined by 7}, (¢)(a) = (1#h1) (™) (1403).

Proposition 3.2.2. For each h,l € H, the endomorphisms of H* (A, M) induced
by U7 95 and by 93, coincide. Consequently H*(A, M) is a right H-module.

Proof. By a standard argument it is sufficient to prove it for HO(A, M), and in this
case the result is immediate. [

e

Let Fy(X') D Fi(X) C ... be the filtration of (X ,d") obtained transporting
the one of (X,,d,), given above Corollary 2.5, through 6*. It is immediate that

——n—Ss,s

Fi(X,) = D, X . Then, we have the following:

Corollary 3.2.3. if H is flat over k, then the spectral sequence of Corollary 2.6
satisfies E7° = Homy (H ,H" (A, M)) and E3* = H*(H,H" (A, M)).

Let S be a separable subalgebra of A and let A(®s)" (r > 0) be as in 3.1.4. Sup-
pose f(h,l) € S for all h,l € H. Using the fact that f takes its values in S it is easy
to see that H acts on (HomAe(A®s A®)" @ A M), b*) = (Homge (A®)" Ar), b*)
via (¢ - h) (@) = (1#hM) L@ ) (1#h®).

Theorem 3.2.4. The Hochschild cohomology H*(E, M), of E with coefficients in
M, is the cohomology of H with coefficients in (Homse (A®s)" M), b*).
Proof. 1t is similar to the proof of Theorem 3.1.4. [

4. THE CARTAN-LERAY AND GROTHENDIECK SPECTRAL SEQUENCES

Assume that FE is a crossed product with invertible cocycle. In this case another
two spectral sequences converging to H,(E, M) and with E?-term H, (H, H. (A4, M))
can be considered. They are the Cartan-Leray and the Grothendieck spectral se-
quences. The last one was introduced for the more general setting of Galois ex-
tension in [S]. In this Section we recall these constructions and we prove that both
coincide with the Hochschild-Serre spectral sequence. Similar results are valid in
the cohomological setting. Recall that (B.(E),b.) is the normalized Hochschild
resolution of E.

Let (ﬁ®* ® H,d,) be the canonical resolution of k as a right H-module and
(Z,0¢) = (BL(E),b,) ® (F@) ® H,d,). Consider E RE° @E®H® ©H as an
E-bimodule via

(a#1)(x @ h)(b#q) = ((a#l)z0 @ X1r ® 2,41 (b#¢))) ® (h1s @ hey1¢?),
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where x =29 ® - @ 2,11 and h=h; ® - ® hsyq. It is clear that

(3) oIS A B A BN S S L B

Y

where u((ao#ho ® a1#h1) ® 1) = e(l)aoalf(hél),hgl))#h((f)h?), is a complex of
E-bimodules. Moreover (3) is contractible as a complex of left EF-modules, with
contracting homotopy ¢, (n > 0) given by (o(1g) = 1p ® 1g ® 15 and
x@1lg@h+ (-1)"Mlogr; @ 1lp@h®ly ifr=0
<n+1(Y) = T+1 . 7
(-)""'x®1g®h ifr>0
where y =x® h, with x=20®---® 2,41 and h=h; ® --- ® hyy_r41. Since the
map
T EQE. 9oH 9H®E-EQE 9E®H  ©H,
given by 7(xo, ®h®x,11) = (X0, ® 1p®h)x,11, is an isomorphism of E-bimodules
(the inverse of 7 is the map Xq, ® a#h @h — xq, @ h1s @ he 1S~ (h?) @ a#hD),
(Z4«,04«) is an Y-projective resolution of E.
We consider (Z,,d.) ﬁltered by FO(Z*) C FYZ.) C F*(Z,) C ..., where

n—

Fi(Z,) =@\ E®E" oE)o(H ©H).

Let M be an E-bimodule. The groups M ®pgacor (F ® B ® FE) are left H-
modules via

h(m @x) = (1#hP)m @ xo, © w41 (1#R0) 7,

where X = 29 ® - - - ® x,41. There is an isomorphism

M @pe (Z,,0.) ~ (H® ®H,d.) ®r (M ©pgaer (B.(E),b.)).
Let FO C F! C F?2 C F3 C ... be the filtration of M ®pge (Z4,0.) induced by the

filtration of (Z,,d,). It is easy to see that F ~ @ézo(ﬁ@)] Q@ H)®py (M ®@agpgor

n—i

EF® E® ’ ® F). The spectral sequence associated to this filtration converges to
H.(E, M) and has E?-term H,(H,H,(A, M)). This spectral sequence is called the
homological Cartan-Leray spectral sequence. Similarly the groups Hompgg gop (E ®

E® © E, M) are right H modules via f.h(x) = f(Xor ® rp1 (1#2MD) ") (1#22)
and there is an isomorphism

Hom e ((Z.,0.), M) ~ Hompy (H® © H,d,), Hompg e (B.(E), 1), M)).
Let Fy 2 Fy 2 Fy 2O Fy 2 Fy 2 ... be the filtration of Hompe ((Zx, 0s), M) in-
duced by the filtration of (Z.,d.). It is easy to see that F}* = P, Hompy (ﬁ®3 ®

n—i

H,Hompgg o0 (F ® E® E M )) The spectral sequence associated to this fil-
tration converges to H*(E, M) and has E2-term H*(H,H*(A, M)). This spectral
sequence is called the cohomological Cartan-Leray spectral sequence.

Let @.: (B.(E),b.) — (Z4,04) and VU,: (Z,,0.) — (B.(E),b.) be the mor-
phisms of E-bimodule complexes, recursively defined by
Pz R1lg) =211y, VYo(z®1lp®h)=¢ch)z® 1g,
Ppy1(X® 1p) = (1 Pu by (X @ 15),
U,r1(x®1p®@h) =&,11 %, 0nt1(x® 1 ® h).
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Proposition 4.1. [t is true that ¥, ®, = id, and that ®, VYV, s homotopically

equivalent to the identity map. The homotopy @, U, RLEEN idy 1s recursively defined
by U(zR1p®h)=2®1p@h® 1y and

forx=20® ---@x, andh=h1 @ - @ hpt1_r.

Proof. 1t is easy to see that ®, and ¥, are morphisms of complexes. Arguing as in
Proposition 1.2.1 we get that (2,11 is a homotopy from ®, ¥, to the identity map.
It remains to prove that ¥, &, = z'd It is clear that \Ilo ®y = idy. Assume that

n+1—7‘

U, B, = id,. Slnceq)nH(E@E @k)c2”+1E®E kI ® H, we
havethatonE@E ® k

\Ijn—i—l (I)n+1 - En—l—l \Iln 871—1—1 (I)n+1 - gn—l—l \Il an—l—l Cn+1 Cb b;H—l
= £n+1 \Ijn @n b;’L—i—l £n+1 \Ijn Cn (9 (b bn—|—1 €n+1 bn—|—1 Zdn+1 EI

Next, we consider the normalized Hochschild resolution (B.(FE),b,) filtered as in
Proposition 1.2.2 and the resolutlon (Z«,0,) filtered by FO(Z,) C F'(Z.) C ...,
where Fi(Z,) = ®'_(E«E®  ©E)o (@ ©H).

Proposition 4.2. We have that

n

D, (ap#ho @+ ® app1Fhnt1) = Z(_l)j(n—H)(CLO#hO)(al#hgl)) e (aj#hg‘l))

§=0
1 2 2 2 2
® (a1 #h)) ® - @ (@ #hl)) ohP @@ hP @bl h) ).
Consequently the map ®, preserves filtrations.

Proof. Tt follows by induction on n, using the recursive definition of ®,. [

Proposition 4.3. The map P, induces a homotopy equivalence of E-bimodule
complexes between the graded complexes associated to the filtrations of (B« (E),b.,)
and (Z,,0y).

Proof. Note that

(X)) ; .
iy = Ken ) = (BT 01" 0 B,
F*(2.) R

- = B),< E, . H }[7

Fs=1(Z,) (B+(E), b)) ® ®

where dg’s is the boundary map introduced in Subsection 1.1. By Proposition 1.2.2
it suffices to check that ¢, = &, qb* induces a homotopy equivalence 5§ of E-
bimodules complexes, from (E®H 2A° QF,d ) to (B« (E), b’)®ﬁ® ®H. Let

Y *S

Y, and ps be as in Subsection 1.1 and Y,=FE ®H ® H endowed with the structure
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of E-bimodule given by zg(z1 ® h)ze = xoz122 @ h, where h = hg ® -+ ® hgsy1.
Consider the diagram

0

Y, M EeHY 9ok <N EoHY 94d0E

(4) l@s J@g l@i

0
d2$

YV, < EoEeH® ®H ' EQEQE®H® ©H 2

where

fs((zo @ 1) ®h) = 2921 @ h and
&*(x o h) = z(1#h) - (#p ) e rP . o r®).

We assert that &f(x) = 1g @ (1#h§1)) e (1#hgl)) ® hgz) ® - ®@h® ® 1y, where
X=1g®h®1lg, withh=h; ®---® hs. To prove this it suffices to check that

O, ps(x) € 1p @ (1Y) - (1R @ b @ - @ P @ 1 + Fu_y,

which follows by induction on s, using that ®5¢4(x) = (s Ps—1 ps—1ds(x). Now,
it is immediate that fig 58 = &* Ws. Since ®* is an isomorphism and the rows of
(4) are Y-projective resolutions of Y and Y, respectively, it follows that 5i is a
homotopy equivalence. [

Corollary 4.4. The (co)homological Cartan-Leray spectral sequence is isomorphic
to the (co)homological Hochschild-Serre spectral sequence.

Proof. We prove the assertion for the homology. The proof in the cohomological

setting is similar. It is immediate that the filtration of (M ® E? ,by) is the one
induced by the filtration of (B.(F),b,), defined above Proposition 1.1.2. Hence,
it is clear that the map idy; ®ge P, preserve filtrations. Let gr(idy; @ge P.) be
the map induced by zd M Qpe D, between the graded complexes associated to the

filtrations of (M QE® ,by) and M ®pe (Z,, 04), respectively. Since, for all i,n > 0
the E-bimodules F*(B,(E)) and F*"(B,,(F)) are direct summands of F*(Z,) and
Fit1(Z,) respectively, gr(idy ®@pe ®,) = idy Qpe gr(®,), where gr(®,) is the
map induced by ®,, between the graded complexes associated to the filtrations
of (B«(E),b.) and (Z., ), respectively. By Proposition 4.3, gr(idy; ®pge ®.) is a
quasi-isomorphism. The assertion follows immediately from this fact. [

4.5 The Grothendieck spectral sequence. If M is an E-bimodule, then the
group Ho(A, M) = M/[A, M] is a left H-module via h-m = (1#h®@)m(1#h1))~1,
where the ™ denotes the class of m in M/[A, M]. Let us consider the functors
M — Hy(E, M) from the category of E-bimodules to the category of k-modules,
M — Hy(A, M) from the category of E-bimodules to the category of left H-modules
and M — Ho(H, M) from the category of left H-modules to the category of k-
modules. It is easy to see that Ho(E, M) = Ho(H,Ho(A, M)) and that if M is
a Y-projective module, then Hy(A, M) is a projective H-module, relative to the
family of all epimorphisms of H-modules which split as k-linear maps. In fact, if
M = E ® N, then the map h @ n — 1#h(2 @ n(1#h(1))~1 is an isomorphism of
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left H-modules from H ® N to Ho(A, M). Thus we have a Grothendieck spectral
sequence
E}, = Hy(H,H (A, M)) — H,1 (B, M)).

We assert that the Grothendieck spectral sequence and the Cartan-Leray spectral
sequence coincide. To prove this we use a concrete construction of the Grothendieck
spectral sequence. Let (Py,0.) = (M RE° ® E,b.) be the normalized canonical
resolution of M as a right EF-module. Let us write (P.,0s) = (Pi,0s) Q@4 A.
Consider the double complex

l l !

J— JE— J— _2 J—
Coo'= HoyP, e HoH@y P, —— H° 9H®y Py —00- ...

l ! l

— JE— J— _2 —
H@y Py e—— HOH®y Py —— H° @H®y Py —0o ..

*

whose r-th column is (—1)" times H® 9Hog (P.,0,) and whose s-th row is the

canonical complex (H® ® H ®p Ps,d,) giving the homology H,(H, P,) of k as
a trivial right H-module with coefficients in Ps. By definition, the Grothendieck
spectral sequence is the spectral sequence associated to the filtrations by columns of

Clx. Since Cy, =~ (H@) Q@ H,d,) @y (M @pgaer (BL(E),b.)) as filtered complexes,
the homological Cartan-Leray and the Grothendieck spectral sequence coincide.
The same is valid in the cohomological setting.

APPENDIX A

Let R — S be an unitary ring map and let N be a left S-module. In this section,
under suitable conditions, we construct a projective resolution of IV, relative to the
family of all epimorphisms of S-modules, which split as R-linear maps. We need this
result (with R = FE, S = E° and N = F) to complete the proof of Theorem 1.1.1.
The general case considered here simplifies the notation and enables us to consider
other cases, for instance algebras of groups having particular resolutions.

Let us consider a diagram of left S-modules and S-module maps

02
0 0
M1 d11 d21
Y, &— Xo X1
01
0 0
Mo le d20
Yy «—— Xoo X0 o

such that:

a) The column and the rows are chain complexes.
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b) For each r,s > 0 we have a left R-module X, and S-module maps
Srst Xps — S @ X g and Trs: S ® X g — Xy

verifying 7,5 5,5 = 1d.

c) Each row is contractible as a complex of R-modules, with a chain contracting
homotopy o,: Yy — Xos and a?+17s: Xrs = Xpq1,s (r>0).

We are going to modify this diagram by adding S-module maps
dy: Xps — Xpp1160  (rs>0and 1<1<5s).

For each n > 0, let

YR TRV SIS 5) Y S
r+s=n =1 r=11=0
Consider the maps u, : X,, — Y, (n > 0), given by:
, pn(z) for z € Xo,
iy () = :
0 for x € X, ,,—r, with r > 0.

We define the arrows d., in such a way that (X.,d.) becomes a chain complex of
S-modules and p!, : (X, d,) — (Y., —0.) becomes a chain homotopy equivalence of
complexes of R-modules. In fact, we are going to build R-module morphisms

l . l .
Ols1: Ys = Xisq and oy o Xps — Xpqigp1s01 (1, > 0and 1 <1< s),

satisfying the following:

Theorem A.1. Let C.(u.,) be the mapping cone of u',, that is, C.(ul,) = (Ck, dx),
where Cp, =Y, ® X1 and 6, (Yn, Tn—1) = (=0(yn) — pth_1(@n-1), —dn—1(Tn-1)).
The family of R-module maps ,11: Cp(pl) — Cpy1(pl) (n > 0), defined by:

*

n—1 n—r—1

_ l
Op+1 = — E E Orti41l,n—r—Ii—1>

r=—1 [=0

is a chain contracting homotopy of C.(pl,).

Corollary A.2. Let N be a left S-module. If there is an S-module map ji: Yo — N,
such that

(*) NEY, 2Ly, Ly, &y, Oy, Oy, O
s contractible as a complex of left R-modules, then

d d d d d d d
(%) NE X & X & X, E Xy & X, & Xy & X &

9

where © = 11 pg, is a relative projective resolution of N, relative to the family of all
epimorphisms of S-modules, which split as R-linear maps. Moreover, if 00_1: N —
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Yy, o n+1 : Y, — Y41 (n > 0) is a chain contracting homotopy of (*), then we
obtain a chain contracting homotopy do: N — Xo, 0pt1: Xpn — Xpne1 (n >0) of
(*%), defining &g = 0y 05 " and

n+1 n—r

n
Ont1 = — Zam l+10n+1ﬂn+zzar+l+ln r—1:
1=0

r=0

Proof. Write

n—1ln—r—1

n
Z Z a?‘-i-l-l-l nori-1 (n=1) and On = Zag,n—l (n > 0).
r=0 I= =0

From Theorem A.1, we have

n l+1

* l+1—1 7 . —~
(*n) On n—i—l_E Uln 1Ony1 = — szzn—i—l i Oint1—i = —On41 On41.

=0 =0

It is clear that uoy = id. Moreover

Toh = 00005 ' i Ho = Tgg o — 000 D1 07 o
= id — dYy 0y + doy 001 07 ' o + dSg a1 07 pho,
where the last equality follows from (*0). Now, let n > 1. Take z € X, ,,_,. If
r > 1, then the equality (0,2) = 0,42 0p42(0,2) + 0541 9p+1(0,2) implies that

x = dpy10pn41(x) + 7, dp(x). Hence, we can suppose r = 0. Then, from (0,z) =
5n—|—2 Un+2(07 CL') + On+1 6n+1(07 Cl'f), we get

T =dpt10n11(x) + 0p dn () + T pin ()

= dp41 01 (%) + 5 d () + G 07 O i () + G O 04 in(2)
(z) n(T) — Nn 1dn(x) +0p Ongr 07;1_1 pn ()
(x) n(2) =

1 -1 dn () — dnt1 Opta Ur:il pn (),

)+ o, dy(x

— dn+1 On+1

=dpt10p41(T) + 0 dp(x

where the last equality follows from (*n). O

Next we define the morphisms d., and we prove that (X, d.) is a chain complex.

Definition A.3. We define the S-module maps dfnsz Xrs = Xoqi—1,5-1 (r >0 and

1 <1< s), recursively by d.., = Eis Sps, where Eisz S®Xps — Xpsi—1,6-1 (r>0
and 1 <1< s) is the S-module map defined by

_‘78,5—1 O s Tos(X) ifr=0andl =1,
Eis(x): _22‘_:110?_1,8 gdé 1,s— ]dOSWOS( X) ifr=0and1 <l <s,

-1 o l—j .
o Zj:O Orti—1,s— ldr+] 1,s—7 d 7T7‘S<X) Zf?” > 07

foreachx=1%X€S® X,s.
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Proposition A.4. We have pus_1 d§, =

0 I
dr+l—1,s—l drs - {

Proof. We prove the proposition by induction on [ and r.
‘= ps, dL, == s and dl—1,s := 0 for all [ > 1. Moreover

: 0
pressions we put dg,

to abbreviate we do not write the subindices.
1
0% d' d° 7(x), we have d°d (x) =

Since 3(1)(x) =—
which implies d°d' =

4. with j < [ or j
-

—d' d°.
=l and p < r.

d(x):—zj andl I d 7(x), then
-1
Pdx)=-Y dod T dx
7=0

Zdl il n

19

—0s lbs and
-1 4l

Z] ldj 1,5— jd
-1 4l i

Zg Odr—i—]‘] 1,5— jd]

Consequently (X, d.) is a chain complez.

ifr=0and 1 <l<s

ifr>0and1<I[<s.

To simplify the ex-

Let x = 1 ® X with X € Xgs.
~d%0%d' d° 7(x) = —d' d° w(x),

Let [ + r > 1 and suppose the result is valid for
Let x = 1 ® X with X € X,.

Since

-1

(x) + Z % d’d=I @ (x).

=0

Applying first the inductive hypothesis to d°d'~7 with (0 < j < ) and then to

d® d’ with (0 < j < 1), we obtain:

-1 I—11—j—1
d° El(x) =— Zdl_j d’ 7(x) — Z o0 d I (%)
§=0 j=0 =0
1—21—j5—-1
=— Zdl Td oV d I @ (x)
7=0 =1
-15—-1
+Y > td T @ d Zd”dﬂ
7=1h=0

The desired equality follows immediately from this fact.

It is immediate that u : (X, ds) —

0

(Yi, —0,) is a morphism of S-module chain

complexes. Next, we construct the chain contracting homotopy of C. ().

Definition A.5. We define Uf,s—l: Y, — Xj -1 and 0£+l+1784: Xrs — Xpgi41,5-1

(0 <1 <s,r>0), recursively by:

-1
l _ § : 0 l—1
Ur—l—l—i—l,s—l - Ur—i—l—l—l,s ldr—|—z—|—1 s—1
=0

Proof of Theorem A.1. To simplify the expressions we put d(ll,s =0, dY, :=

f«+i+1,s_i O<l<sandr>-1).

/’1’87

dt 15 i= 0, and d- 15 =0 for all [ > 1. Because of the definitions of d, and o, it

sufﬁces to check that 00, dl, + d° t1s

s 'rs

§ : § : l—i
O-T'-i-ls l rs dr—l—H—ls 1

O
r—‘,—l,s

=1d and

17:’+i—|—1,5—’i =0 fOI‘ [ > 0,
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where we put d(ll,s = 0. The first formula simply says that o0 is a chain contracting
homotopy of d2. Let us see the second one. To abbreviate we do not write the
subindices. From the definition of ¢! we have:

-1 -1 -1
dO O'l - _ E dO O'O dl—i O_i — § 0'0 dO dl—i a_i o E dl—'i o'

Consequently

l -1

ZlZdZ—FZdll Zlidi—FZO’OdOdl_iO’Z

1=0 1=0 =0

Then, it suffices to prove that the term appearing on the right side of the equality
is zero. We prove this by induction on [. For [ = 1 we have:

A dd o ="' d e =6d' 6%d° — 6V dt = —' d° — 50 d'.

Suppose [ > 1. From Proposition A.5,

-1 I—11—i—1 -1 h
ZO,O dO dl—i O_i _ Z Z dl—i—j dj O_i — Z ZO_O dl—h dh—i o’
i=0 i=0 j=0 h=0 i=0
So, applying the inductive hypothesis to Z?:o d"=" g (h > 0), we obtain

-1 I-1 h

ZO_O d° dl—z ot = ZO_O dl—h gt gt — o0 dl

i=0 h=0 i=0

—11—3i—1

O_O dl—i—j O,j dl . O'O dl

0

l
= — Z L S
i=0

APPENDIX B

(2

<
I
o

In this appendix we compute explicitly the maps d’., introduced in Section 1,
completing the results of Theorem 1.1.3. We use the following notations:

1) Given hy ® - -+ ® hy e H® ™ and 0 <i < j < s, we write bij =h;---h; € H.

2) Givenh=ho® - -®hg € H®s+1, we let h() @ h(®) denote the comultiplication
of hin H®™"'. So, h® @ h® = AV @ - @ h{") @ (WY @ --- @ h{?).

3) Givena€ A,a=a1® - ®a, € A% andh:h0® - ® hg EH®S+1,Wewrite
a? = (... (((ahs)s—1)hs=2)hs=3  Yho and ab = alf( '®® a}}(r).

-1

Definition B.1. Given h = h; ® --- ® h; € H , we define Fo(l)(h) c A% ,
recursively by:

FP () = —f(h1, ha),

l
FO(h) = 37— 17 £ (D B s @ FOMI®),

J=1
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where hi(?) = hf])'q ® h§.2) h§2+)1 ®@hjio41. For instance, we have

1
h{M

FOm) =f (B hy @ £(52, hg) — F(RD, BENM & £(r2) 52))

and

FOZ 0y F(03 0 ha)
F(hD R @ £ 52
+ £(hSD R @ (0P, b2 ®f<h§ ha)

E () = — £(n$Y, nY)
+ £ )
+ £ )5 @ f( )
— £SO @ (05, h0Y @ £ (D55 D)
( M2 @ f( )
( ) ( )i

h51)7 h(l)

— £ B @ £ (h P D) @ £, 52)

(1) (2)
+f h(l) h(l) hi, ®f h(z), éi) h2 <h(3)7 g?:l))

For the following definition we adopt the convention that a;g = a,+1, = 1 € k.

ol T
Definition B.2. Given h=hH; ® --- ® ky €H® anda=a1® R a, €A® we
define Fr(l)(h ® a), recursively by:

" 3)
FOhoa) =3 (-1)*a o f(h?, h?) o a’ |
i=0

l R
F'(hea)=>" DHag @ f( )M @ B0 g ag,,),

7=11=0

where h'® = h{")_ @ W 2% @ h'?, | and F"0® @ a,.1,) = £ (07®).

For instance, we have

iri BV (5) ()
FOhoa) = Y (-1)7al o faaP) 0 a ) o 16 hP) @ alz"
0<i<j<r
)i h1 2) 5 (2)\r® h2{® 4) (4 (6
+ Z +J+1 3 ® f(hg )’ h:()) ))hl ® a H—l ] f(hg )’ 53)) ® a]—H .
0<i<5<r

We set F\V(hy) = 1, € k, F{P(hy ® a) = a" and F{"(hy_j_1, ® 1) =
F()(l)(hs_l_l,s). Moreover, to abbreviate we write F'()(h) = FO(Z)(h) and FO(}) =
F(h®a).

Lemma B.3. Leta=a1 ® ---®a, and hy_; s =hs_; ®---® h;. We have:

l
i) FO Y 2
F(H_l)(hs—l,s) = Z( ) F(l +1)< h® o > ® f( Fs )l,s—z’ S— H—l 8)

i=1
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and

(
p(z+1)<h al ) F(’+1)( o 1> ®a£f_)z,s

S48 s—1,s

l
r4+1 7 F ! (1)
—|—Z( 1) +i F(l +1)< h 7, s) ®f(f]£27)l’sfi,f)22_)i+1,s).

=1

s l,s

where F(ZH)CJ‘1 - 1) = F(l+1)(hs—l,5) ifr=1.

Proof. We prove the second formula. The proof of the first one is similar. It is
clear that the lemma is valid for [ = 1. Let [ > 1 and suppose the result is valid for
[ — 1. To abbreviate we put

E=ull-1)+j+s
W @ e

s—l1,s s—1,j+1Y5+2.s7
W =n . erPhY, enf,
f(2) f(h(Q), hfgl)hi >, -1,
fz“l)s e = 1O 00 b ),
£ =00 b a8 )

fs(i)l’s_m = f(f)f_)l,s_p hg2—)i+1,s)-

We have:
S s 2 Ay41,7
F(z+1)< ) ZZZ) am L f( ) & F(z)( 1(3;&)
Jj=s—lu
s—1 r—1 . . 3(4)
- S“@ﬂ”@ﬂ%aﬁzj®ﬁ“*
j:s—luzo e

1

—Jj—
+ E: s—l,s—1i,s

) au+1,r
g 14+r— u—i—ia]fil)l *® f(z) ®F(l z)( R h(f)Z+1 S) fj(4)

3
j=s—lu=0 =1 hi(;s i
s—1 r -1 e 2(5) Ay+1,r
§—ldr—utiy s l,s (2) (I— z) h?®) (4)g
+ >3 (-1 ®f @ F P L A
j=s—Il+1u=0i=s—j hs l,s—i—1

Permuting the order of the summands, we obtain

(1+1) b B2 o p@ om0l
F < ) ZZ “la? QfT ®F (h(?’;)@a?“ ’
Jj=s—lu=0
r s—i—1

( )au+17‘
rutig h % (2) 1—1 ) 4)
ST g g ) ¢ >( ) o

(3)
i=1 u= Ojsl h]

s—1l,5s—1

. Ay+1,r
h® . p(i—1)
+ Z Z Z §+r utig 1; Le & fJ(Q) ® F(lz+1)< hi(32+1 ) fé4)ljs i

=2 u=0j=s—1+1
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e i)
al, r—1 S s F (1) 2
= F(l“)(h(l) > ®ar""" + g ’"“F(l ””( b i, s) fs( )l S—is?
s—1, 1’1(1)

s—1l,s—1

which ends the proof. [
In the following theorem we identify X, with £ ® H@)S ® Z@)r R FE.

r

Theorem B.4. Letx—ao®h®a®1E, with a = a1 ® - ®ar€A® and
h=h)®: - ® hg EH@H . For 2 <1 <s, we have

dpo(x) = (~1)'"*ag @ ho o © FO (0, @ a) @ 1407, .
where Fvgl)(hgl_)zﬂ,s ®a) = Fo(l)(hs_HLS) if r=0.

Proof. Let us compute d.f! for I > 1. First we suppose the formula is valid for
dl, with j < 1 and we see that it is valid for dy-'. To abbreviate we write ¢; =
is+(l—i+1)(s—1)+1. Using the inductive hypothesis and the fact that 0° d' (ao®
hys ® 1#1) = 0, we obtain:

l
dM(1eh®lpg) == o'd"'d(1eh®lg)

=1

l
_ Z zs—|—1 g0 git1i-t (1 X ho s—i & F® (hgl_)H_Ls) ® 1#bg2—)i+1,s>

l

. —1 hs i s
- ZUO ((_1)C1®h078—l—1®F(l+1 )( h( o )®f([722)1,sz‘vbf—)iﬂ,s)#bgg)l,s)

i=1 slsz

= (1)1 @ he, i © FHD MY, ) © 1452

s—1,s’
where the last equality follows from the definition of ¢° and Lemma B.3. Now, we
suppose the result is valid for dl+1 with 7’ < r and we show that it is valid for dl‘H.
To abbreviate we write (; = z(r +s)+(l—i+1)(r+s—1)+1.
l

d'(1ehga®lp)=-Y ¢"d"'"d(lehwarlg)
=0

— (-1 opdt (1eheasl) — (=1) ood (1@ hy. 1 ®@a" @ 1#02)
l
— Z o0 giH1—i ((_1)i(r+8) ®hys—; ® F(i)<hilj+l ) ® 1#h§2_)i+173>
=2
= (_1)”10 d'(1eh®a®l)

ZU gi+1-i ( )Z("‘Jrs) ®@hgs_; @ F(i)(hgljil’s) & 1#h§2—)z‘+1,s>

_ UO((_l)(l+1)(r+s—1)+r+1 ® ho i ®F( +1)< (1) ) (92)1 s#h(3)

s—lI,s

l

<1>a
+ Z( )% ® ho 11 ® F+1- z)( h i, ) f(hgz)l . 17h22)z+1 S)#hgg—)l,s>

=1

= (D)) @ hy @ FED(,d ) @146
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where the last equality follows from the definition of ¢ and Lemma B.3. O

Remark B.5. When H is a group algebra k[G] and the 2-cocycle f takes its values
in the center of A, then

dfns (ao X gos Qa1 ¥ 1E) = (—1)l(r+s)ao ® 80,5—1 & Fo(l) (8s—i+1,s) %A1, @ 1H#gs_141,s,

where x denotes the shuffle product:

ajxby = Z (—1)Zl+"'+“b1®' @b, ®a1®b;; 11 - -Qb;, Qa,Rb; 1R .
0<ip << <l
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DECOMPOSITIONS

5.1. A decomposition of (X,, c?*) Let [H, H] be the k-submodule of H spanned
by the set of all elements ab—ba (a,b € H). It is easy to see that [H, H] is a coideal
in H. Let H be the quotient coalgebra H/[H, H]. Given h € H, we let [h] denote
the class of h in H. Given a subcoalgebra C' of H and a right H-comodule (N, p),
we put N¢ = {n € N: p(n) € N® C}. It is well known that if H decomposes as a
direct sum of subcoalgebras C; (i € I), then N = @, ., N

Now, let us assume that M is a Hopf bimodule. That is, M is an E-bimodule
and a right H-comodule, and the coaction m — m(® @ m(l) verifies:

((ath)m(b#1)) V2 ((agth)ymb#1) D = (a#hD)mOB# D)@ (a#th@)m P (b#13).
For each n > 0, X’n is an H-comodule via

pn(m @4 (1#h1) @a - - - (14hs) ® ay,)
=m@ @, 1#R) @4 - 1#RD) @ ag, @ mORP . 1?2

where r + s = n. Moreover, the map p,: X, > X.®Hisa morphism of com-

plexes. This fact implies that if C' is a subcoalgebra of H, then c/l\ ()? ) C )? c

We consider the subcomplex (X¢ c?c) of (X*,d ), with modules X¢, and we let
HE(E, M) denote its homology. The filtration of (X,,d,) introduced above Corol-
lary 2.2 induces a ﬁltratlon FO(XC)C FL(XC)C ... on (XC dc) It is clear that

* 9 Pk

Fi(XC) = Do<sci X s Hence, we have a convergent spectral sequence
(1) El, = H, (A, (M ®4 (E/A)®))C) = HE, (E, M).

By the previous discussion, if H decomposes as a direct sum of subcoalgebras C; (i €
I), then ()?*,3*) = @Zel(f{\'fl,gfl) Consequently H.(E, M) = P,; HY (E, M)
and the spectral sequence of Corollary 2.2 decomposes as direct sum of the above
mentioned spectral sequences. Finally, the canonical normalized Hochschild com-

plex (M ® E® ,b,) is a differential H-comodule via
pn(m®a1#h1 R ®an#hn) = m(o) ®a1#hgo) R ®an#h%0) ® [m(l)hgl) N thO)]

and the morphism from ()A(*, 07*) to (M ® E@)*,b*), induced by the map ¢, of Sec-
tion 1.2, is an H-comodule morphism. Hence, HY(E, M) = H,(((M ®E®*)C, b)),
for each subcoalgebra C of H. Note that the filtration of the normalized Hochschild
complex given below Corollary 2.2 induces a filtration of (M ® F®*)C, b.). The
spectral sequence of this filtration is isomorphic to the spectral sequence (1).

2. A decomposition of (X,,d,). Now, suppose the cocycle f is invertible. A
direct computation shows that the H-coaction of (X,,d,), obtained transporting
the one of (X, d,) through 0,: (X,,d,) — (Y*,E*), is given by

2) mea®h—m®eaeh? e @h®@m®OshH®). - ShMAP ... n®),
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where a € 2% and h = hy ® -® hg € H® . For each subcoalgebra C of H, we
consider the subcomplex (X . ,d* ) of (X,,d,) with modules 75 . It is clear that 6,
induces an 1somorphlsm QC (X%, d%) — (YS,ES) Let FO(YC) C Fl(YS) C...
be the filtration of (X ac ) obtained transporting the one of (X<, d%), through

x 0 Uy %9 W
C

6¢. Tt is clear that F*(X ) ®0<s<1 n_s.s- Moreover, from (2) it follows
that if H is cocommutative, then er = M% ® ¥ ® 7o Hence, when H
is cocommutative and H is a flat k-module, the spectral sequence of (1) verifies
Bl =H,(A,M°)®H" and E2, = H,(H,H,(A, M)), where H, (4, MC) is a left
H-module via the action introduced in Proposition 3.1.2.

5.3. An application to group crossed products. Let G be a finite group,
E = A# ;G a crossed product and M = @geG M, a G-graded E-bimodule. Let
(G) be the set of conjugation classes of G. For each g € G we let (g) denote the
conjugation class of g and we write M, @he My,. The complex (7*,3*)

decomposes as a direct sum of chain Complexes (X ,d*) = @< 9)E(G) (7*,3*)@,
where

—% —%*

(X7,d)9 = € Homy( A% ®k[G] M)

r+s=n

Hence H"(E, M) = @D )c(c) H"((X",d"){9). The filtration introduced in Corol-
lary 3.2.3 induces a filtration in each one of the terms of the decomposition of
(7*,3*). Taking the spectral sequences of these filtrations we get converging spec-
tral sequences

Ej* = HY (G H (A, M) = B (X,0)9) (g) € (G).

Now, it is immediate that the spectral sequence of Corollary 3.2.3 is the direct sum
of these spectral sequences. Finally the canonical complex (Homy, (E® M), b*) de-

composes as a direct sum (Homy, (E®*,M), ") = Dy (Homk(E M9 b)),
where

Homk(E® ,M)<9> = EB Homy (A#g, ® -+ @ A#gn, My, )

1 —1
In 9y gn+1€(9>

We assert that H*((X ", d )(@) = H”((Homk(E M)<g> b*)). In fact, this follows
from the fact that the complex (X * d*) introduced in Section 2 decomposes as
direct sums of chain complexes (X*,d*) = D e (X7 d*){9), where

)?n = @ @ Homk(z® ®k91®"'®kgs>Mgs+1)

and from the fact that the morphism 6*: (X d) — (X~ d*) introduced in Theo-

rem 3.2.1 and the morphism from (Homk(E , M), b*) to ()A(*, c?*), induced by the
map ¢, of Section 1.2, preserve the decompositions.
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MISCELANEAS

2.1.4. Compatibility with the canonical decomposition. Let us assume that
k 2 Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule
and the cocycle f takes its values in k. In [G S1] was obtained a decomposition of

the canonical Hochschild complex (M ® A ,0y). Tt is casy t to check that the maps
do and d1 are compatible with this decomp081t10n Since dl =0 foralll > 2, we
obtain a decomposition of (X*, d*), and then a decomposition of H,(E, M).

2.2.3. Compatibility with the canonical decomposition. Assume that k DO
Q, H is cocommutative, A is commutative, M is symmetric as an A-bimodule and
the cocycle f takes its values in k. Then, the Hochschild cohomology H*(E, M) has
a decomposition similar to the one obtained in 2.1.4 for the Hochschild homology.

3.1.7. An application to TorE Let k be a field, B an arbitrary k- algebra M
a right B-module and N a left B-module. It is well known that Tor? (M, N) ~
H.(B,N® M) (here N ® M is an B-bimodule via a(n®m)b = an®mb). This fact
and Corollary 3.1.3 show that if £k is a field, M is a right E-module and N is a left
FE-module, then there is a convergent spectral sequence

E2, = H,(H, Tor} (M, N)) = TorE, (M, N).

3.2.6. An application to Ext}. Let k be a field, B an arbitrary k-algebra and M,
N two left B-modules. It is well known that Exty (M, N) ~ H*(B,Homy (M, N))
(here Homy (M, N) is an B-bimodule via (apb)(m) = ap(bm)). This fact and
Corollary 3.2.3 show that if k is a field and M and N are left EF-modules, then
there is a convergent spectral sequence

Ey = H"(H,Ext% (M, N)) = Ext;"*(M, N).

As a corollary we obtain that gl. dim(F) < gl.dim(A) + gl. dim(H), where gl. dim
denotes the left global dimension. Note that this result implies Maschke’s Theorem
for crossed product, as it was established in [B-M].
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