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In this article, the noise-assisted correlation integral (NCI) is proposed. The purpose of the NCI is to estimate
the invariants of a dynamical system, namely the correlation dimension (D), the correlation entropy (K2), and
the noise level (σ ). This correlation integral is induced by using random noise in a modified version of the
correlation algorithm, i.e., the noise-assisted correlation algorithm. We demonstrate how the correlation integral
by Grassberger et al. and the Gaussian kernel correlation integral (GCI) by Diks can be thought of as special
cases of the NCI. A third particular case is the U -correlation integral proposed herein, from which we derived
coarse-grained estimators of the correlation dimension (DU

m), the correlation entropy (KU

m), and the noise level
(σ U

m ). Using time series from the Henon map and the Mackey-Glass system, we analyze the behavior of these
estimators under different noise conditions and data lengths. The results show that the estimators DU

m and σ U

m

behave in a similar manner to those based on the GCI. However, for the calculation of K2, the estimator KU

m

outperforms its GCI-based counterpart. On the basis of the behavior of these estimators, we have proposed an
automatic algorithm to find D, K2, and σ from a given time series. The results show that by using this approach,
we are able to achieve statistically reliable estimations of those invariants.
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I. INTRODUCTION

Chaotic phenomena arise naturally in many fields of
science. They can be observed in the nonlinear dynamics
of biological systems [1] as well as in the evolution of
economic data [2]. In the past few decades, scientists have
focused their efforts on developing mathematical concepts
that allow us to understand and characterize the complex
and unpredictable behavior of these deterministic phenomena.
Two of those concepts are the correlation dimension (D) and
the correlation entropy (K2) proposed by Grassberger and
Procaccia [3,4]. These invariants have been used in many appli-
cations, including ground motion analysis of earthquakes [5],
characterization of high-layer coronal activity on the sun [6],
classification of patients suffering from depression [7], etc.
These invariants are estimated through the correlation integral,
which is calculated by means of the correlation algorithm [8].

Despite the fact that the method of Grassberger and
Procaccia, i.e., the standard correlation integral, has been
proven to work well in low-dimensional attractors, it is almost
useless when the time series coming from these systems
are contaminated with noise [9–13]. The presence of noise
causes the Grassberger-Procaccia method to overestimate the
correlation dimension and the correlation entropy. This is
because the approach assumes that the observed data represent
a finite-dimensional set, and that there is no noise at all [12].

In experimental situations, in which there is always some
level of noise, one has two options. The first is to try to reduce
the noise from the time series (not always possible). However,
the effect of a very small level of noise (2%) can dramatically
affect the estimation of invariants with the standard correlation
integral [14]. The second option is to model the influence of
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noise in the scaling law [11,15]. Following this path, Diks
proposed the Gaussian kernel correlation integral (GCI) [11].
In comparison with the standard correlation integral, the GCI
not only has the ability to better estimate D and K2, but also
the noise level (σ ). Estimating σ is crucial to interpreting the
results of an experiment, since it affects the estimations of the
other invariants. In this sense, the researcher must be aware
that if too much noise is present in the temporal series, caution
must be taken in the interpretation of the results.

Unlike the Grassberger-Procaccia algorithm, this technique
is relatively robust and correctly accounts for noise if that noise
is Gaussian and additive. However, although it is much better
than the Grassberger-Procaccia algorithm for estimating the
correlation dimension, the Diks method still cannot estimate
the correlation entropy, even in low-dimensional chaotic
systems [12].

In this article, we propose a correlation integral that is
induced by the use of noise in the correlation algorithm.
The noise-assisted correlation integral (NCI) arises as a
generalization of the standard correlation integral and also
of the GCI. With the NCI we can also compute correlation
integrals with kernel functions that would require numerical
integration for its evaluation, given that this kernel function can
be found to be the complementary cumulative density function
of a random variable. We will explore a third particular case of
the NCI, which we call the U -correlation integral (UCI). The
particularity of this type of correlation integral is that it allows
us to introduce information of the embedding dimension in the
kernel function. Its main advantage relies on the convergence
of the correlation entropy estimation. Moreover, from the UCI
we have derived coarse-grained estimators of D, K2, and σ .
The behaviors of these estimators are tested with time series
coming from low-dimensional systems under different noise
levels and data lengths.

Section II is devoted to theoretical aspects reported in the
literature that will be useful for the development of the article.
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In Sec. III we present the foundations of the NCI, and we
present a particular case, the UCI, in Sec. IV. Two special
cases of the UCI are studied in Secs. IV A and IV B. In Sec. V
we derive the coarse-grained estimators based on the UCI for
the correlation dimension (Sec. V A), the correlation entropy
(Sec. V B), and the noise level (Sec. V C). Furthermore, we
analyze their behavior under different conditions. Using these
coarse-grained estimators, in Sec. VI we present an algorithm
to automatically estimate system invariants. General remarks
are given in Sec. VII, and the conclusions are presented in
Sec. VIII.

II. THEORY

The correlation integral is the most important quantity used
to calculate the correlation dimension and the correlation en-
tropy of a dynamical system. The definition of the correlation
integral involves phase-space vectors that are reconstructed
from a scalar time series through an embedding method [15].
These phase-space vectors can be interpreted as random
samples drawn from an underlying probability distribution
(the natural measure on a system’s attractor) [15]. Given two
random vectors x and y ∈ Rm chosen according to the natural
measure fX(x) and a parameter h > 0, a generalized definition
of the correlation integral Gm(h) is [11]

Gm(h) =
∫∫

g(‖x − y‖/h)fX(x)fX(y) dx dy

=
∫

g(z̃/h)fz̃(z̃) dz̃, (1)

where z̃ = ‖x − y‖ is a measure of distance between the
random vectors x and y (which will be assumed Euclidean),
fz̃(z̃) is its probability density function (PDF), and m is the
embedding dimension. From Eq. (1) it can be seen that the
correlation integral is the expected value of a kernel function
g(z̃/h) that depends on a parameter h (length scale). The
standard correlation integral Cm(h) is obtained by using the
Heaviside step function H (1 − z̃/h) as a kernel [8],

Cm(h) =
∫

H (1 − z̃/h)fz̃(z̃) dz̃. (2)

It is well known that the noise level of the time series
affects the estimation of the correlation dimension [9–13]. In
this sense, it is very important to model the influence of noise
over this quantity, since if too much noise is present, then
care must be taken in the interpretation of the results obtained
by means of the correlation integral. The problem with the
classical correlation integral is that its kernel function, the
Heaviside step function [see Eq. (2)], makes it difficult to
derive analytic functions to model the influence of noise in
the estimation of the invariants [11]. To overcome this issue,
Diks proposed the Gaussian kernel correlation integral Tm(h),
which in the absence of noise can be expressed as [11,16]

Tm(h) =
∫

e−z̃2/4h2
fz̃(z̃) dz̃, (3)

where the kernel function is g(z̃/h) = exp (−z̃2/4h2). It
has been shown that for fractal measures without noise,
the standard correlation integral as well as the GCI scale

as [11,16,17]

Cm(h) = Tm(h) = φ e−τmK2 hD for m → ∞, h → 0, (4)

where φ ∈ R is a normalization constant and τ is the
embedding lag. This scaling behavior is observed if the kernel
function g(t) meets two conditions [11,18]: (i) it decreases
monotonically for t � 0, and (ii) it decreases faster than a
power function, i.e., limh→0 h−pg(t/h) = 0 for t > 0 and any
p � 0.

In real applications, the estimation of invariants is biased
due to the finite length of the time series and/or due to
the contamination with noise. The general idea to correct
this bias [deviation from the scaling behavior of Eq. (4)] is
to analytically model the noise influence over the scaling
function. For example, when the time series is immersed
in white Gaussian noise of variance σ 2, the GCI will scale
as [11,16,19]

Tm(h) = φ hm(h2 + σ 2)
D−m

2 e−τmK2

for m → ∞,
√

h2 + σ 2 → 0. (5)

Equation (4) is recovered when σ → 0. In practice, σ is fixed
at a nonzero value, so the factor

√
h2 + σ 2 cannot tend to zero.

However, it is expected that Eq. (5) holds in a suitable range
of small h values, provided that σ is not too large. Corrected
versions of the scaling law for the standard correlation integral
[Eq. (2)] can be found in [20,21]. Moreover, there exist other
approaches that are also useful [11,22,23].

Once the scaling model is chosen and the correlation
integral is calculated, there are two main options to estimate D,
K2, and σ . The first one is to estimate these invariants through
a nonlinear fitting of the scaling model [11,16]. This method
has the drawback that it is highly dependent on the range of
scale values selected to fit the model, and there is not a general
consensus about the correct way to choose it. Additionally, to
conclude that the dynamic arises from a deterministic system,
it must be verified that the invariants do not depend on the
scaling range. This is usually done by visual inspection of the
“scaling regimes” [15].

The second option is to use coarse-grained estimators.
These are explicit expressions for D, K2, and σ as functions
of m and h [13]. Some examples of coarse-grained estimators
are those derived by Nolte et al. [19],

DT

m(h) = d ln Tm(h)

d ln h
−
[
m − d ln Tm(h)

d ln h

]
�m(h)

1 − �m(h)
, (6)

KT

m(h) = 1

τ

(
ln

Tm(h)

Tm+1(h)
+ 1

2
ln [1 − �m(h)]

)
, (7)

and

σ T

m(h) =
√

h2�m(h)

1 − �m(h)
, (8)

where DT

m, KT

m, and σ T

m are the coarse-grained estimators for
D, K2, and σ , respectively, and

�m = d ln Tm+1(h)

d ln h
− d ln Tm(h)

d ln h
.
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FIG. 1. Correlation algorithm: The distances z̃ω between all pair
of phase-space vectors are compared with a threshold θω = h to
produce the binary outputs cω, which are averaged to calculate the
correlation sum Ĉm(h).

The superscript T indicates that these estimators are calculated
from Tm.

The correlation integral is estimated through the
correlation sum Ĝm(h). Given a scalar time series
{xn}Nn=1 and the parameters m ∈ N and τ ∈ N, the
m-dimensional vectors xi = {xi,x(i+τ ),x(i+2τ ) . . . ,x[i+(m−1)τ ]}
with 1 � i � L = N − (m − 1)τ must be considered.
Defining the distance between embedded vectors
as the Euclidean norm z̃ω = ‖xi − xj‖, where
ω = {(i,j )/i �= j, i = 1,2, . . . ,L, j = 1,2, . . . ,L} and
Q = L(L − 1), the correlation sum is defined as [11]

Ĝm(h) = 1

L(L − 1)

L∑
i=1

L∑
j �=i

g(‖xi − xj‖/h)

= 1

Q

Q∑
ω=1

g(z̃ω/h), (9)

where g(t) is the kernel function. This procedure can be
translated into an algorithm called the correlation algorithm,
which involves three steps. The first step is the calculation
of all distances z̃ω between phase-space vectors. Then for a
fixed value h, the kernel function must be evaluated at z̃ω/h,
and the correlation sum is obtained as the average through
ω. Finally, this procedure must be repeated over a range of h

values. When the Heaviside function is taken as a kernel [3], the
aforementioned methodology can be summarized as in Fig. 1.
In this special case, the algorithm compares each distance z̃ω

with a threshold θ = h producing a binary output cω. Then
the correlation sum Ĉm(h) is computed as the average through
all outputs. Basically, this procedure can be seen as a parallel
array of threshold comparators similar to those modeling flash
analog-to-digital converters (ADC).

It is well known that the ADC performance can be enhanced
through the dithering technique, which consists in adding a
random signal (commonly white Gaussian noise) to the input
signal before its digitization. This is done in order to reduce the
undesirable effect of quantization noise as well as to increase
the dynamical range of the ADC [24–26]. The enhance-
ment of the analog-to-digital conversion process by adding
noise is called stochastic resonance [26,27]. Moreover, the
stochastic resonance phenomenon displayed by the dithering
technique is called suprathreshold stochastic resonance [27].

The suprathreshold stochastic resonance model consists of
a parallel array of comparators or one-bit quantizers. At
each quantizer, an independent and identically distributed
noise realization is added to an input signal, which can be
deterministic [28] or stochastic [29]. The idea is to elicit a
distinct output at each quantizer in response to a common
input signal. Finally, a global output is obtained as the average
over all quantizer outputs [28–33]. It has been proven in [29]
that injecting noise into this kind of network can improve the
estimation of statistical parameters of the input signal. The
enhancement relies on the fact that the added noise can elicit a
better representation of the information contained in the input
variable.

There is a deep similarity between the correlation algorithm
and the suprathreshold stochastic resonance model. This has
led us to consider the possibility that estimation of invariants
such as D and K2 can be done by injecting noise into the
comparators of the correlation algorithm. We will explore this
idea in the next section.

III. NOISE-ASSISTED CORRELATION INTEGRAL

In this section, we develop the foundations of the noise-
assisted correlation integral (NCI). Our departure will be the
noise-assisted correlation algorithm (see Fig. 2), which is in-
spired by the suprathreshold stochastic resonance model. This
algorithm consists of Q one-bit quantizers (or comparators)
with threshold value θω = 0, ω = 1,2, . . . ,Q. Each quantizer
receives as input an independent and identically distributed
(iid) sample z̃ω ∼ fz̃ (with support [0,∞)) minus a sample of
iid noise μω with a cumulative distribution function Fμ, also
independent of z̃ω. For a single quantizer, the output sω is ruled
by

sω =
{

0 if z̃ω − μω � θω,

1 otherwise.
(10)

Finally the global output Ŝm(h) is calculated as the average
over all quantizer’s outputs.

...

...

z̃1

z̃ω

z̃
Q

1
Q

∑

θ1 = 0

θω = 0

θQ = 0

μ1(h)

μω(h)

μ
Q
(h)

s1

sω

s
Q

Ŝm(h)

FIG. 2. Noise-assisted correlation algorithm, consisting of Q

quantizers with threshold θω = 0. Each quantizer receives an input
that is composed of the subtraction of an iid noise realization μω,
whose PDF depends on a parameter h, from the distance between a
pair of phase-space vectors z̃ω. The binary outputs of all quantizers
sω are averaged to calculate the noise-assisted correlation sum Ŝm(h).
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Based on Eq. (10), we can calculate the probability that the
ωth quantizer is set to zero given the input z̃ω as

Pr{sω = 0|z̃ω} = Pr{z̃ω − μω � θω}
= Pr{z̃ω − μω � 0}
= Pr{μω � z̃ω}
= Fμ(z̃ω).

We can deduce now the probability that the ωth quantizer is
turned on given the input z̃ω as

Pr{sω = 1|z̃ω} = 1 − Pr{sω = 0|z̃ω}
= 1 − Fμ(z̃ω).

If Ŝ is the number of quantizers turned on, the probability of
Ŝ = k given the input z̃ω is given by the binomial distribution

Pr{Ŝ = k|z̃ω} =
(

Q

k

)
[1 − Fμ(z̃ω)]kFμ(z̃ω)Q−k.

Then the marginal probability of having k quantizers turned
on is

Pr{Ŝ = k} =
∫ ∞

0

(
Q

k

)
[1 − Fμ(z̃ω)]kFμ(z̃ω)Q−kfz̃(z̃ω) dz̃ω,

and the expected value of Ŝ is

〈 Ŝ 〉 = Q

∫ ∞

0
[1 − Fμ(z̃ω)]fz̃(z̃ω) dz̃ω.

Defining the estimator Sm(h) = 〈 Ŝ 〉/Q, making z̃ = z̃ω,
and assuming that the noise distribution depends on a param-
eter h, i.e., Fμ(t ; h), we can write from the last equation

Sm(h) = 〈 Ŝ 〉/Q

=
∫ ∞

0
[1 − Fμ(z̃; h)]fz̃(z̃) dz̃

=
∫ ∞

0
F̂μ(z̃; h)fz̃(z̃) dz̃, (11)

where F̂μ(t ; h) is the complementary cumulative distribution
function of the noise μω. We will call Sm(h) the noise-assisted
correlation integral. It can be observed that Eq. (11) is similar
to Eq. (1) but now the kernel function is g(z̃; h) = F̂μ(z̃; h). It is
clear that all complementary cumulative distribution functions
decrease monotonically, meeting the first condition that allows
the scaling behavior of the correlation integral [Eq. (4)].
The second condition can be met by using distributions
with compact support or distributions whose complementary
cumulative distribution functions decay faster or equal to
the complementary cumulative distribution function of the
exponential distribution.

As particular examples, we can show that if the added
noise μω follows a deterministic distribution with probability
mass function fμ(z̃; h) = δ[z̃/h − 1] and cumulative distri-
bution function Fμ(z̃; h) = H (z̃/h − 1), then Eq. (11) can be

written as

Sm(h) =
∫ ∞

0
[1 − H (z̃/h − 1)]fz̃(z̃) dz̃

=
∫ ∞

0
H (1 − z̃/h)fz̃(z̃) dz̃

= Cm(h),

which is the standard correlation integral [see Eq. (2)]. On
the other hand, the GCI can be derived from Eq. (11) by
adding noise with Rayleigh distribution μω ∼ R(z̃;

√
2h). This

is the distribution of the Euclidean distance between two
iid bidimensional Gaussian random vectors of zero mean
and variance 2h2. Given that its complementary cumulative
distribution function is F̂μ(z̃;

√
2h) = e−z̃2/4h2

, we can write

Sm(h) =
∫ ∞

0
e−z̃2/4h2

fz̃(z̃) dz̃

= Tm(h). (12)

These two examples demonstrate that Cm(h) and Tm(h) can
be thought of as particular cases of Sm(h), which means that
they can be estimated by adding noise, as was described earlier.
It is important to mention that the main difference between
the standard correlation algorithm and the noise-assisted
algorithm proposed herein lies in the nature of the threshold
used to count the number of neighbor phase-space vectors.
The former uses a deterministic threshold (see Fig. 1). On the
other hand, the addition of noise μω in the latter is equivalent
to thresholding each distance z̃ω with a stochastic threshold
that follows the same distribution of μω.

To calculate the noise-assisted correlation sum, Algorithm 1
should be followed.

Algorithm 1 Noise-assisted correlation algorithm.

1: Form m-dimensional phase-space vectors from the temporal
series and calculate all pairwise squared distances
zω with 1 � ω � Q = L(L − 1).

2: Fix the value of the parameter h and obtain Q realization of noise
μω from the distribution fμ(μ; h).

3: Calculate the binary variable:

sω(h) =
{

0 if zω − μω � 0,

1 otherwise.
4: Calculate the noise-assisted correlation sum as

Ŝm(h) = 1
Q

∑Q

ω=1 sω(h).
5: Repeat steps 1–4 for all values of h and m.

One advantage of the noise-assisted algorithm is related
to the evaluation of kernel functions. As mentioned before,
the correlation integral is estimated using the correlation sum,
which requires many evaluations of the chosen kernel function.
For kernel functions that require numerical integration for
their evaluation, this methodology becomes computationally
expensive. However, if this function can be written as the
complementary cumulative distribution functions of a random
variable, the estimation of the correlation sum can be done
using this new approach.

Another interesting fact about the NCI is that the GCI can
be estimated using noise with Rayleigh distribution, which is a
chi distribution (χβ) with two degrees of freedom (β = 2). A χβ
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with β degrees of freedom is the distribution of the Euclidean
distance between two β-dimensional iid random vectors drawn
from a multivariate normal distribution. This thought led us to
hypothesize that it may be possible to introduce a correlation
integral using a new type of kernel function that can generalize
the GCI.

IV. THE U-CORRELATION INTEGRAL

A particular case of the NCI occurs from a generalization
of the GCI. As we mentioned before, the noise-assisted
correlation algorithm is characterized by the addition of
random noise μω that induces a stochastic threshold with the
same distribution.

In Eq. (12), we showed that the GCI can be induced by
adding noise with Rayleigh distribution. Then, the estimation
of the GCI for different m values involves distances whose
PDF is changing with m and thresholds with a distribution that
does not. However, it is natural to think that the distribution
of the threshold should also be a function of the embedding
dimension.

In this sense, we need to think of a kernel function that can
take into account information of the embedding dimension.
That kernel function is

g(z; h) = �
(
β/2, z/h2

)
�(β/2)

, (13)

where �(a, t) is the upper incomplete Gamma function, �(a)
is the Gamma function, and z = z̃2 is the squared distance
between phase-space vectors. This kernel can be induced by
the addition of noise μω that follows a chi-squared distribution
(χ 2

β
) with variance h2. χ 2

β
is the distribution of the squared

Euclidean distance between two β-dimensional random vec-
tors taken from a β-dimensional normal distribution. Then,
the β parameter can be used to incorporate information of the
embedding dimension.

Note that we are using the χ 2
β

instead of the χβ . This
is because it is more expensive, computationally speaking,
to calculate the distances between m-dimensional vectors
than to calculate their squared distances. Moreover, it is
faster to generate noise μω with χ 2

β
than with χβ . As a

consequence, from now on we will work with the squared
distance z = z̃2. This also implies that the inputs to the noise-
assisted correlation algorithm must be the squared distances
zω = z̃2

ω.
To deduce the U -correlation integral (UCI), we also need

an expression for the distribution of the squared distance
between phase-space vectors fz. Oltmans et al. derived an
equation for the distribution of the squared distance between
m-dimensional phase-space vectors contaminated with iid
normal noise with zero mean and variance σ 2 [see Eq. (18) in
Ref. [34]]:

fz(m,σ ; z) = zm/2−1

2(2σ )m−D

�(D/2)

�(m/2) 1F1

(
m − D

2
,
m

2
; − z

4σ 2

)
,

(14)

where 1F1 (a,b; t) is Kummer’s confluent hypergeometric
function. This distribution arises under the assumption that
the PDF of the unperturbed pairwise distances between

phase-space vectors behaves as hD−1 for a certain range of
h values [34]. If each of the coordinates of these vectors is
perturbed with uncorrelated Gaussian noise of variance σ 2,
then the PDF of the noisy distances will follow Eq. (14). This
was demonstrated in [34] through a statistical approach in
which Kummer’s confluent hypergeometric function results
from the convolution of the PDF of the unperturbed distances
and the Gaussian distribution.

Substituting Eqs. (13) and (14) into Eq. (11), we define the
U -correlation integral as

Uβ
m(h) =

∫ ∞

0

�
(
β/2, z/h2

)
�(β/2)

zm/2−1

2(2σ )m−D

�(D/2)

�(m/2)

× 1F1

(
m − D

2
,
m

2
; − z

4σ 2

)
dz,

and it can be shown that

Uβ
m(h) = φ̂

2
(4σ 2)D/2e−mτK2

�(D/2)�((β + m)/2)
�(β/2)�(m/2 + 1)

(
h2

4σ 2

)m/2

× 2F1

(
β + m

2
,
m − D

2
;
m + 2

2
; − h2

4σ 2

)
, (15)

where 2F1 (a,b; c; t) is the Gauss hypergeometric function
and φ̂ is a normalization constant. This CI introduces a new
parameter β, which is the degree of freedom of the noise μω

used in the noise-assisted correlation algorithm. Since the χ 2
β

can be thought of as the distribution of the distance between
two β-dimensional normally distributed random vectors, we
will refer to β as the noise dimension.

A. UCIβ=2

As we mentioned before, the GCI is a particular case of the
UCI. This can be verified by setting β = 2 in Eq. (15):

Uβ=2
m (h) = φ̂

2
(4σ 2)D/2�(D/2)e−mτK2

(
h2

4σ 2

)m/2

× 2F1

(
m + 2

2
,
m − D

2
;
m + 2

2
; − h2

4σ 2

)
.

Taking into account that 2F1 (a,b; a; t) = (1 − t)−b, we have

Uβ=2
m (h) = φ̂ 2D−1�(D/2)hm

(
h2 + 4σ 2

) D−m
2 e−mτK2 . (16)

Using Eq. (5), we can conclude that

Uβ=2
m (h) = φ̂

φ
2(2D−1)�(D/2)Tm(h/2).

This result shows us that the U -correlation integral with β =
2 is just a scaled version of the Gaussian kernel correlation
integral. This means that they describe the same h dependence.

To numerically validate the aforementioned results, we
perform a set of simulations using time series coming from
the Henon map:

xn+1 = 1 − ax2
n + bxn−1,

with a = 4 and b = 0.3. We must clarify that we have chosen
this map and the Mackey-Glass system [Eq. (26) will be
used in a further simulation] because they have been widely
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FIG. 3. Noiseless Henon map. Log-log plot of GCI (dotted blue
line) and UCIβ=2 (solid orange line) with m = {2,4,6,8,10} (m = 2
top and m = 10 bottom).

used in the literature related to the estimation of invariants
from time series. In this way, these invariants have been
well characterized, and the results can be easily compared
with similar studies already published by other authors
[4,20–23,34–36].

Figure 3 shows a log-log plot of the U
β=2
m (h) (UCIβ=2)

and the Tm(h/2). This example was calculated from a single
realization of the Henon map in the absence of noise. The
number of embedding vectors was kept constant at Q = 5000
through the different values of m = {2,4, . . . ,10}, and the
embedding lag was τ = 1. As can be seen, for small values of
h, the UCIβ=2 fluctuates slightly around the value of the GCI.
However, for larger h values, both correlation integrals are very
similar. Notice that the slopes of all of the curves are equal,
which means that both correlation integrals approach the same
value of D. This can be observed in Fig. 4, which shows the
reported value of the correlation dimension for the Henon map,
D = 1.22 [11,16], the logarithmic derivative of the UCIβ=2,
and the logarithmic derivative of the GCI as functions of ln h.
It can be observed how both the UCIβ=2 and the GCI oscillate
around this reported value of D.

The fluctuation of the UCIβ=2 is associated with statistical
instabilities as a consequence of the finite number of available
phase-space vectors. This oscillation can be reduced by
increasing the number of comparators Q in the noise-assisted
correlation algorithm. It can be done in two different ways.
The first one is to increase the time-series length N . The
second one is to create copies of each squared distance
zω, which will increase the number of comparators. Then
a different realization of noise μω must be added to each
copy, and the thresholding procedure must be applied. Finally,
the correlation sum Ŝ(h) is obtained as the average over all
comparator outputs. As a technical detail, we must mention
that all the derivatives in this document were approximated
using a wavelet transform approach [37].

These results lead us to conclude that the U -correlation
integral can be considered as a generalization of the GCI. We

FIG. 4. Estimation of the correlation dimension for the noiseless
Henon map using m = {2,4,6,8,10}. Log-derivatives of GCI (dotted
blue line) and UCIβ=2 (solid orange line). The reported value of
correlation dimension D = 1.22 (dashed black line).

found that, computationally speaking, it is faster to calculate
the GCI than the UCIβ=2, since for a fixed value of h the
evaluation of the function e−z2/4h2

is faster than the generation
of noisy samples with χ 2

β=2(h). However, for values of β�3
the evaluation of the incomplete � function will require
numerical integration, and this can be slower than generating
samples of χ 2

β
(h) noise.

B. UCIβ=m

The kernel function proposed in Eq. (13) introduces a new
parameter β (we will refer to β as the noise dimension), which
describes the degrees of freedom of the χ 2

β
distributed noise

used in the noise-assisted correlation algorithm. The idea is
that β allows us to introduce information about the embedding
dimension m in the kernel function. This will be useful for the
estimation of the system’s invariants.

To illustrate this idea, we will set the noise dimension equal
to the embedding dimension (β = m) in Eq. (15) and define
the correlation integral U

β=m
m (h) as

Uβ=m
m (h) = φ̂

2
(4σ 2)D/2e−mτK2

�(D/2)�(m)

�(m/2)�(m/2 + 1)

×
(

h2

4σ 2

)m/2

2F1

(
m,

m − D

2
;
m + 2

2
; − h2

4σ 2

)
,

(17)

from which we can propose a new correlation dimension
functional (see Appendix A):

d ln U
β=m
m (h)

d ln h
= m − 2m(m − D)

m + 2

(
h2

4σ 2

)

× 2F1

(
m + 1,m−D

2 + 1; m+2
2 + 1; −h2

4σ 2

)
2F1

(
m,m−D

2 ; m+2
2 ; −h2

4σ 2

) .

(18)
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FIG. 5. Noiseless Henon map. Log-log plot of the GCI (dotted
blue line) and UCIβ=m (solid orange line) with m = {2,4,6,8,10}
(m = 2 top and m = 10 bottom).

It can be assessed that this functional approaches D when
σ � h and m when σ � h (see Appendix A). This behavior
is similar to the correlation dimension functional based on
the GCI [11,13]. Figure 5 shows a log-log plot of the U

β=m
m (h)

(UCIβ=m) and the GCI calculated with different values of m =
{2,4, . . . ,10} for the noiseless Henon map. The number of
embedding vectors was kept constant (Q = 5000) through the
values of m, and the embedding lag was τ = 1. It can be
seen that for m = 2 (at the top), the curve corresponding to
the UCIβ=m and the one corresponding to the GCI overlap.
Moreover, the slopes of all of the curves are similar for both
UCIβ=m and GCI, which means that both will converge to
similar values of D. This is clear in Fig. 6, which shows the
reported value of the correlation dimension for the Henon map

FIG. 6. Estimation of the correlation dimension for the noiseless
Henon map using m = {2,4,6,8,10}. Log-derivatives of GCI (dotted
blue line) and UCIβ=m (solid orange line). The reported value of
correlation dimension D = 1.22 (dashed black line).

FIG. 7. Estimation of K2 for the noiseless Henon map: Estimation
based on GCI (dotted blue line), and estimation based on UCIβ=m

(solid orange line) for m = {2,4,6,8}. The reported value of correla-
tion entropy K = 0.3 (dashed black line).

D = 1.22, the logarithmic derivative of the UCIβ=m, and the
logarithmic derivative of the GCI as functions of ln h. Both
correlation integrals, UCIβ=m and GCI, approach the reported
value of D, meaning that both estimators describe the same h

dependence.
One of the main differences between the UCIβ=m and the

GCI lies in the distance between curves for different m values.
As is shown in Fig. 5, the difference between curves for
different m values is more uniform for the UCIβ=m than for
the GCI. Since the estimation of K2 is based on calculations
of the correlation integral for different m values, the last result
suggests that the use of UCIβ=m could have an advantage
over the use of GCI. We define from Eq. (17) a new entropy

FIG. 8. Noisy Henon map (σ = 0.1) log-log plot for
m = {2,4,6,8,10}: GCI (dotted blue line) and UCIβ=m (solid orange
line).
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FIG. 9. Correlation dimension coarse-grained estimators for the Henon map. DT

m (dotted blue line) and DU

m (solid orange line) for
m = [4,6,8] and Q = {500,5000,10 000}. Top row: Q = 500 (a) noiseless, (b) σ = 0.05, and (c) σ = 0.2. Middle row: Q = 5000 (d)
noiseless, (e) σ = 0.05, and (f) σ = 0.2. Bottom row: Q = 10 000 (g) noiseless, (h) σ = 0.05, and (i) σ = 0.2. The reported correlation
dimension value D = 1.22 is shown by a dashed black line.

functional based on the UCIβ=m as

ln
U

β=m+2
m+2 (h)

U
β=m
m (h)

= ln

{
m + 1

m + 2

}
+ ln

h2

σ 2
− 2τK2

+ ln

⎧⎨⎩ 2F1

(
m + 2,m−D

2 + 1; m+2
2 + 1; −h2

4σ 2

)
2F1

(
m,m−D

2 ; m+2
2 ; −h2

4σ 2

)
⎫⎬⎭. (19)

When σ � h, this estimator approaches

ln
U

β=m+2
m+2 (h)

U
β=m
m (h)

= −2τK2 + ln

(
D

m
+ 1

)
, (20)

and for m values much bigger than D it can be seen that
ln [Uβ=m+2

m+2 (h)/U
β=m
m (h)] ≈ −2τK2.

Figure 7 shows the entropy functional based on UCIβ=m for
m = {2,4,6,8}. It can be observed how this entropy functional
converges to the reported value of correlation entropy (K2 =
0.3 [11,16]) faster than the estimator based on GCI (K2 ≈
−1/τ ln [Tm+1(h)/Tm(h)]).

At this point, we have proposed a correlation integral
UCIβ=m from which we have derived a dimension and an
entropy functional. We have shown that these estimators
approach the reported values of dimension and entropy when
the time series are clean. On the other hand, when the noise
level (σ ) is increased, both the UCIβ=m and the GCI deviate
from the power-law behavior. We must clarify that all time
series used in this article were rescaled to have unitary
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FIG. 10. Correlation entropy coarse-grained estimators for the Henon map. KT

m (dotted blue line) and KU

m (solid orange line) for
m = [2,4,6,8] and Q = {500,5000,10 000}. Top row: Q = 500 (a) noiseless, (b) σ = 0.05, and (c) σ = 0.2. Middle row: Q = 5000 (d)
noiseless, (e) σ = 0.05, and (f) σ = 0.2. Bottom row: Q = 10 000 (g) noiseless, (h) σ = 0.05, and (i) σ = 0.2. The reported correlation
entropy value K2 = 0.3 is shown by a dashed black line.

standard deviation. As a consequence, σ is the noise level
after rescaling, i.e.,

σ = σn√
σ 2

c + σ 2
n

,

where σ 2
n is the noise variance and σ 2

c is the variance of the
clean time series. In this sense, σ = 0 corresponds to clean
time series and σ = 1 implies only noise.

Figure 8 shows that for σ = 0.1, both UCIβ=m and GCI
bend off to a larger slope when h is small. It can be seen
that for large h values, the differences between curves for
consecutive m values are more consistent for the UCIβ=m than
for the GCI.

Since there are no practical applications free of some noise,
it is important to find analytic expressions that allow us to

estimate D, K2, and σ from functions that depend on h and m.
In the next section, we will present coarse-grained estimators
that will be tested under different conditions.

V. COARSE-GRAINED ESTIMATORS
BASED ON THE UCIβ=m

The coarse-grained estimators allow us to visually inspect
the data for proper scaling regions as well as to estimate
the invariants D, K2, and σ . To derive these estimators, we
will take advantage of some identities of the Gauss hyperge-
ometric function and the β parameter. We will compare our
coarse-grained estimators with those based on the GCI [19],
given by Eqs. (6), (7), and (8). These estimators can be
efficiently computed and, more importantly, their calculation
only depends on the estimation of correlation integrals for
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consecutive embedding dimensions, i.e., no other external
quantities or parameters are needed.

A. Correlation dimension (D)

It is shown in Appendix B that a coarse-grained dimension
estimator in terms of UCIβ=m can be defined as

DU

m(h) =
(

4σ 2 + h2

h2

)
d ln U

β=m
m (h)

d ln h

+ 4σ 2

h2
(2m − 2)

[
U

β=m−2
m (h)

U
β=m
m (h)

− 1

]
, (21)

where U
β=m
m (h) is the UCI calculated by adding noise

with the same dimension as the embedding vectors, i.e.,
β = m. The estimator U

β=m−2
m (h) is the UCI calculated using

embedding dimension m and noise dimension β = m − 2.
The superscript U denotes that this estimator comes from the
UCI. It can be seen that for σ → 0, this estimator approaches
d ln U

β=m
m (h)/d ln h = D (see Appendix A). This behavior has

been observed in other coarse-grained estimators, such as the
ones proposed by Diks [13], Nolte et al. [19], and Jayawardena
et al. [22].

Figure 9 shows the behaviors of DU

m and DT

m as functions
of h for m = {4,6,8}. These estimators were calculated from
time series coming from the Henon map with different noise
levels (noiseless, σ = 0.05, and σ = 0.2) and data lengths,
reflected in the number of available phase-space vectors
Q = {500,5000,10 000}. The reported value of the correlation
dimension D = 1.22 is also shown.

For the noiseless case, we can see from the first column of
Fig. 9 how for a range of ln h values the estimator DU

m oscillates

around the reported value of D, regardless of m. Moreover,
as the number of available phase-space vectors increases, this
oscillation is attenuated. This result is very similar to the one
achieved with the estimator DT

m.
It can be observed in Figs. 9(b), 9(e), and 9(h) that for a low

noise level (σ = 0.05), the scaling range is shorter than in the
noiseless case. However, for a large number of phase-space
vectors, there still can be found a scaling region. There is
something interesting about the estimator DU

m in the presence
of noise that we have observed through a large number of
simulations. From Fig. 9(b) it can be seen that DU

m approaches
the reported value of D when ln h ≈ −1.3. At this value, the
curves for different embedding dimensions m get the closest.
In other words, the DU

m approaches the reported value of D

at the h value corresponding to the minimum of the variance
of DU

m calculated through the different m values. On the other
hand, for values of Q = {5000,10 000} it is shown in Figs. 9(e)
and 9(h) that a scaling region can be recognized (−1.9 �
ln h � −1.3).

For high noise levels (σ = 0.2), the third column of Fig. 9
shows that it is difficult to find a scaling region. Nevertheless,
it can be seen how the estimator DU

m approaches D when the
variance among the curves for different m values is the smallest
[ln h ≈ −0.35 for Fig. 9(c), ln h ≈ −0.85 for Fig. 9(f), and
ln h ≈ −1.2 for Fig. 9(i)]. DT

m displays a similar behavior to
DU

m even in the presence of noise.

B. Correlation entropy (K2)

In Appendix C, we propose the following coarse-grained
correlation entropy estimator:

KU

m(h) = 1

2τ

{
− ln

U
β=m+2
m+2

U
β=m
m

+ ln

[
4σ 2

h2 + 4σ 2

(
m − d ln U

β=m
m (h)

d ln h

m − D

)
+ h2

h2 + 4σ 2

( d ln U
β=m
m (h)

d ln h

m
+ 1

)]
− ln

(
D

m
+ 1

)}
. (22)

As we previously proved, when σ → 0 the quan-
tity d ln U

β=m
m (h)/d ln h → D. Then KU

m → ln (D/m + 1) −
2τK2, which is the noiseless correlation entropy functional
[Eq. (20)].

In Fig. 10 we present KU

m and KT

m as functions of ln h for dif-
ferent m values. These estimators were calculated using time
series coming from the Henon map with different noise levels
(noiseless, σ = 0.05, and σ = 0.2) and a different number of
available phase-space vectors Q = {500,5000,10 000}.

In the absence of noise, we can see from Figs. 10(a), 10(d),
and 10(g) that KU

m oscillates around the reported value of
correlation entropy (K2 = 0.3) [11,16] regardless of m. On the
other hand, it can be observed that KT

m is unable to converge
for the tested m values. It can be seen that the amplitude of
the oscillations of KU

m is higher for small h values than for
larger ones. These oscillations are attenuated as the number of
available phase-space vectors is increased.

When the noise level is low (σ = 0.05), it is shown in
the second column of Fig. 10 that KU

m still converges to K2

for a suitable range of ln h values. For Q = 500, this range
is −1.9 � ln h � −1.1, and for Q > 500 this range is even
larger. For high noise levels (σ = 0.2) it is observed from

Figs. 10(c), 10(f), and 10(i) that for KU

m it is not difficult to
find an approximately h-independent region. On the contrary,
KT

m does not converge to K2. Moreover, it can be seen that, in
contrast to KT

m, KU

m is not highly dependent on m, even in the
presence of noise.

C. Noise level (σ )

To propose a coarse-grained estimator of noise level,
inspired in [9], we define a noise level functional based on
the UCI (see Appendix D):

�U

m(h) = 1

2

[
d ln U

β=m

m+2

d ln h
− d ln U

β=m
m

d ln h

]

= 1

2

[
2(m + 1) 2F1

(
m + 2,m−D

2 + 1; m+2
2 + 1; −h2

4σ 2

)
2F1

(
m + 1,m−D

2 + 1; m+2
2 + 1; −h2

4σ 2

)
−2m

2F1

(
m + 1,m−D

2 ; m+2
2 ; −h2

4σ 2

)
2F1

(
m,m−D

2 ; m+2
2 ; −h2

4σ 2

) ]
. (23)

It can be shown that �U

m = 1 for h → 0 and it decreases
monotonically to 0 when h → ∞ (see Appendix D). This
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FIG. 11. Noise level coarse-grained estimators for the Henon map. σ T

m (dotted blue line) and σ U

m (solid orange line) for m = [2,4,6,8] and
Q = {500,5000,10000}. Top row: Q = 500 (a) noiseless, (b) σ = 0.05, and (c) σ = 0.2. Middle row: Q = 5000 (d) noiseless, (e) σ = 0.05,
and (f) σ = 0.2. Bottom row: Q = 10 000 (g) noiseless, (h) σ = 0.05, and (i) σ = 0.2. The true value is shown in each plot (dashed black line).

means that �U

m falls off from 1 to 0 on a scale proportional to
the noise level σ . This kind of behavior has been observed in
other noise level functionals [9,13,19,36].

For low dimensional systems and large m, it can be shown
that (see Appendix D)

�U

m(z) ≈ 1

1 − z
, (24)

where z = −h2/4σ 2. Finally, the coarse-grained noise level
estimator σ U

m(h) can be calculated as

σ U

m(h) = h

2

√
�U

m(h)

1 − �U

m(h)
. (25)

Figure 11 shows the noise level estimators σ U

m and σ T

m for
m = [2,4,6,8]. They were obtained using time series from the

Henon map under different noise conditions (noiseless, σ =
0.05, and σ = 0.2) and the number of available phase-space
vectors Q = {500,5000,10 000}.

In the absence of noise, it is shown in the first column
of Fig. 11 that σ U

m tends to the real noise level value σ = 0
for small h and regardless of the value of m or Q. It can be
observed how the oscillation of σ U

m around the real noise level
value decreases with increasing Q.

For a small noise level (σ = 0.05), three types of behavior
of σ U

m can be distinguished into three regions of the scale h.
In the second column of Fig. 11 it can be seen that for small
h values, σ U

m is characterized by a high variance (region I).
Next, we can find a range of h at which the variance strongly
decreases (region II). Finally, σ U

m increases rapidly for high
values of h (region III). It can be seen that σ U

m best approaches
the real noise level value at region II. Moreover, this behavior
is consistent through the different m and Q values.
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FIG. 12. Henon map. Box plot of the estimation of σ , D, and K2 for different numbers of available phase-space vectors,
Q = {500,1000,3000,5000,10 000}. First row: estimation of σ . (a) Noiseless, (b) σ = 0.05, and (c) σ = 0.2. Second row: estimation of
D. (d) Noiseless, (e) σ = 0.05, and (f) σ = 0.2. Third row: estimation of K2. (g) Noiseless, (h) σ = 0.05, and (i) σ = 0.2. The reported values
are shown by a dashed black line.

For a high noise level (σ = 0.2), the h dependence of
σ U

m can also be divided into the aforementioned regions
[Figs. 11(c), 11(f), and 11(i)]. Moreover, region II still allows
us to approximate the real noise level value, although it is
shorter than in cases of lower noise. It can be observed that the
behavior of σ U

m is similar to the behavior of σ T

m.

VI. AUTOMATIC INVARIANT ESTIMATION
BASED ON THE UCIβ=m

Based on the observed behavior of the coarse-grained
estimators DU

m, KU

m, and σ U

m, we designed a strategy to
automatically find the invariants D, K2, and σ . The first step
is to estimate the UCIs: U

β=m
m (h) and U

β=m

m+2 (h) for different
m � 2. Next, we must obtain the coarse-grained estimator σ U

m

[Eq. (25)] using U
β=m
m (h) and U

β=m

m+2 (h). To find a range of h

from which σ can be estimated, we analyze the derivative of
σ U

m. We choose the h value at which the absolute value of this
derivative is closest to zero as the center of the scale range.
Then the noise level is estimated for each m value and σ is
calculated as the average over these quantities.

Once σ is found, we proceed to calculate the correlation
dimension D. For this goal, we compute the coarse-grained
dimension estimator DU

m [Eq. (21)] using σ , U
β=m
m (h) and

U
β=m−2
m (h). To obtain a suitable range of h values, the variance

of DU

m through m must be computed. This range is centered at
the value that minimizes the variance. Then, we calculate the
correlation dimension for each m value, and D is estimated as
the average over m.

Finally, K2 can be estimated using KU

m [Eq. (22)], calculated
with U

β=m
m (h), U

β=m+2
m+2 (h), and the previously founded σ and
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FIG. 13. Mackey-Glass box plot of the estimation of σ , D, and K2 for different numbers of available phase-space vectors,
Q = {1000,3000,5000,10 000}. First row: estimation of σ . (a) Noiseless, (b) σ = 0.05, and (c) σ = 0.2. Second row: estimation of D.
(d) Noiseless, (e) σ = 0.05, and (f) σ = 0.2. Third row: estimation of K2. (g) Noiseless, (h) σ = 0.05, and (i) σ = 0.2. The reported values
are shown by a dashed black line.

D. To find a range of h from where K2 can be estimated, we
analyze the derivative of KU

m. The h at which the absolute
value of this derivative is closest to zero is chosen as the center
of the scale range. Finally, the correlation entropy is estimated
for each m value, and K2 is obtained as the average over
m. The automatic estimator of invariants is summarized in
Algorithm 2.

To evaluate this method, we apply it to 128 Henon map
realizations with different noise levels σ = {0,0.05,0.2}. All
realizations were normalized (unitary standard deviation), and
the UCIs were calculated using m = {4,5, . . . ,8}.

In Fig. 12, the box plots of the invariants D, K2, and σ are
shown for different numbers of available phase-space vectors
Q. The estimation of the noise level σ is presented in the first
row of Fig. 12. Generally speaking, we can observe that this

methodology achieves a reasonable estimation of σ even under
high noise levels. Nevertheless, σ is slightly underestimated
for moderate and high noise levels. As is expected, the variance
of the estimation decreases as the number of available phase-
space vectors is increased.

The estimated correlation dimension D is shown in the
second row of Fig. 12. In the absence of noise, Fig. 12(d)
shows that the estimations are very close to the reported value
D = 1.22. It can be seen in Fig. 12(e) that for small amounts of
noise, D is slightly overestimated. However, for higher noise
levels the precision of this estimation decreases [Fig. 12(f)]. As
with σ , the variance of the estimation decreases as the number
of available phase-space vectors is increased.

In terms of the correlation entropy K2, it can be observed
from the third row of Fig. 12 that the methodology proposed
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Algorithm 2 Automatic estimation of invariants using the coarse-grained estimators σU

m (h), DU

m(h), and KU

m(h).

1: Calculate Uβ=m
m (h) with Alg. 1, using noise μω ∼ χ 2

m(h).
2: Calculate U

β=m

m+2 (h) with Alg. 1, forming phase-space vectors with embedding dimension (m + 2) and using noise μω ∼ χ 2
m(h). Note that

the degrees of freedom of the chi-squared distribution is m.
3: Obtain the coarse-grained estimator σ U

m (h) using Eq. (25). Estimate σ within a range of h centered at the h value at which |dσ U

m (h)/dh| is
closest to zero. Here | · | denotes absolute value.
4: Compute the coarse-grained estimator DU

m(h) using Eq. (21) and the value of σ found in step 3. Estimate D within a range of h centered at
the h value at which the variance of DU

m(h) across the different m is minimum.
5: Calculate the coarse-grained estimator KU

m(h) using Eq. (22), the value of σ found in step 3, and the value of D found in 4. Estimate K2

within a range of h centered at the h value at which |dKU

m(h)/dh| is closest to zero.

herein places the estimation of K2 near its reported value
(K2 = 0.3), at least for small noise levels. Interestingly,
Fig. 12(g) shows that, in the absence of noise, the coarse-
grained estimator KU

m has a median of K2 = 0.285, which is
smaller than that reported in the literature.

The good performance in the estimation of K2 is kept for
small noise levels [Fig. 12(h)]. Nevertheless, for higher σ it is
difficult to achieve good estimations of K2 [Fig. 12(i)], but the
estimation is not too far from the reported value.

We also tested our approach using the Mackey-Glass
system, whose delay differential equation is

ẋ(t) = ax(t − λ)

1 + [x(t − λ)]10 − bx(t), (26)

where a = 0.2, b = 0.1, and λ = 23. We calculate the in-
variants σ , D, and K2 from 128 realizations with different
initial conditions and normalized to have unitary standard
deviation. The embedding dimension was m = {4,6, . . . ,16}
and the embedding lag τ was set to the one corresponding to
the first local minimum of the mutual information function
(τ = 20) [38]. Moreover, the nearest 15 temporal neighbors of
each phase-space vector were discarded [15].

Figure 13 shows the box plots of the estimation of the
Mackey-Glass system’s invariants for an increasing number
of available phase-space vectors, and for noise levels σ =
{0,0.05,0.2}. In the first row [Figs. 13(a)–13(c)], it can be
observed that for this system it is more difficult to achieve a
precise estimation of σ than for the Henon map. However, the
estimation is acceptable. It can be seen that σ U

m underestimates
σ for low and high noise levels [Figs. 13(b) and 13(c)].

The estimation of D is shown in the second row of Fig. 13.
For this system, our approach achieves a good estimation of the
reported value of its correlation dimension (D = 2.44) [39],
despite the errors involved in the calculation of σ . This result
is maintained even under high level conditions.

It should be noted that the estimations of the correlation
entropy (third row of Fig. 13) are in agreement with the
reported value K2 = 0.008 [39], even with inaccuracies in the
estimation of D and σ . Furthermore, this behavior is consistent
under noise level σ = 0.2 [Fig. 13(c)].

VII. DISCUSSION

In this section, we want to recall the most important
contributions of this article as well as some technical aspects
of the use of the UCI for the estimation of invariants. The
idea of the noise-assisted correlation integral, Sm(h), occurred
to us by observing the similarities between the correlation

algorithm (see Fig. 1) proposed by Grassberger et al. and the
suprathreshold stochastic resonance model. This idea led us to
propose the noise-assisted correlation algorithm (see Fig. 2).
One of the main results of this work is Eq. (11). It allows us to
define a correlation integral in which the kernel is induced by
the noise used in the noise-assisted correlation algorithm.

The NCI has two advantages. The first is the possibility
of using different kernel functions besides the Gaussian one.
This could help with the analytical modeling of situations
that deteriorate due to Gaussianity. The second advantage
is related to the calculation of correlation integrals whose
kernel functions require numerical integration. If one of these
functions can be considered as the complementary cumulative
distribution functions of a random variable, then the kernel
can be induced by using noise with such complementary
cumulative distribution functions, and this could be faster
than its numerical evaluation. It is important to notice that the
classical correlation integral (by Grassberger and Procaccia)
and the GCI (by Diks) can be thought of as particular cases of
the NCI. Moreover, it was demonstrated here that the GCI can
be achieved by using noise with Rayleigh distribution in the
noise-assisted correlation algorithm.

We must recall that the squared Rayleigh distribution is a
particular case of the χ 2

β
distribution with degree of freedom

β = 2. Based on this idea, we proposed a kernel function using
the complementary cumulative distribution functions of the χ 2

β

obtaining the second main result of this article, namely the UCI
[Eq. (15)].

We demonstrated that the noise level σ as well as the
correlation dimension D can be estimated from the UCI. The
main advantage over the GCI is that the UCI allows us to
introduce information on the embedding dimension m into the
kernel function. This action greatly improves the estimation
of the correlation entropy K2. This estimation, in the absence
of noise, is independent of the embedding dimension m, in
contrast to the estimation-based GCI (see Fig. 7). Additionally,
the estimator proposed herein is more robust against noise.

Other important aspect of the UCI is that its equation
involves the Gauss hypergeometric function, which in turn
includes many other functions as special or limiting cases [40].
Moreover, the Gauss hypergeometric function also has a vast
set of identities that allowed us to propose three different
coarse-grained estimators: a correlation dimension estimator
DU

m [Eq. (21)], a correlation entropy estimator KU

m [Eq. (22)],
and a noise-level estimator σ U

m [Eq. (25)].
The behavior of the proposed coarse-grained estimator (σ U

m)
is similar to the one proposed by Nolte et al. (σ T

m). Also, the
estimators DU

m and DT

m achieve similar results. On the other
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hand, the estimation of K2 is more precise using KU

m than KT

m,
as is shown in Fig. 10.

Based on the coarse-grained estimators, we have designed
a methodology to automatically calculate the invariants of a
system. We have found that the reliability of the estimation of
D and K2 depends on the accuracy of the estimation of σ . The
results of this methodology can be seen in Figs. 12 and 13.

The use of a wavelet transform approach to approximate
the derivative [37] allows us to achieve better estimations
of the invariants. This is because it implements a low-pass
filter reducing the high-frequency oscillations that are naturally
present in the coarse-grained estimators derived from the UCI.

Another way to mitigate the high-frequency oscillations of
the coarse-grained estimators DU

m, KU

m, and σ U

m is to increase the
number of available phase-space vectors, which can be done
in two ways. The first is to increase the time-series length,
which is not always possible. The second option is to calculate
all the distances or squared distances between phase-space
vectors and make copies of them. As a result, the number
of comparators in the noise-assisted algorithm would be
increased. Then, different realizations of noise must be added
to each copy, followed by the thresholding procedure. Finally,
the noise-assisted correlation sum, Ŝ(h), must be computed as
the average of all comparator outputs. In other words, the idea
is to replicate several times the diagram presented in Fig. 2.
The smoothness of the estimation and the computational effort
will be increased with the number of copies.

VIII. CONCLUSIONS

In this study, we have presented the foundations of the
noise-assisted correlation integral as well as the algorithm to
calculate it. The U -correlation integral was derived as a special
case of the noise-assisted correlation integral. The UCI has the
particularity that its kernel function incorporates information
of the embedding dimension. From this correlation integral,
we have deduced coarse-grained estimators for D, K2, and
σ . We have studied the behavior of these estimators under
different noise conditions and data lengths. From these results,
we can conclude that the incorporation of information about
the embedding dimension is useful for the estimation of K2.
Based on the coarse-grained functions proposed herein, we de-
signed a methodology to automatically calculate the system’s
invariants. This approach has yielded reliable estimations of
D, K2, and σ even under high noise levels.

The NCI can lead to the exploration of new kernel functions.
This will allow us to derive new correlation integrals that could
improve the estimation of system invariants, increasing our ca-
pacity to analyze and understand different natural phenomena.
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APPENDIX A: LIMIT BEHAVIOR OF d ln Uβ=m
m (h)/d ln h

To analyze the limit behavior of the function
d ln U

β=m
m (h)/d ln h, we must define

a = β + m

2
, b = m − D

2
, c = m + 2

2
,

(A1)

z = − h2

4σ 2
,

dz

dh
= − h

2σ 2
,

and

P = (−1)m/2 φ̂

2
(2σ )D

�(D/2)

�(β/2)

�((m + β)/2)

�(m/2 + 1)
e−mτK2 .

Equation (15) can then be rewritten as

Uβ
m(z) = Pzm/2

2F1 (a,b; c; z).

We can calculate the derivative of U
β
m(z) with respect to h

as

d

dh
Uβ

m(z) = d

dz

[
Pzm/2

2F1 (a,b; c; z)
] dz

dh
.

Using Eq. 15.2.1 from Ref. [41],

d

dh
Uβ

m(z) = −Ph

2σ 2
zm/2

[
m

2z
2F1 (a,b; c; z)

+ ab

c
2F1 (a + 1,b + 1; c + 1; z)

]
.

The logarithmic derivative of U
β
m(z) is obtained as

d ln U
β
m(z)

d ln h
= h

U
β
m(z)

d

dh
Uβ

m(z)

= 2Pzm/2+1

Pzm/2
2F1 (a,b; c; z)

[
m

2z
2F1 (a,b; c; z)

+ ab

c
2F1 (a + 1,b + 1; c + 1; z)

]
= m + 2abz

c

2F1 (a + 1,b + 1; c + 1; z)

2F1 (a,b; c; z)
. (A2)

Other expressions for the logarithmic derivative of U
β
m(z)

can be found using the identities of the Gauss hyperge-
ometric function. For example, from Eq. (A2) and us-
ing (zb/c) 2F1 (a + 1,b + 1; c + 1; z) = 2F1 (a + 1,b; c; z) −
2F1 (a,b; c; z), it can be shown that

d ln U
β
m(z)

d ln h
= 2a 2F1 (a + 1,b; c; z)

2F1 (a,b; c; z)
− β. (A3)

For very noisy time series (σ � h), z → 0. Taking into
account that 2F1 (a,b; c; 0) = 1, it can be proven from Eq. (A3)
that

lim
z→0

d ln U
β
m(z)

d ln h
= m.
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When the time series is noise-free or has a relatively small amount of noise (σ � h), the value of z → −∞. By making use
of Eq. 15.3.7 from Ref. [41], and the fact that 1/z → 0, we can obtain

2F1 (a,b; c; z) = �(c)�(b−a)

�(b)�(c−a)
(−z)−a

2F1 (a,1−c + a; 1−b+a; 1/z)+ �(c)�(a − b)

�(a)�(c − b)
(−z)−b

2F1 (b,1 − c + b; 1 − a + b; 1/z)

= �(c)�(b − a)

�(b)�(c − a)
(−z)−a + �(c)�(a − b)

�(a)�(c − b)
(−z)−b.

We can then rewrite the limit when z → −∞ of Eq. (A2) as

lim
z→−∞

d ln U
β
m(z)

d ln h
= m − 2ab

c

�(c+1)�(b−a)
�(b+1)�(c−a) (−z)b−a + �(c+1)�(a−b)

�(a+1)�(c−b)
�(c)�(b−a)
�(b)�(c−a) (−z)b−a + �(c)�(a−b)

�(a)�(c−b)

.

Finally, taking into account that a > b, we find that

lim
z→−∞

d ln U
β
m(z)

d ln h
= m − 2ab

c

�(c+1)�(a−b)
�(a+1)�(c−b)
�(c)�(a−b)
�(a)�(c+b)

= m − 2(ab/c)(c/a) = D. (A4)

APPENDIX B: DEDUCTION OF DU
m(h)

Using Eq. 9.137-9 from Ref. [42], we obtain

abz

c

2F1 (a + 1,b + 1; c + 1; z)

2F1 (a,b; c; z)
= c − a

1 − z

2F1 (a − 1,b; c; z)

2F1 (a,b; c; z)
− c − a − bz

1 − z
,

and using Eq. (A2), we can show that

d U
β
m(z)

d ln h
= m + 2(c − a)

1 − z

2F1 (a − 1,b; c; z)

2F1 (a,b; c; z)
− 2(c − a − bz)

1 − z
. (B1)

We need to find an estimator for the quotient 2F1 (a − 1,b; c; z)/ 2F1 (a,b; c; z). Using Eqs. (15) and (A1), we define the
estimator as

U
β−2
m (z)

U
β
m(z)

= β − 2

2(a − 1)
2F1 (a − 1,b; c; z)

2F1 (a,b; c; z)
. (B2)

Using Eq. (B2) in Eq. (B1), we get

d ln U
β
m(z)

d ln h
= m + 4(c − a)(a − 1)

(1 − z)(β − 2)

U
β−2
m

U
β
m

− 2(c − a − bz)

1 − z
.

Clearing for b,

2b = 1 − z

z

[
d ln U

β
m(z)

d ln h
− m

]
− 4(a − 1)(c − a)

z(β − 2)

U
β−2
m (z)

U
β
m(z)

+ 2(c − a)

z
.

Substituting the values of a, b, c, and z [Eq. (A1)], setting β = m, and clearing for D, we can define our coarse-grained estimator
Du

m(h):

Du
m(h) =

(
4σ 2 + h2

h2

)
d ln U

β=m
m (h)

d ln h
+ 4σ 2

h2
(2m − 2)

[
U

β=m−2
m (h)

U
β=m
m (h)

− 1

]
. (B3)

It is necessary to clarify that the estimator U
β=m−2
m (h) should be understood as the UCI calculated with phase-space vectors

of dimension m and noise dimension m − 2.

APPENDIX C: DEDUCTION OF K U
m(h)

The deduction of a coarse-grained estimator for the correlation entropy K2 under the UCI involves the use of the estimators
U

β
m(h) and U

β+2
m+2(h). First we need to define

M = φ̂

2
(2σ )D�(D/2). (C1)
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Using Eqs. (A1) and (C1), we can rewrite Eq. (15) as

Uβ
m(z) = M

�(a)e−mτK2 (−z)m/2

�(β/2)�(c) 2F1 (a,b; c; z), (C2)

and we write the quotient U
β+2
m+2(z)/U

β
m(z) as

U
β+2
m+2(z)

U
β
m(z)

=
⎡⎣ �(a + 2)�

(
β

2

)
�(c)

�(a)�
(

β+2
2

)
�(c + 1)

⎤⎦[ (−z) 2F1 (a + 2,b + 1; c + 1; z)

2F1 (a,b; c; z)
e−2τK2

]

= 2a(a + 1)

β

(−z) 2F1 (a + 2,b + 1; c + 1; z)

c 2F1 (a,b; c; z)
e−2τK2 . (C3)

Setting w = a + 1, the last equation can be expressed as

U
β+2
m+2(z)

U
β
m(z)

= −2(w − 1)

β

wz 2F1 (w + 1,b + 1; c + 1; z)

c 2F1 (w − 1,b; c; z)
e−2τK2 . (C4)

Using Eq. 9.137-9 from Ref. [42], we obtain

bw(z − 1)z 2F1 (w + 1,b + 1; c + 1; z)

c 2F1 (w − 1,b; c; z)
= (c − w) − (c − w − bz) 2F1 (w,b; c; z)

2F1 (w − 1,b; c; z)
. (C5)

Using Eq. (C5) in Eq. (C4), we can show that

U
β+2
m+2(z)

U
β
m(z)

= −2(w − 1)

βb(1 − z)

[
c − w − (c − w − bz) 2F1 (w,b; c; z)

2F1 (w − 1,b; c; z)

]
e−2τK2 . (C6)

Replacing a = w − 1 and knowing that c − a − 1 = −β/2 [Eq. (A1)], we can then write

U
β+2
m+2(z)

U
β
m(z)

= −2a

βb(1 − z)

[(
β

2
+ bz

)
2F1 (a + 1,b; c; z)

2F1 (a,b; c; z)
− β

2

]
e−2τK2 . (C7)

Using Eq. (A3) in Eq. (C7), we prove that

U
β+2
m+2(z)

U
β
m(z)

= e−2τK2

βb(1 − z)

{
2aβ

2
−
(

β

2
+ bz

)[
d ln U

β
m(z)

d ln h
+ β

]}

= e−2τK2

(1 − z)

{
1

2b

[
2a − d ln U

β
m(z)

d ln h
− β

]
− z

β

[
d ln U

β
m(z)

d ln h
+ β

]}
.

Restoring the values of a, b, and z, we have

U
β+2
m+2(h)

U
β
m(h)

= e−2τK2

[
4σ 2

h2 + 4σ 2

(
m − d ln U

β
m(h)

d ln h

m − D

)
+ h2

h2 + 4σ 2

(
d ln U

β
m(h)

d ln h

β
+ 1

)]
.

Setting β = m, taking the logarithm on both sides, and allowing for 2τK2, we can write

2τK2 = − ln
U

β=m+2
m+2 (h)

U
β=m
m (h)

+ ln

[
4σ 2

h2 + 4σ 2

(
m − d ln U

β=m
m (h)

d ln h

m − D

)
+ h2

h2 + 4σ 2

(
d ln U

β=m
m (h)

d ln h

m
+ 1

)]
.

Subtracting ln (D/m + 1) from both sides of the preceding equation gives

2τK2 − ln

(
D

m
+ 1

)
= − ln

U
β=m+2
m+2 (h)

U
β=m
m (h)

+ ln

[
4σ 2

h2 + 4σ 2

(
m − d ln U

β=m
m (h)

d ln h

m − D

)
+ h2

h2 + 4σ 2

(
d ln U

β=m
m (h)

d ln h

m
+ 1

)]
− ln

(
D

m
+ 1

)
.

(C8)

Finally, from Eq. (C8) we propose a correlation entropy coarse-grained estimator KU

m as

KU

m(h) = 1

2τ

{
− ln

U
β=m+2
m+2 (h)

U
β=m
m (h)

+ ln

[
4σ 2

h2 + 4σ 2

(
m − d ln U

β=m
m (h)

d ln h

m − D

)
+ h2

h2 + 4σ 2

(
d ln U

β=m
m (h)

d ln h

m
+ 1

)]
− ln

(
D

m
+ 1

)}
. (C9)
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APPENDIX D: DEDUCTION OF σ U
m (h)

Based on [9], we propose the functional

�U
n,m(h) = 1

n − m

[
d ln U

β=n−2
n (h)

d ln h
− d ln U

β=m
m (h)

d ln h

]
. (D1)

Setting n = m + 2 and using Eq. (A3), we can write Eq. (D1) as

�U

m(z) = 1

2

{
2(m + 1) 2F1

(
m + 2,b̄; c̄; z

)
2F1

(
m + 1,b̄; c̄; z

) − 2m 2F1 (m + 1,b; c; z)

2F1 (m,b; c; z)

}
, (D2)

where b̄ = (m + 2 − D)/2, c̄ = (m + 4)/2, b = (m − D)/2, c = (m + 2)/2, and z = −h2/4σ 2.
When h → 0, z → 0 and

lim
z→0

�U

m(z) = 1
2 [2(m + 1) − 2m] = 1. (D3)

On the other hand, when z → −∞ (h → ∞) it can be proven using Eq. 15.3.7 from Ref. [41] that

2F1 (a + 1,b; c; z)/ 2F1 (a,b; c; z) = (a − b)/a. Then

lim
z→0

�U

m(z) = 1

2

{
2

[
m + 1 − m + 2 − D

2

]
− 2

[
m − m − D

2

]}
= 0. (D4)

For low dimensional systems and large m values, b̄ ≈ c̄ and b ≈ c. Then taking into account that 2F1 (a,b; b; z) = (1 − z)−a ,
Eq. (D2) can be reduced to

�U

m(z) ≈ 1

2

[
2(m + 1)

1 − z
− 2m

1 − z

]
≈ 1

1 − z
. (D5)

It can be assessed that the limits in which z → 0 and z → −∞ in Eq. (D4) are 1 and 0, respectively.
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[36] G. Çoban, A. H. Büyüklü, and A. Das, A linearization based
non-iterative approach to measure the Gaussian noise level for
chaotic time series, Chaos, Solitons Fractals 45, 266 (2012).

[37] J. W. Luo, J. Bai, and J. H. Shao, Application of the wavelet
transforms on axial strain calculation in ultrasound elastography,
Progr. Nat. Sci. 16, 942 (2006).

[38] F. Kaffashi, R. Foglyano, C. G. Wilson, and K. A. Loparo,
The effect of time delay on approximate and sample entropy
calculations, Physica D 237, 3069 (2008).

[39] P. Grassberger and I. Procaccia, Dimensions and entropies of
strange attractors from a fluctuating dynamics approach, Physica
D 13, 34 (1984).

[40] A. Plastino and M. C. Rocca, Hypergeometric foundations of
Fokker-Planck-like equations, Phys. Lett. A 380, 1900 (2016).

[41] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables,
Applied Mathematics Series (Martino Publishing, Mansfield
Center, CT, 2014).

[42] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products, 5th ed. (Academic Press, San Diego, CA, 1994).

012212-19

http://dx.doi.org/10.1063/1.3382013
http://dx.doi.org/10.1063/1.3382013
http://dx.doi.org/10.1063/1.3382013
http://dx.doi.org/10.1063/1.3382013
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01340.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01340.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01340.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01340.x
http://dx.doi.org/10.1103/PhysRevE.52.4691
http://dx.doi.org/10.1103/PhysRevE.52.4691
http://dx.doi.org/10.1103/PhysRevE.52.4691
http://dx.doi.org/10.1103/PhysRevE.52.4691
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1103/RevModPhys.70.223
http://dx.doi.org/10.1371/journal.pcbi.1000348
http://dx.doi.org/10.1371/journal.pcbi.1000348
http://dx.doi.org/10.1371/journal.pcbi.1000348
http://dx.doi.org/10.1371/journal.pcbi.1000348
http://dx.doi.org/10.1016/j.physleta.2003.12.042
http://dx.doi.org/10.1016/j.physleta.2003.12.042
http://dx.doi.org/10.1016/j.physleta.2003.12.042
http://dx.doi.org/10.1016/j.physleta.2003.12.042
http://dx.doi.org/10.1016/j.dsp.2007.04.012
http://dx.doi.org/10.1016/j.dsp.2007.04.012
http://dx.doi.org/10.1016/j.dsp.2007.04.012
http://dx.doi.org/10.1016/j.dsp.2007.04.012
http://dx.doi.org/10.1006/dspr.1999.0341
http://dx.doi.org/10.1006/dspr.1999.0341
http://dx.doi.org/10.1006/dspr.1999.0341
http://dx.doi.org/10.1006/dspr.1999.0341
http://dx.doi.org/10.1016/j.sigpro.2004.11.002
http://dx.doi.org/10.1016/j.sigpro.2004.11.002
http://dx.doi.org/10.1016/j.sigpro.2004.11.002
http://dx.doi.org/10.1016/j.sigpro.2004.11.002
http://dx.doi.org/10.1109/TIM.2007.908125
http://dx.doi.org/10.1109/TIM.2007.908125
http://dx.doi.org/10.1109/TIM.2007.908125
http://dx.doi.org/10.1109/TIM.2007.908125
http://dx.doi.org/10.1103/PhysRevE.56.1160
http://dx.doi.org/10.1103/PhysRevE.56.1160
http://dx.doi.org/10.1103/PhysRevE.56.1160
http://dx.doi.org/10.1103/PhysRevE.56.1160
http://www.jstor.org/stable/2346131
http://dx.doi.org/10.1016/j.chaos.2011.10.011
http://dx.doi.org/10.1016/j.chaos.2011.10.011
http://dx.doi.org/10.1016/j.chaos.2011.10.011
http://dx.doi.org/10.1016/j.chaos.2011.10.011
http://dx.doi.org/10.1080/10020070612330093
http://dx.doi.org/10.1080/10020070612330093
http://dx.doi.org/10.1080/10020070612330093
http://dx.doi.org/10.1080/10020070612330093
http://dx.doi.org/10.1016/j.physd.2008.06.005
http://dx.doi.org/10.1016/j.physd.2008.06.005
http://dx.doi.org/10.1016/j.physd.2008.06.005
http://dx.doi.org/10.1016/j.physd.2008.06.005
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/0167-2789(84)90269-0
http://dx.doi.org/10.1016/j.physleta.2016.03.047
http://dx.doi.org/10.1016/j.physleta.2016.03.047
http://dx.doi.org/10.1016/j.physleta.2016.03.047
http://dx.doi.org/10.1016/j.physleta.2016.03.047



