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Abstract It has been predicted that land use change will pose the main threat to 
biodiversity worldwide (Sala et al. 2000). A recent meta-analysis shows that, 
at local scale, conversion and degradation of habitats promote on average a 
global decline of 8.1 % of species richness and 10.1 % of abundance (Newbold 
et  al. 2015). These human-mediated changes in biodiversity strongly affect 
ecosystem stability (Hautier et al. 2015). Given the importance of biodiversity 
on ecosystem functions and services, studies on the effects of land use on 
species assemblages are highly relevant in current global context.
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Chapter 7
Taxonomic and Functional Response 
of Arbuscular Mycorrhizal Fungi to Land Use 
Change in Central Argentina

Longo Silvana, Cofré Noelia, Soteras Florencia, Grilli Gabriel, Lugo Monica, 
and Urcelay Carlos

7.1  �Introduction

It has been predicted that land use change will pose the main threat to biodiversity 
worldwide (Sala et al. 2000). A recent meta-analysis shows that, at local scale, con-
version and degradation of habitats promote on average a global decline of 8.1 % of 
species richness and 10.1 % of abundance (Newbold et al. 2015). These human-
mediated changes in biodiversity strongly affect ecosystem stability (Hautier et al. 
2015). Given the importance of biodiversity on ecosystem functions and services, 
studies on the effects of land use on species assemblages are highly relevant in  
current global context.

Despite that soil is an important reservoir of biodiversity (van der Heijden 
et al. 2008) and that belowground communities are important drivers of aboveg-
round communities and ecosystem processes (Wardle et al. 2004), soil biota is 
generally underrepresented in studies linking land use–biodiversity–ecosystem 
processes.

Arbuscular mycorrhizal fungi (AMF) (Phylum Glomeromycota) are one of the 
main components of the soil biota. They are present in most terrestrial ecosystems 
and establish obligate symbiosis with more than the 80 % of land plants (Smith and 
Read 2008). These fungi depend on plant photosynthetic carbon while providing 
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them with soil nutrients, among other benefits (Smith and Read 2008). The outcome 
of the plant–fungus interaction highly depends on the fungal and plant identity and 
the environmental context.

It has been widely documented that AMF affects plant community structure 
(e.g., van der Heijden et al. 1998) and ecosystem processes such as productivity 
(e.g., Klironomos et al. 2000), decomposition (e.g., Urcelay et al. 2011), and soil 
aggregation (e.g., Rillig and Mummey 2006). Then, local decline of AMF diversity 
under land use would have consequences on plant communities and ecosystem 
functioning.

It has been recognized that not only richness or diversity per se but also 
functional traits of species are important for understanding the response of 
biotic communities to land use change as well as their impacts on ecosystem 
processes and services (e.g., Díaz et al. 2007). This trait-based approach has 
also been recognized as a useful framework to understand fungal ecology (e.g., 
van der Heijden and Scheublin 2007; Koide et  al. 2014; Aguilar-Trigueros 
et al. 2014).

The functional characteristics of AMF are considered phylogenetically fairly 
conserved (Hart and Reader 2002; Powell et al. 2009; Maherali and Klironomos 
2012). Based on C–S–R triangle (competitor, stress tolerator, ruderal) frame-
work (Grime 1979), Chagnon et al. (2013) recently assigned life history strate-
gies to the three main lineages of AMF (Gigasporaceae, Glomeraceae, and 
Acaulosporaceae). Accordingly, Gigasporaceae are considered “competitors” 
characterized by high soil hyphal densities, late production of spores in the 
growing season, and higher nutritional benefits to hosts. In contrast, Glomeraceae 
are “ruderals” characterized by higher growth rates, higher intraradical coloni-
zation, early production of spores, and low soil hyphal densities. The higher 
intraradical colonization rates and lower soil hyphal densities imply less nutri-
tional benefits to hosts (e.g., Maherali and Klironomos 2007). In turn, 
Acaulosporaceae is considered “stress tolerators” with low growth rates, long-
lived mycelium, resistance to acidity and low temperature among other stress-
ors, and probably more investment in constitutive defense (Chagnon et al. 2013). 
These life history strategies could also be useful to explain fungal assemblages 
in successional dynamics and their response to disturbances imposed by land 
use change (Chagnon et al. 2013).

In central Argentina (Fig. 7.1), land uses such as fire, grazing, and forest frag-
mentation are among the most important environmental changes (Zak et al. 2004). 
In the last 15 years, some studies were performed to assess the impact of those 
anthropogenic activities on AMF communities. Here we review those studies to 
analyze the response of AMF to land use. We particularly aimed to assess whether 
grazing, fire, and forest fragmentation (a) promote a decline of AMF taxonomic 
diversity and (b) negatively affect Gigasporaceae and Acaulosporaceae lineages’ 
spore abundance and Glomeraceae remains unaffected as predicted by the C–S–R 
framework (Fig. 7.2).[AU4]
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7.2  �Effects of Land Use on Diversity and Abundance  
of AMF Spores

To evaluate the effect of grazing on AMF spore communities, Lugo and Cabello 
(2002) conducted a study located in altitudinal grasslands in central Argentina. Six 
sampling sites were selected: three grazed and three ungrazed for a minimum of 20 
years. Samplings were carried out over four seasons. The main findings of this study 
revealed no differences in spore richness, diversity, and abundance.

Instead, Longo et al. (2014) found that fire severely affects AMF diversity. In this 
landscape-level study, five locations were selected in Chaco Serrano Forests. In 
each location, five nearby burned and unburned sites were studied in two seasons 
(autumn and spring). Results showed that diversity, richness, and evenness of AMF 
spores consistently decreased in the five burned sites and in some cases nearly half. 
However, spore abundance was not significantly affected by the fire.

It has been widely documented that habitat loss promoted by human-mediated 
forest fragmentation strongly affects biological community’s dynamics (e.g., 
Saunders et al. 1991). In this context, area size is an important factor affecting 
biodiversity (Haddad et al. 2015). Grilli et al. (2012) aimed to evaluate the rela-
tionship between area size of forest remnants and AMF spore communities at the 
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Fig. 7.1  Location of studied areas with each land use in Córdoba, central Argentina. (a) Mountain 
Grasslands (grazing). (b) Chaco Serrano Forests (fire). (c) Chaco Forests (forest fragmentation)
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Fig. 7.2  Photographs of the three studied land uses. (a) Grazing in mountain grasslands; (b) fire 
in Chaco Serrano forests; (c) forest fragmentation in Chaco

L. Silvana et al.



landscape level. To this end, eight forest fragments with different sizes (0.86–
1000 ha) immersed in an agricultural matrix in the Chaco region were selected. In 
this study, diversity of spores decreased with decreasing area size, while abun-
dance marginally did it.

In Table  7.1 we summarized the direction of the response of each species  
(positive, neutral, or negative) to each land use per sampling season in those studies. 
Two species occurred in more than one study: Entrophospora infrequens and 
Scutellospora biornata. They were negatively affected in one case (by fire in spring) 
but not affected in the other five. The remaining species were analyzed within each 
particular study.

Grazing significantly decreased the abundance of Scutellospora sp. in one out of 
four seasons (winter). In contrast, the following species increased in response to 
grazing in one season: Acaulospora laevis (winter), A. mellea (autumn), and Glomus 
sp. (autumn). The remaining species showed neutral response to grazing.

Fire significantly decreased the abundance of several species. Acaulospora 
rehmii, A. scrobiculata, Gigaspora gigantea, Gigaspora sp. 1, and Gigaspora sp. 3 
consistently decreased their abundance in burned sites in both seasons. In turn, 
Ambispora jimgerdemannii, Entrophospora infrequens, Dentiscutata heterogama, 
Scutellospora biornata, and Scutellospora sp. declined with fire in spring, while 
Racocetra gregaria and Acaulospora sp. 1 did it in autumn. In contrast, Septoglomus 
constrictum consistently increased in abundance in burned sites over both seasons, 
while Glomus sp. 4 and Glomus sp. 5 only did it in spring.

In fragmented forest, three unidentified species of Glomus significantly 
declined their abundance with decreasing area size. The remaining species were 
not affected.

These results show that the response of AMF depends on the land use type. 
While fire and reduction of area size seem to strongly decrease AMF diversity, no 
important differences between grazed and non-grazed sites were observed.

In comparison to fire and forest size reduction, grazing might not strongly affect 
soil properties and plant diversity. Indeed, despite that livestock grazing removes 
plant biomass they increase plant diversity in the studied mountain grasslands (e.g., 
Pucheta et al. 1998). In contrast, fire imposes great impacts to soils such as reduc-
tion or elimination of the aboveground and belowground biomass, loss of soil 
organic horizon, and increase in soil temperature and ash deposition (Neary et al. 
1999; Certini 2005), at least in the short term (Neary et al. 1999). Regarding forest 
fragmentation, it has been shown in the studied area that reduction in area size is 
accompanied by a decrease in plant diversity (Cagnolo et al. 2006). Then, different 
impacts on soil properties and plant communities might explain the differential 
response of AMF communities to the studied land uses.

When looking at particular AMF, several species were not affected by land use 
while others consistently decreased or increased. Examples of these last cases are 
some Gigaspora species that decreased their abundance in burned sites in both sea-
sons, while Septoglomus constrictum behaved in the opposite way (Table  7.1). 
These species could be considered as indicators of land use in the studied region 
(Oehl et al. 2003).
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Table 7.1  Response of AMF spore species to land use (+: increased, −: decreased, and =: did not 
change)

Land use type

Fire 
spring

Fire 
autumn

Grazing 
summer

Grazing 
autumn

Grazing 
winter

Grazing 
spring

Area 
size

Acaulosporaceae

Acaulospora alpina

A. bireticulata

A. cavernata = =
A. excavata

A. foveata

A. lacunosa

A. laevis = = + =
A. mellea = + = =
A. rehmii – –
A. rugosa

A. scrobiculata – –
A. spinosa

A. undulata

Ambisporaceae

Ambispora 
appendicula

A. jimgerdemannii –
A. leptoticha

Claroideoglomeraceae

Claroideoglomus 
claroideum

= =

C. luteum

Entrophosporaceae

Entrophospora 
infrequens

– = = = = =

Gigasporaceae

Dentiscutata 
heterogama

– =

Gigaspora gigantea – –
G. margarita

G. rosea

Racocetra gregaria = –
Scutellospora 
biornata

– = = = = =

Glomeraceae

Funneliformis badium

F. geosporum

F. mosseae

(continued)
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Table 7.1  (continued)

Land use type

Fire 
spring

Fire 
autumn

Grazing 
summer

Grazing 
autumn

Grazing 
winter

Grazing 
spring

Area 
size

Glomus aggregatum = =
G. brohultii

G. dimorphicum = = = =
G. fuegianum = = = =
Rhizophagus clarus

R. intraradices

Sclerocystis 
coremioides

= =

Sclerocystis 
rubiformis

= = = =

Septoglomus 
constrictum

+ +

Unidentified  
(Longo et al. 2014)

Glomus sp. 1 = =
Glomus sp. 2 = =
Glomus sp. 3 – =
Glomus sp. 4 + =
Glomus sp. 5 + =
Glomus sp. 6 = =
Glomus sp. 7 = =
Glomus sp. 8 = =
Glomus sp. 9 = =
Glomus sp. 10 = =
Glomus sp. 11 = =
Claroideoglomus sp. – =
Acaulospora sp. 1 = –
Acaulospora sp. 2 = =
Acaulospora sp. 3 = =
Gigaspora sp. 1 – –
Gigaspora sp. 2 = =
Gigaspora sp. 3 – –
Scutellospora sp. – =
Unidentified  
(Grilli et al. 2012)

Glomus sp. 1 =
Glomus sp. 2 –
Glomus sp. 3 =
Glomus sp. 4 =
Glomus sp. 5 =

(continued)
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7.3  �Effects of Land Use on AMF Spores: A Functional Group 
Approach

Arbuscular mycorrhizal fungi were grouped into three functional groups accord-
ing to their traits (sensu Chagnon et al. 2013): Gigasporaceae, Acaulosporaceae 
(Acaulosporaceae + Ambisporaceae + Entrophosporaceae), and Glomeraceae (Cl
aroideoglomeraceae + Glomeraceae + Pacisporaceae). Then, the number of cases 
in each functional group that evidenced negative, neutral, or positive response to 
land use was computed and a Chi-square analysis on absolute frequency was 
applied (Table 7.2).

The AMF functional groups were differentially affected by land use (Χ2 = 37.69; 
p = 0.0001). Specifically, Glomeraceae was mainly unaffected (84 % of analyzed 
cases) and the few positive and negative responses were equally distributed in the 
remnant cases. In turn, 74 % of Acaulosporaceae revealed neutral responses, while 
20 % and 6 % were negative and positive, respectively. In contrast, Gigasporaceae 
showed 58 % of neutral and 42 % of negative response cases.

It is worth to highlight that Glomeromycota as a whole seem to be fairly resistant 
to land use since spore abundance was mostly unaffected. Nevertheless, there were 
clear differences between functional groups.

In line with the C–S–R framework for strategies in AMF (see Fig. 1.1 in Chagnon 
et al. 2013), Gigasporaceace and Glomeraceae represented opposite trends in their 
response to land use. This is consistent with the competitor–ruderal life history axis, 

Table 7.1  (continued)

Land use type

Fire 
spring

Fire 
autumn

Grazing 
summer

Grazing 
autumn

Grazing 
winter

Grazing 
spring

Area 
size

Glomus sp. 7 –
Glomus sp. 8 =
Glomus sp. 9 =
Glomus sp. 10 =
Sclerocystis sp. –
Gigaspora sp. 1 =
Gigaspora sp. 2 =
Unidentified (Lugo 
and Cabello 2002)

Acaulospora2 = = = =
Acaulospora3 = = = =
Glomus spp. = + = =
Glomus sp. 7 = = = =
Glomus sp. 3 = = = =
Scutellospora sp. = = – =
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closely related to environmental conditions caused by disturbance intensity. In turn, 
Acaulosporaceae showed to be in mid position of the axis. This is not fully consis-
tent with the scheme adapted by Chagnon et al. (2013).

The majority of Glomeraceae seems to be resistant to disturbance posed by land 
use such as fire, grazing, and forest fragmentation. This is consistent with their 
“ruderal” life strategy which is characterized by rapid growth, capacity to fuse 
hypha and restore integrity of the mycelium in soil, and earlier investment in spore 
production (Chagnon et al. 2013). On the other hand, an important proportion of 
cases in Gigasporaceae reveal that this group is particularly sensitive to disturbance 
and would behave as “competitors.” They need to allocate large quantities of carbon 
to extraradical mycelia for soil exploration and sporulate later in the growing season 
(Chagnon et al. 2013). These traits make this functional group fairly incompatible 
with the disturbances generally associated with land use. The results suggest that 
Acaulosporaceae have traits situated in between “ruderal–competitor” axis, but this 
remains to be explicitly measured.

Overall, these results reveal that trait-based approaches, in particular the C–R–S 
framework, provide useful insight for ecological understanding of AMF ecology in 
face of global change.

7.4  �Conclusions and Future Directions

Altogether, the results analyzed here reveal that land uses in central Argentina 
(grazing, fire, and forest fragmentation) tend to negatively affect AMF diversity, 
mainly those human activities that involve severe soil damaging and decrease 
plant diversity such as fire and forest fragmentation. When considering AMF 
functional groups, Glomeraceae seems to be resistant to these land uses, while 
Gigasporaceae seems to be fairly sensitive. It could be predicted that these changes 
in AMF taxonomic diversity and functional traits would have consequences on 
successional dynamics and ecosystem processes. For example, it has been shown 
that Glomeraceae invests more in intraradical colonization than extraradical 
mycelium and this may imply less nutritional benefits to plant hosts. In contrast, 
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Table 7.2  Number of positive, neutral, and negative response cases regarding the spore abundance 
of species belonging to three AMF functional groups

Functional group Land use effect

Positive Neutral Negative

Glomeraceae 5 53 5

Acaulosporaceae 2 26 7

Gigasporaceae 0 15 11

Total 7 94 23

Glomeraceae includes Claroideoglomeraceae, Glomeraceae, and Pacisporaceae. Acaulosporaceae 
includes Acaulosporaceae, Ambisporaceae, and Entrophosporaceae; see Table 7.1 for more details
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Gigasporaceae largely invests in extraradical mycelium allowing for better exploi-
tation of soil resources, particularly P, thus enhancing benefits to plant hosts 
(Maherali and Klironomos 2007). In addition, the large amounts of soil mycelium 
might promote better soil aggregation through glomalin secretion by these fungi 
(Rillig and Mummey 2006).

Further studies using trait-based approaches would be useful to test hypothesis 
regarding the AMF-mediated effects of land use on successional dynamics. This 
seems to be a fruitful way forward to gain knowledge for making predictions about 
the consequences of global changes on plant community dynamics and ecosystem 
functioning.
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